男人天堂日韩,中文字幕18页,天天伊人网,成人性生交大片免费视频

《幾何原本》讀后感

時(shí)間:2024-09-03 10:42:27 讀后感 我要投稿

《幾何原本》讀后感范文(精選16篇)

  讀完某一作品后,相信大家的視野一定開拓了不少,是時(shí)候?qū)懸黄x后感好好記錄一下了。你想知道讀后感怎么寫嗎?以下是小編收集整理的《幾何原本》讀后感范文,歡迎大家借鑒與參考,希望對(duì)大家有所幫助。

《幾何原本》讀后感范文(精選16篇)

  《幾何原本》讀后感 1

  “古希臘”這個(gè)詞,我們耳熟能詳,很多人卻不了解它。

  如果《幾何原本》的作者歐幾里得能夠代表整個(gè)古希臘人民,那么我可以說,古希臘是古代文化中最燦爛的一支——因?yàn)楣畔ED的數(shù)學(xué)中,所包含的不僅僅是數(shù)學(xué),還有著難得的邏輯,更有著耐人尋味的哲學(xué)。

  《幾何原本》這本數(shù)學(xué)著作,以幾個(gè)顯而易見、眾所周知的定義、公設(shè)和公理,互相搭橋,展開了一系列的命題:由簡單到復(fù)雜,相輔而成。其邏輯的嚴(yán)密,不能不令我們佩服。

  就我目前拜訪的.幾個(gè)命題來看,歐幾里得證明關(guān)于線段“一樣長”的題,最常用、也是最基本的,便是畫圓:因?yàn)椋粋(gè)圓的所有半徑都相等。一般的數(shù)學(xué)思想,都是很復(fù)雜的,這邊剛講一點(diǎn),就又跑到那邊去了;而《幾何原本》非常容易就被我接受,其原因大概就在于歐幾里得反復(fù)運(yùn)用一種思想、使讀者不斷接受的緣故吧。

  不過,我要著重講的,是他的哲學(xué)。

  書中有這樣幾個(gè)命題:如,“等腰三角形的兩底角相等,將腰延長,與底邊形成的兩個(gè)補(bǔ)角亦相等”,再如,“如果在一個(gè)三角形里,有兩個(gè)角相等,那么也有兩條邊相等”。這些命題,我在讀時(shí),內(nèi)心一直承受著幾何外的震撼。

  我們七年級(jí)已經(jīng)學(xué)了幾何。想想那時(shí)做這類證明題,需要證明一個(gè)三角形中的兩個(gè)角相等的時(shí)候,我們總是會(huì)這么寫:“因?yàn)樗且粋(gè)等腰三角形,所以兩底角相等”——我們總是習(xí)慣性的認(rèn)為,等腰三角形的兩個(gè)底角就是相等的;而看《幾何原本》,他思考的是“等腰三角形的兩個(gè)底角為什么相等”。想想看吧,一個(gè)思想習(xí)以為常,一個(gè)思想在思考為什么,這難道還不夠說明現(xiàn)代人的問題嗎?

  大多數(shù)現(xiàn)代人,好奇心似乎已經(jīng)泯滅了。這里所說的好奇心不單單是指那種對(duì)新奇的事物感興趣,同樣指對(duì)平常的事物感興趣。比如說,許多人會(huì)問“宇航員在空中為什么會(huì)飄起來”,但也許不會(huì)問“我們?yōu)槭裁茨軌蛘驹诘厣隙粫?huì)飄起來”;許多人會(huì)問“吃什么東西能減肥”,但也許不會(huì)問“羊?yàn)槭裁闯圆荻怀匀狻薄?/p>

  我們對(duì)身邊的事物太習(xí)以為常了,以致不會(huì)對(duì)許多“平!钡氖挛锔信d趣,進(jìn)而去琢磨透它。牛頓為什么會(huì)發(fā)現(xiàn)萬有引力?很大一部分原因,就在于他有好奇心。

  如果僅把《幾何原本》當(dāng)做數(shù)學(xué)書看,那可就大錯(cuò)特錯(cuò)了:因?yàn)楣畔ED的數(shù)學(xué)滲透著哲學(xué),學(xué)數(shù)學(xué),就是學(xué)哲學(xué)。

  哲學(xué)第一課:人要建立好奇心,不僅探索新奇的事物,更要探索身邊的平常事,這就是我讀《幾何原本》意外的收獲吧!

  《幾何原本》讀后感 2

  古希臘大數(shù)學(xué)家歐幾里德是和他的巨著——《幾何原本》一起名垂千古的。這本書是世界上最著名、最完整而且流傳最廣的數(shù)學(xué)著作,也是歐幾里德最有價(jià)值的一部著作。在《原本》里,歐幾里德系統(tǒng)地總結(jié)了古代勞動(dòng)人民和學(xué)者們在實(shí)踐和思考中獲得的幾何知識(shí),歐幾里德把人們公認(rèn)的一些事實(shí)列成定義和公理,以形式邏輯的方法,用這些定義和公理來研究各種幾何圖形的性質(zhì),從而建立了一套從公理、定義出發(fā),論證命題得到定理得幾何學(xué)論證方法,形成了一個(gè)嚴(yán)密的邏輯體系——幾何學(xué)。而這本書,也就成了歐式幾何的奠基之作。

  兩千多年來,《幾何原本》一直是學(xué)習(xí)幾何的主要教材。哥白尼、伽利略、笛卡爾、牛頓等許多偉大的學(xué)者都曾學(xué)習(xí)過《幾何原本》,從中吸取了豐富的營養(yǎng),從而作出了許多偉大的成就。

  從歐幾里得發(fā)表《幾何原本》到現(xiàn)在,已經(jīng)過去了兩千多年,盡管科學(xué)技術(shù)日新月異,由于歐氏幾何具有鮮明的直觀性和有著嚴(yán)密的邏輯演繹方法相結(jié)合的特點(diǎn),在長期的實(shí)踐中表明,它巳成為培養(yǎng)、提高青少年邏輯思維能力的好教材。歷史上不知有多少科學(xué)家從學(xué)習(xí)幾何中得到益處,從而作出了偉大的貢獻(xiàn)。

  少年時(shí)代的牛頓在劍橋大學(xué)附近的夜店里買了一本《幾何原本》,開始他認(rèn)為這本書的內(nèi)容沒有超出常識(shí)范圍,因而并沒有認(rèn)真地去讀它,而對(duì)笛卡兒的“坐標(biāo)幾何”很感興趣而專心攻讀。后來,牛頓于1664年4月在參加特列臺(tái)獎(jiǎng)學(xué)金考試的時(shí)候遭到落選,當(dāng)時(shí)的考官巴羅博士對(duì)他說:“因?yàn)槟愕膸缀位A(chǔ)知識(shí)太貧乏,無論怎樣用功也是不行的!

