高二年級(jí)數(shù)學(xué)期末備考知識(shí)點(diǎn)
高二年級(jí)數(shù)學(xué)期末備考知識(shí)點(diǎn)
一、集合與簡(jiǎn)易邏輯:
一、理解集合中的有關(guān)概念
。1)集合中元素的特征: 確定性 , 互異性 , 無(wú)序性 。
(2)集合與元素的關(guān)系用符號(hào)=表示。
。3)常用數(shù)集的符號(hào)表示:自然數(shù)集 ;正整數(shù)集 ;整數(shù)集 ;有理數(shù)集 、實(shí)數(shù)集 。
。4)集合的表示法: 列舉法 , 描述法 , 韋恩圖 。
。5)空集是指不含任何元素的集合。
空集是任何集合的子集,是任何非空集合的真子集。
二、函數(shù)
映射與函數(shù):
(1)映射的概念: (2)一一映射:(3)函數(shù)的概念:
二、函數(shù)的三要素:
相同函數(shù)的判斷方法:①對(duì)應(yīng)法則 ;②定義域 (兩點(diǎn)必須同時(shí)具備)
(1)函數(shù)解析式的求法:
、俣x法(拼湊):②換元法:③待定系數(shù)法:④賦值法:
。2)函數(shù)定義域的求法:
①含參問(wèn)題的定義域要分類(lèi)討論;
、趯(duì)于實(shí)際問(wèn)題,在求出函數(shù)解析式后;必須求出其定義域,此時(shí)的定義域要根據(jù)實(shí)際意義來(lái)確定。
。3)函數(shù)值域的求法:
、倥浞椒ǎ恨D(zhuǎn)化為二次函數(shù),利用二次函數(shù)的特征來(lái)求值;常轉(zhuǎn)化為型如: 的形式;
、谀媲蠓ǎǚ辞蠓ǎ和ㄟ^(guò)反解,用 來(lái)表示 ,再由 的取值范圍,通過(guò)解不等式,得出 的取值范圍;常用來(lái)解,型如: ;
④換元法:通過(guò)變量代換轉(zhuǎn)化為能求值域的函數(shù),化歸思想;
、萑怯薪绶ǎ恨D(zhuǎn)化為只含正弦、余弦的函數(shù),運(yùn)用三角函數(shù)有界性來(lái)求值域;
、藁静坏仁椒ǎ恨D(zhuǎn)化成型如: ,利用平均值不等式公式來(lái)求值域;
、邌握{(diào)性法:函數(shù)為單調(diào)函數(shù),可根據(jù)函數(shù)的單調(diào)性求值域。
、鄶(shù)形結(jié)合:根據(jù)函數(shù)的幾何圖形,利用數(shù)型結(jié)合的方法來(lái)求值域。
三、函數(shù)的性質(zhì):
函數(shù)的單調(diào)性、奇偶性、周期性
單調(diào)性:定義:注意定義是相對(duì)與某個(gè)具體的區(qū)間而言。
判定方法有:定義法(作差比較和作商比較)
導(dǎo)數(shù)法(適用于多項(xiàng)式函數(shù))
復(fù)合函數(shù)法和圖像法。
應(yīng)用:比較大小,證明不等式,解不等式。
奇偶性:定義:注意區(qū)間是否關(guān)于原點(diǎn)對(duì)稱(chēng),比較f(x) 與f(—x)的關(guān)系。f(x) —f(—x)=0 f(x) =f(—x) f(x)為偶函數(shù);
f(x)+f(—x)=0 f(x) =—f(—x) f(x)為奇函數(shù)。
判別方法:定義法, 圖像法 ,復(fù)合函數(shù)法
應(yīng)用:把函數(shù)值進(jìn)行轉(zhuǎn)化求解。
周期性:定義:若函數(shù)f(x)對(duì)定義域內(nèi)的任意x滿(mǎn)足:f(x+T)=f(x),則T為函數(shù)f(x)的周期。
其他:若函數(shù)f(x)對(duì)定義域內(nèi)的任意x滿(mǎn)足:f(x+a)=f(x—a),則2a為函數(shù)f(x)的周期。
應(yīng)用:求函數(shù)值和某個(gè)區(qū)間上的函數(shù)解析式。
四、圖形變換:函數(shù)圖像變換:(重點(diǎn))要求掌握常見(jiàn)基本函數(shù)的圖像,掌握函數(shù)圖像變換的一般規(guī)律。
常見(jiàn)圖像變化規(guī)律:(注意平移變化能夠用向量的語(yǔ)言解釋?zhuān)桶聪蛄科揭坡?lián)系起來(lái)思考)
平移變換 y=f(x)→y=f(x+a),y=f(x)+b
