關(guān)于探索勾股定理教案
關(guān)于探索勾股定理教案
教學(xué)目標(biāo)
1、知識(shí)與技能目標(biāo)
用數(shù)格子(或割、補(bǔ)、拼等)的辦法體驗(yàn)勾股定理的探索過程并理解勾股定理反映的直角三角形的三邊之間的數(shù)量關(guān)系,會(huì)初步運(yùn)用勾股定理進(jìn)行簡(jiǎn)單的計(jì)算和實(shí)際運(yùn)用.
2、過程與方法
讓學(xué)生經(jīng)歷“觀察—猜想—?dú)w納—驗(yàn)證”的數(shù)學(xué)思想,并體會(huì)數(shù)形結(jié)合和特殊到一般的思想方法.進(jìn)一步發(fā)展學(xué)生的說理和簡(jiǎn)單推理的意識(shí)及能力;進(jìn)一步體會(huì)數(shù)學(xué)與現(xiàn)實(shí)生活的緊密聯(lián)系.
3、情感態(tài)度與價(jià)值觀
在探索勾股定理的過程中,體驗(yàn)獲得成功的快 樂;通過介紹勾股定理在中國(guó)古代的研究,激發(fā)學(xué)生熱愛祖國(guó),熱愛祖國(guó)悠久化的思想,激勵(lì)學(xué)生發(fā)奮 學(xué)習(xí).
教學(xué)重點(diǎn):了結(jié)勾股定理的由,并能用它解決一些簡(jiǎn)單的問題。
教學(xué)難點(diǎn):勾股定理的發(fā)現(xiàn)
教學(xué)準(zhǔn)備:多媒體
教學(xué)過程:
第一環(huán)節(jié):創(chuàng)設(shè)情境,引入新(3分鐘,學(xué)生觀察、欣賞)
內(nèi)容:2002年世界數(shù)學(xué)家大會(huì)在我國(guó)北京召開,
投影顯示本屆世界數(shù)學(xué)家大會(huì)的會(huì)標(biāo):
會(huì)標(biāo)中央的圖案是一個(gè)與“勾股定理”有關(guān)的圖形,數(shù)學(xué)家曾建議用“勾股定理”
的圖作為與“外星人”聯(lián)系的信號(hào).今天我們就一同探索勾股定理.(板書 題)
第二環(huán)節(jié):探索發(fā)現(xiàn)勾股定理(15分鐘,學(xué)生獨(dú)立觀察,自主探究)
1.探究活動(dòng)一:
內(nèi)容:(1)投影顯示如下地板磚示意圖,讓學(xué)生初步觀察:
。2)引導(dǎo)學(xué)生從面積角度觀察圖形:
問:你能發(fā)現(xiàn)各圖中三個(gè)正 方形的面 積之間有何關(guān)系嗎?
學(xué)生通過觀察,歸納發(fā)現(xiàn):
結(jié)論1 以等腰直角三角形兩直角邊為邊長(zhǎng)的小正方形的面積的和,等于以斜邊為邊長(zhǎng)的正方形的面積.
2.探究 活動(dòng)二:
由結(jié)論1我們自然產(chǎn)生聯(lián)想:一般的直角三角形是否也具有該性質(zhì)呢?
。1)觀察下面兩幅圖:
。2)填表:
A 的面積
。▎挝幻娣e)B的面積
(單位面積)C的面積
。▎挝幻娣e)
左圖
右圖
(3)你是怎樣得到正方形C的面積的?與同伴交流.(學(xué)生可能會(huì)做出多種方法,教師應(yīng)給予充分肯定.)
(4)分析填表的數(shù)據(jù),你發(fā)現(xiàn)了什么?
學(xué)生通過分析數(shù)據(jù),歸納出:
結(jié)論2 以直角三角形兩直角邊為邊長(zhǎng)的小正方形的面積的和,等于以斜邊為邊長(zhǎng)的正方形的面積.