  這席談話對(duì)牛頓的震動(dòng)很大。于是,牛頓又重新把《幾何原本》從頭到尾地反復(fù)進(jìn)行了深入鉆研,為以后的科學(xué)工作打下了堅(jiān)實(shí)的數(shù)學(xué)基礎(chǔ)。

  但是,在人類認(rèn)識(shí)的`長河中,無論怎樣高明的前輩和名家,都不可能把問題全部解決。由于歷史條件的限制,歐幾里得在《幾何原本》中提出幾何學(xué)的“根據(jù)”問題并沒有得到徹底的解決,他的理論體系并不是完美無缺的。比如,對(duì)直線的定義實(shí)際上是用一個(gè)未知的定義來解釋另一個(gè)未知的定義,這樣的定義不可能在邏輯推理中起什么作用。又如,歐幾里得在邏輯推理中使用了“連續(xù)”的概念,但是在《幾何原本》中從未提到過這個(gè)概念。

  《幾何原本》讀后感 3

  在文藝復(fù)興以后的歐洲,代數(shù)學(xué)由于受到阿拉伯的影響而迅速發(fā)展。另一方面,17世紀(jì)以后,數(shù)學(xué)分析的發(fā)展非常顯著。因此,幾何學(xué)也擺脫了和代數(shù)學(xué)相隔離的狀態(tài)。正如在其名著《幾何學(xué)》中所說的一樣,數(shù)與圖形之間存在著密切的關(guān)系,在空間設(shè)立坐標(biāo),而且以數(shù)與數(shù)之間關(guān)系來表示圖形;反過來,可把圖形表示成為數(shù)與數(shù)之間的關(guān)系。這樣,按照坐標(biāo)把圖形改成數(shù)與數(shù)之間的關(guān)系問題而對(duì)之進(jìn)行處理,這個(gè)方法稱為解析幾何。恩格斯在其《自然辯證法》中高度評(píng)價(jià)了笛卡兒的工作,他指出:“數(shù)學(xué)中的轉(zhuǎn)折點(diǎn)是笛卡兒的變數(shù),有了變數(shù),運(yùn)動(dòng)進(jìn)入了數(shù)學(xué),有了變數(shù),辯證法進(jìn)入了數(shù)學(xué),有了變數(shù),微分和積分也就成為必要的.。了……”

  事實(shí)上,笛卡兒的思想為17世紀(jì)數(shù)學(xué)分析的發(fā)展提供了有力的基礎(chǔ)。到了18世紀(jì),解析幾何由于L。歐拉等人的開拓得到迅速的發(fā)展,連希臘時(shí)代的阿波羅尼奧斯(約公元前262~約前190)等人探討過的圓錐曲線論,也重新被看成為二次曲線論而加以代數(shù)地整理。另外,18世紀(jì)中發(fā)展起來的數(shù)學(xué)分析反過來又被應(yīng)用到幾何學(xué)中去,在該世紀(jì)末期,G。蒙日首創(chuàng)了數(shù)學(xué)分析對(duì)于幾何的應(yīng)用,而成為微分幾何的先驅(qū)者。如上所述,用解析幾何的方法可以討論許多幾何問題。但是不能說,這對(duì)于所有問題都是最適用的。同解析幾何方法相對(duì)立的,有綜合幾何或純粹幾何方法,它是不用坐標(biāo)而直接考察圖形的方法,數(shù)學(xué)家歐幾里得幾何本來就是如此。射影幾何是在這思想方法指導(dǎo)下的產(chǎn)物。

  早在文藝復(fù)興時(shí)期的意大利盛行而且發(fā)展了造型美術(shù),與它隨伴而來的有所謂透視圖法的研究,當(dāng)時(shí)有過許多人包括達(dá)·芬奇在內(nèi)把這個(gè)透視圖法作為實(shí)用幾何進(jìn)行了研究。從17世紀(jì)起,G。德扎格、B。帕斯卡把這個(gè)透視圖法加以推廣和發(fā)展,從而奠定了射影幾何。分別以他們命名的兩個(gè)定理,成了射影幾何的基礎(chǔ)。其一是德扎格定理:如果平面上兩個(gè)三角形的對(duì)應(yīng)頂點(diǎn)的連線相會(huì)于一點(diǎn),那么它們的對(duì)應(yīng)邊的交點(diǎn)在一直線上;而且反過來也成立。其二是帕斯卡定理:如果一個(gè)六角形的頂點(diǎn)在同一圓錐曲線上,那么它的三對(duì)對(duì)邊的交點(diǎn)在同一直線上;而且反過來也成立。18世紀(jì)以后,J!猇。彭賽列、Z。N。M。嘉諾、J。施泰納等完成了這門幾何學(xué)。

  《幾何原本》讀后感 4

  今天看了一本叫《幾何原本》的書。它是古希臘數(shù)學(xué)家、哲學(xué)家歐幾里得的一部不朽之作,將希臘數(shù)學(xué)家的成就和精神集于一冊。

  《幾何原本》收錄了原著13卷的全部內(nèi)容,包括5個(gè)公理、5個(gè)公設(shè)、23個(gè)定義和467個(gè)命題,即先提出公理、公設(shè)和定義,再從中證明從簡單到復(fù)雜,這里基于歐幾里德幾何系統(tǒng)。歐幾里德認(rèn)為,數(shù)學(xué)是一個(gè)貴族的世界,即使你是世俗的君主,在這里也沒有特權(quán)。與時(shí)間易逝的物質(zhì)相比,數(shù)學(xué)揭示的世界是永恒的。 《幾何原本》不僅是一部數(shù)學(xué)著作,而且充滿哲學(xué)精神,首次完成了人類對(duì)空間的認(rèn)識(shí)。古希臘數(shù)學(xué)是從哲學(xué)中誕生的`。它用各種可能的描述來分析我們的宇宙,使它不再混亂和分離。它與世俗的中國和古埃及數(shù)學(xué)的起源和應(yīng)用完全不同。它建立了一定的物質(zhì)世界和精神世界體系,讓渺小的人類從中獲得一些自信。

  本書的命題1提出了如何構(gòu)造等邊三角形,由此產(chǎn)生了三角形同余定理。即角、邊、角或邊、角、邊或邊、邊、邊相等,進(jìn)一步提出等腰三角形——等邊等于角;相等的角等于相等的邊。就這樣,歐幾里得從點(diǎn)、線、面、角四個(gè)部分,由淺入深,提出了自己的幾何理論。先前的命題為未來鋪路;后面的命題是從前面的命題推導(dǎo)出來的,前后聯(lián)系緊密,非常嚴(yán)謹(jǐn)。

  《幾何原本》讀后感 5

  《幾何原本》作為數(shù)學(xué)的圣經(jīng),第一部系統(tǒng)的數(shù)學(xué)著作,牛頓,愛因斯坦,就是以這種形式寫的《自然哲學(xué)的數(shù)學(xué)原理》和《相對(duì)論》,斯賓諾莎寫出哲學(xué)著作《倫理學(xué)》,倫理學(xué)可以作為哲學(xué)與社會(huì)科學(xué)以及心理學(xué)的接口,都是推理性很強(qiáng)。

  幾何原本總共13卷,研究前六卷就可以了,因?yàn)楹筮叺亩际菓?yīng)用前邊的理論,應(yīng)用到具體的領(lǐng)域,無理數(shù),立體幾何等領(lǐng)域,幾何原本我認(rèn)為最精髓的就是合理的假設(shè),對(duì)點(diǎn)線面的抽象,這樣才得以使得后面的定理成立,其中第五個(gè)公設(shè)后來還被推翻了,以點(diǎn)線面作為基礎(chǔ),以歐幾里得工具作為工具,進(jìn)行了各種幾何現(xiàn)象的嚴(yán)密推理,我認(rèn)為這些定理成立的條件必須是在,對(duì)幾條哲學(xué)原則默許了之后,才能成立。主要是最簡單的幾何形狀,從怎么畫出來,畫出來也是有根據(jù)的,再就是各種形狀的性質(zhì),以及各種形狀之間關(guān)系的定理,都是一步一步推理出來的。

  在幾何原本后續(xù)的有阿波羅尼奧斯的《圓錐截線論》,牛頓的《自然哲學(xué)的數(shù)學(xué)原理》,算是比較系統(tǒng)的數(shù)學(xué)著作,也都是用歐幾里得工具進(jìn)行證明的,后來的微積分工具的出現(xiàn),我認(rèn)為是圓周率的求解過程,無限接近的思想,才使得微積分工具產(chǎn)生,現(xiàn)代數(shù)學(xué)看似陣容豪華,可是并沒有新的'工具的出現(xiàn),只是對(duì)微積分工具在各個(gè)形狀上進(jìn)行應(yīng)用,數(shù)學(xué)主要是在空間上做文章,現(xiàn)在數(shù)學(xué)能干的活看似挺多,但是也要得益于物理學(xué)的發(fā)展,數(shù)學(xué)一方面往一般性方面發(fā)展,都忘了,細(xì)想數(shù)學(xué)思想是比較沒什么,只是腦力勞作比較大,特別是只是純數(shù)學(xué)研究,不做思想的人,很累也做不出有意義的工作。

  看完二十世紀(jì)數(shù)學(xué)史,發(fā)現(xiàn)里面的人的著作,我一本也不想看,太虛。

  《幾何原本》讀后感 6

  只要上過初中的人都學(xué)過幾何,可是不一定知道把幾何介紹到中國來的是明朝的大科學(xué)家徐光啟和來自意大利的傳教士利瑪竇,更不一定知道是徐光啟把這門“測地學(xué)”創(chuàng)造性地意譯為“幾何”的。從1667年《幾何原本》前六卷譯完至今已有四百年,11月9日上海等地舉行了形式多樣的紀(jì)念活動(dòng)。來自意大利、美國、加拿大、法國、日本、比利時(shí)、芬蘭、荷蘭、中國等9個(gè)國家及兩岸四地的60余位中外學(xué)者聚會(huì)徐光啟的安息之地——上海徐匯區(qū),紀(jì)念徐光啟暨《幾何原本》翻譯出版400周年。

  “一物不知,儒者之恥!