注意:(。┯邢禂(shù),要先提取系數(shù)。如:把函數(shù)y=f(2x)經(jīng)過(guò) 平移得到函數(shù)y=f(2x+4)的圖象。
。áⅲ⿻(huì)結(jié)合向量的平移,理解按照向量 (m,n)平移的意義。
對(duì)稱(chēng)變換 y=f(x)→y=f(—x),關(guān)于y軸對(duì)稱(chēng)
y=f(x)→y=—f(x) ,關(guān)于x軸對(duì)稱(chēng)
y=f(x)→y=f|x|,把x軸上方的圖象保留,x軸下方的圖象關(guān)于x軸對(duì)稱(chēng)
y=f(x)→y=|f(x)|把y軸右邊的圖象保留,然后將y軸右邊部分關(guān)于y軸對(duì)稱(chēng)。(注意:它是一個(gè)偶函數(shù))
伸縮變換:y=f(x)→y=f(ωx),
y=f(x)→y=Af(ωx+φ)具體參照三角函數(shù)的圖象變換。
一個(gè)重要結(jié)論:若f(a—x)=f(a+x),則函數(shù)y=f(x)的圖像關(guān)于直線x=a對(duì)稱(chēng);
五、反函數(shù):
(1)定義:
。2)函數(shù)存在反函數(shù)的條件:
。3)互為反函數(shù)的定義域與值域的關(guān)系:
(4)求反函數(shù)的步驟:①將 看成關(guān)于 的方程,解出 ,若有兩解,要注意解的選擇;②將 互換,得 ;③寫(xiě)出反函數(shù)的定義域(即 的值域)。
。5)互為反函數(shù)的圖象間的關(guān)系:
。6)原函數(shù)與反函數(shù)具有相同的單調(diào)性;
。7)原函數(shù)為奇函數(shù),則其反函數(shù)仍為奇函數(shù);原函數(shù)為偶函數(shù),它一定不存在反函數(shù)。
六、常用的初等函數(shù):
。1)一元一次函數(shù):
。2)一元二次函數(shù):
一般式
兩點(diǎn)式
頂點(diǎn)式
二次函數(shù)求最值問(wèn)題:首先要采用配方法,化為一般式,
有三個(gè)類(lèi)型題型:
(1)頂點(diǎn)固定,區(qū)間也固定。如:
。2)頂點(diǎn)含參數(shù)(即頂點(diǎn)變動(dòng)),區(qū)間固定,這時(shí)要討論頂點(diǎn)橫坐標(biāo)何時(shí)在區(qū)間之內(nèi),何時(shí)在區(qū)間之外。
。3)頂點(diǎn)固定,區(qū)間變動(dòng),這時(shí)要討論區(qū)間中的參數(shù)。
等價(jià)命題 在區(qū)間 上有兩根 在區(qū)間 上有兩根 在區(qū)間 或 上有一根
注意:若在閉區(qū)間 討論方程 有實(shí)數(shù)解的情況,可先利用在開(kāi)區(qū)間 上實(shí)根分布的情況,得出結(jié)果,在令 和 檢查端點(diǎn)的情況。
。3)反比例函數(shù):
。4)指數(shù)函數(shù):
指數(shù)函數(shù):y= (a>o,a≠1),圖象恒過(guò)點(diǎn)(0,1),單調(diào)性與a的值有關(guān),在解題中,往往要對(duì)a分a>1和0
。5)對(duì)數(shù)函數(shù):
對(duì)數(shù)函數(shù):y= (a>o,a≠1) 圖象恒過(guò)點(diǎn)(1,0),單調(diào)性與a的值有關(guān),在解題中,往往要對(duì)a分a>1和0
【高二年級(jí)數(shù)學(xué)期末備考知識(shí)點(diǎn)】相關(guān)文章:
三年級(jí)數(shù)學(xué)下冊(cè)面積期末知識(shí)點(diǎn)的歸納整理07-07
二年級(jí)數(shù)學(xué)期末考試知識(shí)點(diǎn)復(fù)習(xí)06-25
數(shù)學(xué)三年級(jí)乘法的知識(shí)點(diǎn)歸納10-25
三年級(jí)數(shù)學(xué)面積知識(shí)點(diǎn)02-12
三年級(jí)數(shù)學(xué)單位換算的知識(shí)點(diǎn)04-29
小學(xué)二年級(jí)數(shù)學(xué)歸納知識(shí)點(diǎn)07-23
三年級(jí)上冊(cè)的數(shù)學(xué)知識(shí)點(diǎn)歸納04-22