3.議一議:
內(nèi)容:(1)你能用直角三角形的邊長(zhǎng) 、 、 表示上圖中正方形的面積嗎?
。2)你能發(fā)現(xiàn)直角三角形三邊長(zhǎng)度之間存在什么關(guān)系嗎?
。3)分別以5厘米、12厘米為直角邊作出一個(gè)直角三角形,并測(cè)量斜邊的長(zhǎng)度.2中發(fā)現(xiàn)的規(guī)律對(duì)這個(gè)三角形仍然成立嗎?
勾股定理(gou-gu theorem):
如果直角三角形兩直角邊長(zhǎng)分別為 、 ,斜邊長(zhǎng)為 ,那么即直角三角形兩直角邊的平方和等于斜邊的平方.
數(shù)學(xué)小史:勾股定理是我國(guó)最早發(fā)現(xiàn)的,中國(guó)古代把直角三角形中較短的直角邊稱為勾,較長(zhǎng)的直角邊稱為股,斜邊稱為弦,“勾股定理”因此而得名.
第三環(huán)節(jié): 勾股定理的簡(jiǎn)單應(yīng)用(7分鐘,學(xué)生合作探究)
內(nèi)容:
例 如圖所示,一棵大樹在一次強(qiáng)烈臺(tái)風(fēng)中于離
地面10m處折斷倒下,
樹頂落在離樹根24m處. 大樹在折斷之前高多少?
。ń處煱逖萁忸}過程)
第四環(huán)節(jié):鞏 固練習(xí)(10分鐘,學(xué)生先獨(dú)立完成,后全班交流)
1、列圖形中未知正方形的面積或未知邊的長(zhǎng)度:
2、生活中的應(yīng)用:
小明媽媽買了一部29英寸(74厘米)的電視機(jī). 小明量了電視機(jī)的屏幕后,發(fā)現(xiàn)屏幕只有58厘米長(zhǎng)和46厘米寬,他覺得 一定是售貨員搞錯(cuò)了.你同意他的想法嗎?你能解釋這是為什么嗎?
第五環(huán)節(jié):堂小結(jié)(3分鐘,師生對(duì)答,共同總結(jié))
內(nèi)容:教師提問:
1.這一節(jié)我們一起學(xué)習(xí)了哪些知識(shí)和思想方法?
2.對(duì)這些內(nèi)容你有什么體會(huì)?請(qǐng)與你的同伴交流.
在學(xué)生自由發(fā)言的基礎(chǔ)上,師生共同總結(jié):
1.知識(shí):勾股定理:如果直角三角形兩直角邊長(zhǎng)分別為a、b,斜邊長(zhǎng)為c,那么 .
2.方法:① 觀察—探索—猜想—驗(yàn)證—?dú)w納—應(yīng)用;
② 面積法;
、 “割、補(bǔ)、拼、接”法.
3.思想:① 特殊—一般—特殊;
、 數(shù)形結(jié)合思想.
第六 環(huán)節(jié):布置作業(yè)(2分鐘,學(xué)生分別記錄)
內(nèi)容:
作業(yè):1.教科書習(xí)題1.1;
2.《讀一讀》——勾股世界;
3.觀察下圖,探究圖中三角形的三邊長(zhǎng)是否滿足 .
要求:A組(學(xué)優(yōu)生):1、2、3
B組(中等生):1、2
C組(后三分之一生):1
板書設(shè)計(jì):見電子屏幕
教學(xué)反思:
【探索勾股定理教案】相關(guān)文章:
證明勾股定理的4種方法04-03
《探索規(guī)律》教學(xué)反思(通用13篇)12-14
程序設(shè)計(jì)課堂教學(xué)模式探索論文03-20
思想品德課教學(xué)回歸生活探索與實(shí)踐課題工作報(bào)告范文02-03
《左傳》教案10-24
存貨教案02-28
愛蓮說的經(jīng)典教案03-20
《牧場(chǎng)上的家教案》經(jīng)典教案設(shè)計(jì)03-20
茶花賦教案04-06
《什么蟲》教案01-08