  徐光啟家世平凡,父親是一個(gè)不成功的商人,破產(chǎn)后在上海務(wù)農(nóng),家境不佳。徐光啟19歲時(shí)中秀才,過了16年才中舉人,此后又7年才中進(jìn)士。在參加翰林院選拔時(shí)列第四名,即被選為翰林院庶吉士,相當(dāng)于是明帝國皇家學(xué)院的.博士研究生。他殿試排名三甲五十二名,名次靠后,照理沒有資格申請入翰林院。他的同科進(jìn)士、也是他年滿花甲的老師黃體仁主動(dòng)讓賢,把考翰林院的機(jī)會(huì)讓給了他。

  《明史·徐光啟傳》中開篇用33個(gè)字講完他的科舉經(jīng)歷,緊接著就說他“從西洋人利瑪竇學(xué)天文、歷算、火器,盡其術(shù)。遂遍習(xí)兵機(jī)、屯田、鹽策、水利諸書”,可見如果沒有跟隨利瑪竇學(xué)習(xí)西方科學(xué),徐光啟只是有明一代數(shù)以千萬計(jì)的官僚中不出奇的一員。但是因?yàn)樵?600年遇上了利瑪竇,且在翰林院學(xué)習(xí)期間有機(jī)會(huì)從學(xué)于利瑪竇,他得從一干庸眾中脫穎而出。

  利瑪竇(MatteoRicci)1552年生于意大利馬切拉塔,1571年在羅馬成為耶穌會(huì)的見習(xí)修士,在教會(huì)里接受了神學(xué)、古典文學(xué)和自然科學(xué)的廣泛訓(xùn)練,又在印度的果阿學(xué)會(huì)了繪制地圖和制造各類科學(xué)儀器,尤其是天文儀器。

  利瑪竇于1577年5月離開羅馬,于1583年2月來到中國。8月在廣東肇慶建立“仙花寺”,開始傳教?墒且婚_始很不順利。為此,利瑪竇轉(zhuǎn)變了策略,決定采取曲線傳教的方針,為了接近中國人,利瑪竇不僅說中文,寫漢字,而且生活也力求中國化。正式服裝也改成了寬衣博帶的儒生裝束。

  1598年6月利瑪竇去北京見皇帝,未能見到,次年返回南京。在南京期間,利瑪竇早已赫赫有名,尤其是他過目不忘、倒背如流的記憶術(shù)給人留下了深刻的印象,一傳十,十傳百,已神乎其神。加之利瑪竇高明的社交手段,以及他的那些引人入勝的、代表著西方工藝水平的工藝品和科學(xué)儀器,引得高官顯貴和名士文人都樂于和他交往。利瑪竇則借此來達(dá)到自己的目的——推動(dòng)傳教活動(dòng)。

  也正是利瑪竇的學(xué)識(shí)和魅力吸引了徐光啟。根據(jù)利瑪竇的日記記載,約在1597年7月到1600年5月之間。徐光啟和利瑪竇曾見過一面,利瑪竇說這是一次短暫的見面。徐光啟主要向利瑪竇討教一些基督教教義,雙方并沒有深談。和利瑪竇分手之后,徐光啟花了兩三年時(shí)間研究基督教義,思考自己的命運(yùn)。1603年,徐光啟再次去找利瑪竇,但利瑪竇這時(shí)已經(jīng)離開南京到北京去了。徐光啟拜見了留在南京的傳教士羅如望,和之長談數(shù)日后,終于受洗成為了基督教徒。

  1601年1月,利瑪竇再次晉京面圣,此次獲得成功,利瑪竇帶來的見面禮是自鳴鐘和鋼琴,這兩樣?xùn)|西是要經(jīng)常修理的,于是他被要求留在京城,以便可以經(jīng)常為皇帝修理這兩樣?xùn)|西。正好1604年4月,徐光啟中進(jìn)士后要留在北京。兩人的交往也多起來。在此之前,徐光啟對(duì)中國傳統(tǒng)數(shù)字已有較深入的了解,他跟利瑪竇學(xué)習(xí)了西方科技后,向利瑪竇請求合作翻譯《幾何原本》,以克服傳統(tǒng)數(shù)學(xué)只言“法”而不言“義”的缺陷,認(rèn)為“此書未譯,則他書俱不可得論!崩敻]勸他不要沖動(dòng),因?yàn)榉g實(shí)在太難,徐光啟回答說:“一物不知,儒者之恥。”

  《幾何原本》讀后感 7

  徐光啟(公元1562—1633年)字子先,號(hào)玄扈,吳淞(今屬上海)人。他從萬歷末年起,經(jīng)過天啟、崇禎各朝,曾作到文淵閣大學(xué)士的官職(相當(dāng)于宰相)。他精通天文歷法,是明末改歷的主要主持人。他對(duì)農(nóng)學(xué)也頗有研究,曾根據(jù)前人所著各種農(nóng)書,附以自己的見解,編寫了著名的《農(nóng)政全書》,全書有六十余卷,共六十多萬字。明朝末年,滿族的統(tǒng)治階級(jí)從東北關(guān)外屢次發(fā)動(dòng)戰(zhàn)爭,徐光啟曾屢次上書論軍事,并在通州練新兵,主張采用西方火炮。他是一位熱愛祖國的科學(xué)家。

  他沒有入京做官之前,曾在上海、廣東、廣西等地教書。在此期間,他曾博覽群書,在廣東還接觸到一些傳教士,對(duì)他們傳入的'西方文化開始有所接觸。公元1600年,他在南京和利瑪竇相識(shí),以后兩人又長期同住在北京,經(jīng)常來往。他和利瑪竇兩人共同譯《幾何原本》一書,1607年譯完前六卷。當(dāng)時(shí)徐光啟很想全部譯完,利瑪竇卻不愿這樣做。直到晚清時(shí)代,《幾何原本》后九卷的翻譯工作才由李善蘭(公元1811—1882年)完成。

  《幾何原本》是我國最早第一部自拉丁文譯來的數(shù)學(xué)著作。在翻譯時(shí)絕無對(duì)照的詞表可循,許多譯名都從無到有,當(dāng)時(shí)創(chuàng)造的。毫無疑問,這是需要精細(xì)研究煞費(fèi)苦心的。這個(gè)譯本中的許多譯名都十分恰當(dāng),不但在我國一直沿用至今,并且還影響了日本、朝鮮各國。如點(diǎn)、線、直線、曲線、平行線、角、直角、銳角、鈍角、三角形、四邊形……這許多名詞都是由這個(gè)譯本首先定下來的。其中只有極少的幾個(gè)經(jīng)后人改定,如“等邊三角形”,徐光啟當(dāng)時(shí)記作“平邊三角形”;“比”,當(dāng)時(shí)譯為“比例”;而“比例”則譯為“有理的比例”等等。

  《幾何原本》有嚴(yán)整的邏輯體系,其敘述方式和中國傳統(tǒng)的《九章算術(shù)》完全不同。徐光啟對(duì)《幾何原本》區(qū)別于中國傳統(tǒng)數(shù)學(xué)的這種特點(diǎn),有著比較清楚的認(rèn)識(shí)。他還充分認(rèn)識(shí)到幾何學(xué)的重要意義,他說“竊百年之后,必人人習(xí)之”。

  清康熙帝時(shí),編輯數(shù)學(xué)百科全書《數(shù)理精蘊(yùn)》(公元1723年),其中收有《幾何原本》一書,但這是根據(jù)公元十八世紀(jì)法國幾何學(xué)教科書翻譯的,和歐幾里得的《幾何原本》差別很大。

  到清朝末年廢科舉、興學(xué)堂之后,幾何學(xué)方成為學(xué)校中必修科目之一。到這時(shí)才出現(xiàn)了徐光啟所預(yù)料的“必人人而習(xí)之”的情況。

  《幾何原本》讀后感 8

  今天我讀了一本書,叫《幾何原本》。它是古希臘數(shù)學(xué)家、哲學(xué)家歐幾里德的一本不朽之作,集合希臘數(shù)學(xué)家的成果和精神于一書。

  《幾何原本》收錄了原著13卷全部內(nèi)容,包含了5條公理、5條公設(shè)、23個(gè)定義和467個(gè)命題,即先提出公理、公設(shè)和定義,再由簡到繁予以證明,并在此基礎(chǔ)上形成歐氏幾何學(xué)體系。歐幾里德認(rèn)為,數(shù)學(xué)是一個(gè)高貴的世界,即使身為世俗的君主,在這里也毫無特權(quán)。與時(shí)間中速朽的物質(zhì)相比,數(shù)學(xué)所揭示的世界才是永恒的。

  《幾何原本》既是數(shù)學(xué)著作,又極富哲學(xué)精神,并第一次完成了人類對(duì)空間的認(rèn)識(shí)。古希臘數(shù)學(xué)脫胎于哲學(xué),它使用各種可能的描述,解析了我們的宇宙,使它不在混沌、分離,它完全有別于起源并應(yīng)用于世俗的中國和古埃及數(shù)學(xué)。它建立起物質(zhì)與精神世界的確定體系,致使渺小如人類也能從中獲得些許自信。

  本書命題1便提出了如何作等邊三角形,由此產(chǎn)生了三角形全等定理。即角、邊、角或邊、角、邊或邊、邊、邊相等,并進(jìn)一步提出了等腰三角形——等邊即等角;等角即等邊。就這樣歐幾里德分別從點(diǎn)、線、面、角四個(gè)部分,由淺入深,提出了自己的幾何理論。前面的.命題為后面的鋪墊;后面的命題由前面的推導(dǎo),環(huán)環(huán)相扣,十分嚴(yán)謹(jǐn)。

  這本書博大精深,我只能看懂十分之一左右,非常震撼,歐幾里德不愧為幾何之父!他就是數(shù)學(xué)史上最亮的一顆星。我要向他學(xué)習(xí),沿著自己的目標(biāo)堅(jiān)定的走下去。

  《幾何原本》讀后感 9

  公理化結(jié)構(gòu)是近代數(shù)學(xué)的主要特征。而《原本》是完成公理化結(jié)構(gòu)的最早典范,它產(chǎn)生于兩千多年前,這是難能可貴的。不過用現(xiàn)代的標(biāo)準(zhǔn)去衡量,也有不少缺點(diǎn)。首先,一個(gè)公理系統(tǒng)都有若干原始概念,或稱不定義概念,作為其他概念定義的基礎(chǔ)。點(diǎn)、線、面就屬于這一類。而在《原本》中一一給出定義,這些定義本身就是含混不清的。其次是公理系統(tǒng)不完備,沒有運(yùn)動(dòng)、順序、連續(xù)性等公理,所以許多證明不得不借助于直觀。此外,有的公理不是獨(dú)立的,即可以由別的公理推出。這些缺陷直到1899年希爾伯特(Hilbert)的《幾何基礎(chǔ)》出版才得到了補(bǔ)救。盡管如此,畢竟瑕不掩瑜,《原本》開創(chuàng)了數(shù)學(xué)公理化的正確道路,對(duì)整個(gè)數(shù)學(xué)發(fā)展的影響,超過了歷史上任何其他著作。

  《原本》的兩個(gè)理論支柱——比例論和窮竭法。為了論述相似形的理論,歐幾里得安排了比例論,引用了歐多克索斯的比例論。這個(gè)理論是無比的成功,它避開了無理數(shù),而建立了可公度與不可公度的正確的比例論,因而順利地建立了相似形的理論。在幾何發(fā)展的歷史上,解決曲邊圍成的面積和曲面圍成的體積等問題,一直是人們關(guān)注的重要課題。這也是微積分最初涉及的問題。它的解決依賴于極限理論,這已是17世紀(jì)的事了。然而在古希臘于公元前三四世紀(jì)對(duì)一些重要的面積、體積問題的證明卻沒有明顯的極限過程,他們解決這些問題的理念和方法是如此的超前,并且深刻地影響著數(shù)學(xué)的發(fā)展。

  化圓為方問題是古希臘數(shù)學(xué)家歐多克索斯提出的,后來以“窮竭法”而得名的方法。“窮竭法”的依據(jù)是阿基米得公理和反證法。在《幾何原本》中歐幾里得利用“窮竭法”證明了許多命題,如圓與圓的面積之比等于直徑平方比。兩球體積之比等于它們的直徑的立方比。阿基米德應(yīng)用“窮竭法”更加熟練,而且技巧很高。并且用它解決了一批重要的面積和體積命題。當(dāng)然,利用“窮竭法”證明命題,首先要知道命題的結(jié)論,而結(jié)論往往是由推測、判斷等確定的。阿基米德在此做了重要的工作,他在《方法》一文中闡述了發(fā)現(xiàn)結(jié)論的一般方法,這實(shí)際又包含了積分的思想。他在數(shù)學(xué)上的貢獻(xiàn),奠定了他在數(shù)學(xué)史上的突出地位。

  作圖問題的研究與終結(jié)。歐幾里得在《原本》中談了正三角形、正方形、正五邊形、正六邊形、正十五邊形的作圖,未提及其他正多邊形的作法?梢娝褔L試著作過其他正多邊形,碰到了“不能”作出的情形。但當(dāng)時(shí)還無法判斷真正的“不能作”,還是暫時(shí)找不到作圖方法。

  高斯并未滿足于尋求個(gè)別正多邊形的作圖方法,他希望能找到一種判別準(zhǔn)則,哪些正多邊形用直尺和圓規(guī)可以作出、哪些正多邊形不能作出。也就是說,他已經(jīng)意識(shí)到直尺和圓規(guī)的“效能”不是萬能的,可能對(duì)某些正多邊形不能作出,而不是人們找不到作圖方法。1801年,他發(fā)現(xiàn)了新的研究結(jié)果,這個(gè)結(jié)果可以判斷一個(gè)正多邊形“能作”或“不能作”的準(zhǔn)則。判斷這個(gè)問題是否可作,首先把問題化為代數(shù)方程。

  然后,用代數(shù)方法來判斷。判斷的準(zhǔn)則是:“對(duì)一個(gè)幾何量用直尺和圓規(guī)能作出的充分必要條件是:這個(gè)幾何量所對(duì)應(yīng)的數(shù)能由已知量所對(duì)應(yīng)的數(shù),經(jīng)有限次的加、減、乘、除及開平方而得到。”(圓周率不可能如此得到,它是超越數(shù),還有e、劉維爾數(shù)都是超越數(shù),我們知道,實(shí)數(shù)是不可數(shù)的,實(shí)數(shù)分為有理數(shù)和無理數(shù),其中有理數(shù)和一部分無理數(shù),比如根號(hào)2,是代數(shù)數(shù),而代數(shù)數(shù)是可數(shù)的`,因此實(shí)數(shù)中不可數(shù)是因?yàn)槌綌?shù)的存在。雖然超越數(shù)比較多,但要判定一個(gè)數(shù)是否為超越數(shù)卻不是那么的簡單。)至此,“三大難題”即“化圓為方、三等分角、二倍立方體”問題是用尺規(guī)不能作出的作圖題。正十七邊形可作,但其作法不易給出。高斯(Gauss)在1796年19歲時(shí),給出了正十七邊形的尺規(guī)作圖法,并作了詳盡的討論。為了表彰他的這一發(fā)現(xiàn),他去世后,在他的故鄉(xiāng)不倫瑞克建立的紀(jì)念碑上面刻了一個(gè)正十七邊形。

  幾何中連續(xù)公理的引入。由歐氏公設(shè)、公理不能推出作圖題中“交點(diǎn)”存在。因?yàn),其中沒有連續(xù)性(公理)概念。這就需要給歐氏的公理系統(tǒng)中添加新的公理——連續(xù)性公理。雖然19世紀(jì)之前費(fèi)馬與笛卡爾已經(jīng)發(fā)現(xiàn)解析幾何,代數(shù)有了長驅(qū)直入的進(jìn)展,微積分進(jìn)入了大學(xué)課堂,拓?fù)鋵W(xué)和射影幾何已經(jīng)出現(xiàn)。但是,數(shù)學(xué)家對(duì)數(shù)系理論基礎(chǔ)仍然是模糊的,沒有引起重視。直觀地承認(rèn)了實(shí)數(shù)與直線上的點(diǎn)都是連續(xù)的,且一一對(duì)應(yīng)。直到19世紀(jì)末葉才完滿地解決了這一重大問題。從事這一工作的學(xué)者有康托(Cantor)、戴德金(Dedekind)、皮亞諾(Peano)、希爾伯特(Hilbert)等人。

  當(dāng)時(shí),康托希望用基本序列建立實(shí)數(shù)理論,代德金也深入地研究了無理數(shù)理念,他的一篇論文發(fā)表在1872年。在此之前的1858年,他給學(xué)生開設(shè)微積分時(shí),知道實(shí)數(shù)系還沒有邏輯基礎(chǔ)的保證。因此,當(dāng)他要證明“單調(diào)遞增有界變量序列趨向于一個(gè)極限”時(shí),只得借助于幾何的直觀性。

  實(shí)際上,“直線上全體點(diǎn)是連續(xù)統(tǒng)”也是沒有邏輯基礎(chǔ)的。更沒有明確全體實(shí)數(shù)和直線全體點(diǎn)是一一對(duì)應(yīng)這一重大關(guān)系。如,數(shù)學(xué)家波爾查奴(Bolzano)把兩個(gè)數(shù)之間至少存在一個(gè)數(shù),認(rèn)為是數(shù)的連續(xù)性。實(shí)際上,這是誤解。因?yàn)椋魏蝺蓚(gè)有理數(shù)之間一定能求到一個(gè)有理數(shù)。但是,有理數(shù)并不是數(shù)的全體。有了戴德金分割之后,人們認(rèn)識(shí)至波爾查奴的說法只是數(shù)的稠密性,而不是連續(xù)性。由無理數(shù)引發(fā)的數(shù)學(xué)危機(jī)一直延續(xù)到19世紀(jì)。直到1872年,德國數(shù)學(xué)家戴德金從連續(xù)性的要求出發(fā),用有理數(shù)的“分割”來定義無理數(shù),并把實(shí)數(shù)理論建立在嚴(yán)格的科學(xué)基礎(chǔ)上,才結(jié)束了無理數(shù)被認(rèn)為“無理”的時(shí)代,也結(jié)束了持續(xù)2000多年的數(shù)學(xué)史上的第一次大危機(jī)。

  《原本》還研究了其它許多問題,如求兩數(shù)(可推廣至任意有限數(shù))最大公因數(shù),數(shù)論中的素?cái)?shù)的個(gè)數(shù)無窮多等。

  在高等數(shù)學(xué)中,有正交的概念,最早的概念起源應(yīng)該是畢達(dá)哥拉斯定理,我們稱之為勾股定理,只是勾3股4弦5是一種特例,而畢氏定理對(duì)任意直角三角形都成立。并由畢氏定理,發(fā)現(xiàn)了無理數(shù)根號(hào)2。在數(shù)學(xué)方法上初步涉及演繹法,又在證明命題時(shí)用了歸謬法(即反證法)?赡苡捎谑軄G番圖(Diophantus)對(duì)一個(gè)平方數(shù)分成兩個(gè)平方數(shù)整數(shù)解的啟發(fā),350多年前,法國數(shù)學(xué)家費(fèi)馬提出了著名的費(fèi)馬大定理,吸引了歷代數(shù)學(xué)家為它的證明付出了巨大的努力,有力地推動(dòng)了數(shù)論用至整個(gè)數(shù)學(xué)的進(jìn)步。1994年,這一曠世難題被英國數(shù)學(xué)家安德魯威樂斯解決。

  多少年來,千千萬萬人(著名的有牛頓(Newton)、阿基米德(Archimedes)等)通過歐幾里得幾何的學(xué)習(xí)受到了邏輯的訓(xùn)練,從而邁入科學(xué)的殿堂。

  《幾何原本》讀后感 10

  數(shù)學(xué)中最古老的一門分科。據(jù)說是起源于古埃及尼羅河泛濫后為整修土地而產(chǎn)生的測量法,它的外國語名稱geometry就是由geo(土地)與metry(測量)組成的。泰勒斯曾經(jīng)利用兩三角形的等同性質(zhì),做了間接的測量工作;畢達(dá)哥拉斯學(xué)派則以勾股定理等著名。在中國古代早有勾股測量,漢朝人撰寫的《周髀算經(jīng)》的第一章敘述了西周開國時(shí)期(約公元前1000)周公姬旦同商高的問答,討論用矩測量的方法,得出了著名的勾股定律,并舉出了“勾三、股四、弦五”的例子。在埃及產(chǎn)生的幾何學(xué)傳到希臘,然后逐步發(fā)展起來而變?yōu)槔碚摰臄?shù)學(xué)。哲學(xué)家柏拉圖(公元前429~前348)對(duì)幾何學(xué)作了深?yuàn)W的探討,確立起今天幾何學(xué)中的定義、公設(shè)、公理、定理等概念,而且樹立了哲學(xué)與數(shù)學(xué)中的分析法與綜合法的概念。此外,梅內(nèi)克繆斯(約公元前340)已經(jīng)有了圓錐曲線的概念。

  希臘文化以柏拉圖學(xué)派的時(shí)代為頂峰,以后逐漸衰落,而埃及的亞歷山大學(xué)派則漸漸繁榮起來,它長時(shí)間成了文化的中心。數(shù)學(xué)家歐幾里得把至希臘時(shí)代為止所得到的數(shù)學(xué)知識(shí)集其大成,編成十三卷的《幾何原本》,這就是直到今天仍廣泛地作為幾何學(xué)的教科書使用下來的數(shù)學(xué)家歐幾里得幾何學(xué)(簡稱歐氏幾何)。徐光啟于1606年翻譯了《幾何原本》前六卷,至1847年李善蘭才把其余七卷譯完!皫缀巍迸c其說是geo的音譯,毋寧解釋為“大小”較為妥當(dāng)。誠然,現(xiàn)代幾何學(xué)是有關(guān)圖形的一門數(shù)學(xué)分科,但是在希臘時(shí)代則代表了數(shù)學(xué)的全部。數(shù)學(xué)家歐幾里得在《幾何原本》中首先敘述了一些定義,然后提出五個(gè)公設(shè)和五個(gè)公理。其中第五公設(shè)尤為著名:如果兩直線和第三直線相交而且在同一側(cè)所構(gòu)成的兩個(gè)同側(cè)內(nèi)角之和小于二直角,那么這兩直線向這一側(cè)適當(dāng)延長后一定相交!稁缀卧尽分械墓硐到y(tǒng)雖然不能說是那么完備,但它恰恰成了現(xiàn)代幾何學(xué)基礎(chǔ)論的先驅(qū)。直到19世紀(jì)末,D.希爾伯特才建立了嚴(yán)密的歐氏幾何公理體系。

  第五公設(shè)和其余公設(shè)相比較,內(nèi)容顯得復(fù)雜,于是引起后來人們的注意,但用其余公設(shè)來推導(dǎo)它的企圖,都失敗了。這個(gè)公設(shè)等價(jià)于下述的'公設(shè):在平面上,過一直線外的一點(diǎn)可引一條而且只有一條和這直線不相交的直線。Η.И.羅巴切夫斯基和J.波爾約獨(dú)立地創(chuàng)建了一種新幾何學(xué),其中揚(yáng)棄了第五公設(shè)而代之以另一公設(shè):在平面上,過一直線外的一點(diǎn)可引無限條和這直線不相交的直線。這樣創(chuàng)建起來的無矛盾的幾何學(xué)稱為雙曲的非數(shù)學(xué)家歐幾里得幾何。(G.F.)B.黎曼則把第五公設(shè)換作“在平面上,過一直線外的一點(diǎn)所引的任何直線一定和這直線相交”,這樣創(chuàng)建的無矛盾的幾何學(xué)稱橢圓的非數(shù)學(xué)家歐幾里得幾何。

  《幾何原本》讀后感 11

  《幾何原本》是古希臘數(shù)學(xué)家歐幾里得的一部不朽之作,大約成書于公元前300年左右,是一部劃時(shí)代的著作,是最早用公理法建立起演繹數(shù)學(xué)體系的典范。它從少數(shù)幾個(gè)原始假定出發(fā),通過嚴(yán)密的邏輯推理,得到一系列的命題,從而保證了結(jié)論的準(zhǔn)確可靠!稁缀卧尽返脑13卷,共包含有23個(gè)定義、5個(gè)公設(shè)、5個(gè)公理、286個(gè)命題。是當(dāng)時(shí)整個(gè)希臘數(shù)學(xué)成果、方法、思想和精神的結(jié)晶,其內(nèi)容和形式對(duì)幾何學(xué)本身和數(shù)學(xué)邏輯的發(fā)展有著巨大的影響。自它問世之日起,在長達(dá)二千多年的時(shí)間里一直盛行不衰。它歷經(jīng)多次翻譯和修訂,自1482年第一個(gè)印刷本出版后,至今已有一千多種不同的版本。除了《圣經(jīng)》之外,沒有任何其他著作,其研究、使用和傳播之廣泛,能夠與《幾何原本》相比。但《幾何原本》超越民族、種族、宗教信仰、文化意識(shí)方面的影響,卻是《圣經(jīng)》所無法比擬的。

  《幾何原本》的希臘原始抄本已經(jīng)流失了,它的.所有現(xiàn)代版本都是以希臘評(píng)注家泰奧恩(Theon,約比歐幾里得晚七百年)編寫的修訂本為依據(jù)的。

  《幾何原本》的泰奧恩修訂本分13卷,總共有465個(gè)命題,其內(nèi)容是闡述平面幾何、立體幾何及算術(shù)理論的系統(tǒng)化知識(shí)。第一卷首先給出了一些必要的基本定義、解釋、公設(shè)和公理,還包括一些關(guān)于全等形、平行線和直線形的熟知的定理。該卷的最后兩個(gè)命題是畢達(dá)哥拉斯定理及其逆定理。這里我們想到了關(guān)于英國哲學(xué)家T.霍布斯的一個(gè)小故事:有一天,霍布斯在偶然翻閱歐幾里得的《幾何原本》,看到畢達(dá)哥拉斯定理,感到十分驚訝,他說:“上帝啊!這是不可能的!彼珊笙蚯白屑(xì)閱讀第一章的每個(gè)命題的證明,直到公理和公設(shè),他終于完全信服了。第二卷篇幅不大,主要討論畢達(dá)哥拉斯學(xué)派的幾何代數(shù)學(xué)。

  第三卷包括圓、弦、割線、切線以及圓心角和圓周角的一些熟知的定理。這些定理大多都能在現(xiàn)在的中學(xué)數(shù)學(xué)課本中找到。第四卷則討論了給定圓的某些內(nèi)接和外切正多邊形的尺規(guī)作圖問題。第五卷對(duì)歐多克斯的比例理論作了精彩的解釋,被認(rèn)為是最重要的數(shù)學(xué)杰作之一。據(jù)說,捷克斯洛伐克的一位并不出名的數(shù)學(xué)家和牧師波爾查諾(Bolzano,1781-1848),在布拉格度假時(shí),恰好生病,為了分散注意力,他拿起《幾何原本》閱讀了第五卷的內(nèi)容。他說,這種高明的方法使他興奮無比,以致于從病痛中完全解脫出來。此后,每當(dāng)他朋友生病時(shí),他總是把這作為一劑靈丹妙藥問病人推薦。第七、八、九卷討論的是初等數(shù)論,給出了求兩個(gè)或多個(gè)整數(shù)的最大公因子的“歐幾里得算法”,討論了比例、幾何級(jí)數(shù),還給出了許多關(guān)于數(shù)論的重要定理。第十卷討論無理量,即不可公度的線段,是很難讀懂的一卷。最后三卷,即第十一、十二和十三卷,論述立體幾何。目前中學(xué)幾何課本中的內(nèi)容,絕大多數(shù)都可以在《幾何原本》中找到。

  《幾何原本》按照公理化結(jié)構(gòu),運(yùn)用了亞里士多德的邏輯方法,建立了第一個(gè)完整的關(guān)于幾何學(xué)的演繹知識(shí)體系。所謂公理化結(jié)構(gòu)就是:選取少量的原始概念和不需證明的命題,作為定義、公設(shè)和公理,使它們成為整個(gè)體系的出發(fā)點(diǎn)和邏輯依據(jù),然后運(yùn)用邏輯推理證明其他命題!稁缀卧尽烦蔀榱藘汕Ф嗄陙磉\(yùn)用公理化方法的一個(gè)絕好典范。

  誠然,正如一些現(xiàn)代數(shù)學(xué)家所指出的那樣,《幾何原本》存在著一些結(jié)構(gòu)上的缺陷,但這絲毫無損于這部著作的崇高價(jià)值。它的影響之深遠(yuǎn).使得“歐幾里得”與“幾何學(xué)”幾乎成了同義語。它集中體現(xiàn)了希臘數(shù)學(xué)所奠定的數(shù)學(xué)思想、數(shù)學(xué)精神,是人類文化遺產(chǎn)中的一塊瑰寶。

  《幾何原本》讀后感 12

  也許這算不上是個(gè)謎。稍具文化修養(yǎng)的人都會(huì)告訴你,歐幾里德《幾何原本》是明末傳入的,它的譯者是徐光啟與利瑪竇。但究竟何時(shí)傳入,在中外科技史界卻一直是一個(gè)懸案。

  著名的科技史家李約瑟在《中國科學(xué)技術(shù)史》中指出:“有理由認(rèn)為,歐幾里德幾何學(xué)大約在公元1275年通過阿拉伯人第一次傳到中國,但沒有多少學(xué)者對(duì)它感興趣,即使有過一個(gè)譯本,不久也就失傳了!边@并非離奇之談,元代一位老穆斯林技術(shù)人員曾為蒙古人服務(wù),一位受過高等教育的敘利亞景教徒愛薩曾是翰林院學(xué)士和大臣。波斯天文學(xué)家札馬魯丁曾為忽必烈設(shè)計(jì)過《萬年歷》。歐幾里德的幾何學(xué)就是通過這方面的交往帶到中國的。14世紀(jì)中期成書的《元秘書監(jiān)志》卷七曾有記載:當(dāng)時(shí)官方天文學(xué)家曾研究某些西方著作,其中包括兀忽烈的的《四季算法段數(shù)》15冊,這部書于1273年收入皇家書庫!柏:隽业摹笨赡苁恰皻W幾里德”的另一種音譯,“四擘。”

  是阿拉伯語“原本”的音譯。著名的數(shù)學(xué)史家嚴(yán)敦杰認(rèn)為傳播者是納西爾。丁。土西,一位波斯著名的天文學(xué)家的。

  有的外國學(xué)者認(rèn)為歐幾里德《幾何原本》的任何一種阿拉伯譯本都沒有多于13冊,因?yàn)橐恢钡轿乃噺?fù)興時(shí)才增輯了最后兩冊,因此對(duì)元代時(shí)就有15冊的歐幾里德的幾何學(xué)之說似難首肯。

  有的史家提出原文可能仍是阿拉伯文,而中國人只譯出了書名。也有的認(rèn)為演繹幾何學(xué)知識(shí)在中國傳播得這樣遲緩,以后若干世紀(jì)都看不到這種影響,說明元代顯然不存在有《幾何原本》中譯本的可能性。也有的學(xué)者提出假設(shè):皇家天文臺(tái)搞了一個(gè)譯本,可能由于它與2000年的中國數(shù)學(xué)傳統(tǒng)背道而馳而引不起廣泛的興趣的。

  真正在中國發(fā)生影響的譯本是徐光啟和利瑪竇合譯的'克拉維斯的注解本。但有的同志認(rèn)為這算不上是完整意義上的歐幾里德的幾何學(xué)。因?yàn)槔敻]老師的這個(gè)底本共十五卷,利瑪竇只譯出了前六卷,認(rèn)為已達(dá)到他們用數(shù)學(xué)來籠絡(luò)人心的目的,于是沒有答應(yīng)徐光啟希望全部譯完的要求。200 多年后,后九卷才由著名數(shù)學(xué)家李善蘭與美國傳教士偉烈亞力合譯完成,也就是說,直到1857年這部古希臘的數(shù)學(xué)名著才有了完整意義上的中譯本。那么,這能否說:《幾何原本》的完整意義上的傳入中國是在近代呢?

  《幾何原本》讀后感 13

  《幾何原本》是古希臘數(shù)學(xué)家歐幾里得的一部不朽之作,集整個(gè)古希臘數(shù)學(xué)的成果和精神于一身。既是數(shù)學(xué)巨著,也是哲學(xué)巨著,并且第一次完成了人類對(duì)空間的認(rèn)識(shí)。該書自問世之日起,在長達(dá)兩千多年的時(shí)間里,歷經(jīng)多次翻譯和修訂,自1482年第一個(gè)印刷本出版,至今已有一千多種不同版本。

  除《圣經(jīng)》以外,沒有任何其他著作,其研究、使用和傳播之廣泛能夠和《幾何原本》相比。漢語的最早譯本是由意大利傳教士利瑪竇和明代科學(xué)家徐光啟于1607年合作完成的,但他們只譯出了前六卷。證實(shí)這個(gè)殘本斷定了中國現(xiàn)代數(shù)學(xué)的基本術(shù)語,諸如三角形、角、直角等。日本、印度等東方國家皆使用中國譯法,沿用至今。近百年來,雖然大陸的中學(xué)課本必提及這一偉大著作,但對(duì)中國讀者來說,卻無緣一睹它的全貌,納入家庭藏書更是妄想。

  徐光啟在譯此作時(shí),對(duì)該書有極高的'評(píng)價(jià),他說:“能精此書者,無一事不可精;好學(xué)此書者,無一事不科學(xué)!爆F(xiàn)代科學(xué)的奠基者愛因斯坦更是認(rèn)為:如果歐幾里得未能激發(fā)起你少年時(shí)代的科學(xué)熱情,那你肯定不會(huì)是一個(gè)天才的科學(xué)家。由此可見,《幾何原本》對(duì)人們理性推演能力的影響,即對(duì)人的科學(xué)思想的影響是何等巨大。

  《幾何原本》讀后感 14

  有這樣一本書,它的思想影響過無數(shù)科學(xué)家,它的邏輯至今還被世界推崇,它的作者因它而成為數(shù)學(xué)鼻祖。它就是古希臘著名數(shù)學(xué)家歐幾里得所撰寫的《幾何原本》。

  《幾何原本》這本書以幾個(gè)看似簡單的公理和公設(shè)出發(fā),推導(dǎo)了大量復(fù)雜且不可錯(cuò)的數(shù)學(xué)定理,影響后世近千年,甚至成為了世界所有國家的教科書。它的內(nèi)容通俗易懂,不需要我們有太多的數(shù)學(xué)基礎(chǔ),只要認(rèn)真研讀,必定大有裨益。

  首先,《幾何原本》帶給我們的便是數(shù)學(xué)思維,從七年級(jí)開始我們就學(xué)習(xí)了幾何。如果你沒有掌握幾何推導(dǎo)的過程,那書中一步一步的邏輯推導(dǎo)就能夠大大訓(xùn)練我們的反應(yīng)力和觀察力。其中讓我映象深刻的還是書中第5章的一個(gè)命題,眾所周知最大公因數(shù)是指公因數(shù)中最大的,但如何求最大公因數(shù)呢?是一個(gè)數(shù)一個(gè)數(shù)的嘗試,那也成了瞎子過河——摸不著邊了吧,書中就給出了辦法就是兩數(shù)相減,差又和減數(shù)相減,直到差為0,則他們的最大公因數(shù)便是上個(gè)式子的差,這就是著名的輾轉(zhuǎn)相除法。那么里面的思想便可見一斑。當(dāng)你成功做出了一個(gè)命題的時(shí)候,你獲得的除了知識(shí)本身以外,你的成就感必定難以言表。它還可以帶給你許多的知識(shí),有數(shù)學(xué)方面的,著名的還要數(shù)第一章的一個(gè)命題,它講到等腰三角形兩底角相等,這個(gè)結(jié)論我們似乎早已習(xí)以為常,但為什么呢?這本書就可以帶給你答案。生活中無數(shù)的人就對(duì)周邊的一切麻木了,就像一個(gè)機(jī)器人一般,提不起興趣,實(shí)則不然,不是沒有,而是你沒有善于發(fā)現(xiàn)。但《幾何原本》便能激發(fā)你對(duì)周圍事物的好奇心,對(duì)一個(gè)問題產(chǎn)生刨根問底的精神,更有對(duì)結(jié)論進(jìn)行闡述的能力。除了數(shù)學(xué)方面,尤為重要的還是它訓(xùn)練你的頭腦,打開新世界的大門。世界數(shù)學(xué)大師丘成桐就說過:歐幾里得的定理不見得對(duì)社會(huì)有直接貢獻(xiàn),可它的推理方式確是最有效的邏輯訓(xùn)練。將來你無論是做科學(xué)家,政治家,還是一個(gè)成功的商人,都需要有系統(tǒng)的訓(xùn)練。可見《幾何原本》這一本書對(duì)所有的青少年來說都是最甘甜的養(yǎng)料,給予給我們的比你想象的要更多。你讀它可以是喜愛數(shù)學(xué),從中汲取數(shù)學(xué)的養(yǎng)分,可以是體會(huì)里面的邏輯思維,幫助你學(xué)會(huì)思考問題,也可以是無聊時(shí)間里的.一本趣味小說,同兩千年前的歐幾里得探討世界的奧秘。

  不管怎么樣,如果你缺少信心和勇氣,如果你需要異于常人的智慧,如果你沒有生活的目標(biāo),那一定要讀讀這本名著,他就像我們的人生導(dǎo)師,手把手,耐心的教導(dǎo)我們,給我們通往成功的鑰匙,激發(fā)我們對(duì)科學(xué)的熱愛。如今我們的中國已經(jīng)站在了世界的前面,但某些方面還是缺少一些人才。所以,我有理由有信心相信只要我們一絲不茍的讀一讀《幾何原本》,體會(huì)其中的思想,養(yǎng)成對(duì)事物的好奇心與興趣。我們以后不管從事什么行業(yè),都一定對(duì)你自己有更好的思考能力,對(duì)社會(huì)有更大的作用,對(duì)祖國的未來有更好的貢獻(xiàn)?平膛d國的大旗就抗我們青少年的肩上,讓我們以《幾何原本》為舟,在科學(xué)與真理的大海中暢游,成就自己向往的未來吧!

  《幾何原本》讀后感 15

  翻開《幾何原本》,仿佛進(jìn)入了一個(gè)充滿理性與邏輯的奇妙世界。這本由古希臘數(shù)學(xué)家歐幾里得所著的著作,歷經(jīng)千年的洗禮,依然散發(fā)著智慧的光芒。

  《幾何原本》以其嚴(yán)謹(jǐn)?shù)倪壿嬻w系和清晰的論證方法,為幾何學(xué)奠定了堅(jiān)實(shí)的基礎(chǔ)。書中從最基本的定義、公設(shè)和公理出發(fā),通過層層推理,逐步構(gòu)建出了龐大而精密的幾何王國。每一個(gè)定理的.證明都如同一場精彩的邏輯演繹,環(huán)環(huán)相扣,無懈可擊。這種嚴(yán)謹(jǐn)?shù)乃季S方式不僅在數(shù)學(xué)領(lǐng)域有著重要的價(jià)值,更對(duì)我們的日常生活和思維習(xí)慣產(chǎn)生了深遠(yuǎn)的影響。

  在閱讀的過程中,我被書中簡潔而深刻的定義所吸引。歐幾里得用最精煉的語言,準(zhǔn)確地描述了各種幾何概念,如點(diǎn)、線、面、角等。這些定義如同基石,為后續(xù)的論證提供了堅(jiān)實(shí)的基礎(chǔ)。同時(shí),公設(shè)和公理的提出也讓人感受到了數(shù)學(xué)的確定性和普遍性。它們是整個(gè)幾何體系的基礎(chǔ),無論在何時(shí)何地,都具有不可動(dòng)搖的地位。

  書中的定理和證明過程更是讓我領(lǐng)略到了數(shù)學(xué)的魅力。從簡單的三角形內(nèi)角和定理到復(fù)雜的相似三角形性質(zhì),每一個(gè)定理都經(jīng)過了嚴(yán)格的證明。這些證明過程不僅展示了數(shù)學(xué)家們的智慧和創(chuàng)造力,也讓我們體會(huì)到了邏輯推理的力量。通過學(xué)習(xí)這些定理和證明,我們可以提高自己的邏輯思維能力和分析問題的能力,學(xué)會(huì)從已知條件出發(fā),通過合理的推理得出結(jié)論。

  此外,《幾何原本》還讓我深刻認(rèn)識(shí)到了數(shù)學(xué)的實(shí)用性。幾何學(xué)在現(xiàn)實(shí)生活中有著廣泛的應(yīng)用,從建筑設(shè)計(jì)到地圖繪制,從工程測量到計(jì)算機(jī)圖形學(xué),都離不開幾何學(xué)的知識(shí)。通過閱讀這本書,我們可以更好地理解和應(yīng)用幾何學(xué),為解決實(shí)際問題提供有力的工具。

  總之,《幾何原本》是一本值得我們反復(fù)品味和學(xué)習(xí)的經(jīng)典之作。它不僅是數(shù)學(xué)史上的一座豐碑,更是人類智慧的結(jié)晶。通過閱讀這本書,我們可以提高自己的數(shù)學(xué)素養(yǎng),培養(yǎng)嚴(yán)謹(jǐn)?shù)乃季S方式,領(lǐng)略數(shù)學(xué)的魅力和實(shí)用性。讓我們一起走進(jìn)《幾何原本》的世界,感受數(shù)學(xué)的奇妙與美好。

  《幾何原本》讀后感 16

  《幾何原本》,一部跨越時(shí)空的數(shù)學(xué)巨著,如同一顆璀璨的明珠,在人類文明的長河中閃耀著智慧的光芒。

  當(dāng)我第一次翻開這本書時(shí),便被其簡潔而深刻的語言所震撼。歐幾里得以其卓越的智慧和嚴(yán)謹(jǐn)?shù)倪壿,將?fù)雜的幾何知識(shí)系統(tǒng)地整理和闡述出來。從點(diǎn)、線、面的基本定義,到各種幾何圖形的性質(zhì)和定理,每一個(gè)概念都被精確地定義,每一個(gè)定理都經(jīng)過了嚴(yán)格的.證明。這種嚴(yán)謹(jǐn)?shù)闹螌W(xué)態(tài)度和科學(xué)精神,讓人敬佩不已。

  在閱讀的過程中,我仿佛置身于一個(gè)由幾何圖形構(gòu)成的奇妙世界。三角形的穩(wěn)定性、圓形的完美對(duì)稱性、平行線的永不相交…… 這些看似簡單的幾何性質(zhì),卻蘊(yùn)含著深刻的數(shù)學(xué)原理。通過對(duì)這些性質(zhì)和定理的學(xué)習(xí),我不僅對(duì)幾何圖形有了更深入的認(rèn)識(shí),也對(duì)數(shù)學(xué)的本質(zhì)有了更深刻的理解。數(shù)學(xué)不僅僅是一門關(guān)于數(shù)字和計(jì)算的學(xué)科,更是一門關(guān)于邏輯和推理的科學(xué)。它通過嚴(yán)謹(jǐn)?shù)淖C明和推理,揭示了自然界中隱藏的規(guī)律和秩序。

  《幾何原本》的價(jià)值不僅僅在于它的數(shù)學(xué)內(nèi)容,更在于它所傳達(dá)的思想和方法。書中所體現(xiàn)的公理化方法,即從一些基本的定義、公設(shè)和公理出發(fā),通過邏輯推理得出其他定理和結(jié)論,為后來的科學(xué)研究提供了重要的方法和思路。這種方法不僅在數(shù)學(xué)領(lǐng)域有著廣泛的應(yīng)用,也在物理學(xué)、天文學(xué)等其他學(xué)科中發(fā)揮了重要的作用。它讓我們明白,科學(xué)研究需要建立在堅(jiān)實(shí)的基礎(chǔ)之上,通過嚴(yán)謹(jǐn)?shù)耐评砗万?yàn)證,才能得出可靠的結(jié)論。

  此外,《幾何原本》還讓我感受到了人類智慧的無限潛力。在兩千多年前,歐幾里得就能以如此高超的智慧和創(chuàng)造力,構(gòu)建出如此龐大而精密的幾何體系,這不得不讓人驚嘆。它讓我們相信,只要我們勇于探索、敢于創(chuàng)新,就能夠不斷地拓展人類知識(shí)的邊界,創(chuàng)造出更加美好的未來。

  總之,《幾何原本》是一本值得我們深入閱讀和思考的經(jīng)典之作。它不僅讓我們領(lǐng)略了數(shù)學(xué)的魅力和實(shí)用性,也讓我們感受到了人類智慧的偉大和無限潛力。讓我們以《幾何原本》為榜樣,不斷追求真理,探索未知,為人類的進(jìn)步和發(fā)展貢獻(xiàn)自己的力量。

【《幾何原本》讀后感】相關(guān)文章:

《幾何原本》讀后感05-01

讀幾何原本有感(精選14篇)08-19

幾何原本讀后感優(yōu)秀(精選13篇)10-20

原本的作文08-16

人生幾何?04-09

原本的作文【集錦15篇】09-25

易經(jīng)原本是古代兵法03-26

《王幾何》教案02-27

王幾何教案03-07