高一數(shù)學(xué)教學(xué)工作計(jì)劃集合8篇
時(shí)間過得可真快,從來都不等人,我們又將迎來新的喜悅、新的收獲,為此需要好好地寫一份工作計(jì)劃了。什么樣的工作計(jì)劃是你的領(lǐng)導(dǎo)或者老板所期望看到的呢?以下是小編為大家整理的高一數(shù)學(xué)教學(xué)工作計(jì)劃8篇,歡迎閱讀,希望大家能夠喜歡。
高一數(shù)學(xué)教學(xué)工作計(jì)劃 篇1
一、指導(dǎo)思想
準(zhǔn)確把握《教學(xué)大綱》和《考試大綱》的各項(xiàng)基本要求,立足于基礎(chǔ)知識和基本技能的教學(xué),注重滲透數(shù)學(xué)思想和方法.針對學(xué)生實(shí)際,不斷研究數(shù)學(xué)教學(xué),改進(jìn)教法,指導(dǎo)學(xué)法,奠定立足社會所需要的必備的基礎(chǔ)知識、基本技能和基本能力,著力于培養(yǎng)學(xué)生的創(chuàng)新精神,運(yùn)用數(shù)學(xué)的意識和能力,奠定他們終身學(xué)習(xí)的基礎(chǔ).
二、高一上冊數(shù)學(xué)教學(xué)教材特點(diǎn):
我們所使用的教材是人教版《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書·數(shù)學(xué)(A版)》,它在堅(jiān)持我國數(shù)學(xué)教育優(yōu)良傳統(tǒng)的前提下,認(rèn)真處理繼承、借簽、發(fā)展、創(chuàng)新之間的關(guān)系,體現(xiàn)基礎(chǔ)性、時(shí)代性、典型性和可接受性等,具有如下特點(diǎn):
1.“親和力”:以生動活潑的呈現(xiàn)方式,激發(fā)興趣和美感,引發(fā)學(xué)習(xí)激情.
2.“問題性”:以恰時(shí)恰點(diǎn)的問題引導(dǎo)數(shù)學(xué)活動,培養(yǎng)問題意識,孕育創(chuàng)新精神.
3.“科學(xué)性”與“思想性”:通過不同數(shù)學(xué)內(nèi)容的聯(lián)系與啟發(fā),強(qiáng)調(diào)類比、化歸等思想方法的運(yùn)用,學(xué)習(xí)數(shù)學(xué)地思考問題的方式,提高數(shù)學(xué)思維能力,培育理性精神.
4.“時(shí)代性”與“應(yīng)用性”:以具有時(shí)代感和現(xiàn)實(shí)感的素材創(chuàng)設(shè)情境,加強(qiáng)數(shù)學(xué)活動,發(fā)展應(yīng)用意識.
三、高一上冊數(shù)學(xué)教學(xué)教法分析:
1.選取與內(nèi)容密切相關(guān)的、典型的、豐富的和學(xué)生熟悉的素材,用生動活潑的語言,創(chuàng)設(shè)能夠體現(xiàn)數(shù)學(xué)的概念和結(jié)論,數(shù)學(xué)的思想和方法,以及數(shù)學(xué)應(yīng)用的學(xué)習(xí)情境,使學(xué)生產(chǎn)生對數(shù)學(xué)的親切感,引發(fā)學(xué)生“看個(gè)究竟”的沖動,以達(dá)到培養(yǎng)其興趣的目的.
2.通過“觀察”,“思考”,“探究”等欄目,引發(fā)學(xué)生的思考和探索活動,切實(shí)改進(jìn)學(xué)生的學(xué)習(xí)方式.
3.在教學(xué)中強(qiáng)調(diào)類比、化歸等數(shù)學(xué)思想方法,盡可能養(yǎng)成其邏輯思維的習(xí)慣.
四、學(xué)情分析
高一作為起始年級,作為從義務(wù)階段邁入應(yīng)試征程的適應(yīng)階段,該有的是一份執(zhí)著.他的特殊性就在于它的跨越性,理想的期盼與學(xué)法的突變,難度的加強(qiáng)與惰性的生成等等矛盾沖突伴隨著高一新生的成長.面對新教材的我們也是邊摸索邊改變,樹立新的教學(xué)理念,并落實(shí)在課堂教學(xué)的各個(gè)環(huán)節(jié),才能不負(fù)眾望.我們要從學(xué)生的認(rèn)識水平和實(shí)際能力出發(fā),研究學(xué)生的心理特征,做好初三與高一的銜接工作,幫助學(xué)生解決好從初中到高中學(xué)習(xí)方法的過渡.從高一起就注意培養(yǎng)學(xué)生良好的數(shù)學(xué)思維方法,良好的學(xué)習(xí)態(tài)度和學(xué)習(xí)習(xí)慣,以適應(yīng)高中領(lǐng)悟性的學(xué)習(xí)方法.
五、高一上冊數(shù)學(xué)教學(xué)教學(xué)措施:
1、激發(fā)學(xué)生的學(xué)習(xí)興趣.由數(shù)學(xué)活動、故事、吸引人的課、合理的要求、師生談話等途徑樹立學(xué)生的學(xué)習(xí)信心,提高學(xué)習(xí)興趣,在主觀作用下上升和進(jìn)步.
2、注意從實(shí)例出發(fā),從感性提高到理性;注意運(yùn)用對比的方法,反復(fù)比較相近的概念;注意結(jié)合直觀圖形,說明抽象的知識;注意從已有的知識出發(fā),啟發(fā)學(xué)生思考.
高一數(shù)學(xué)教學(xué)工作計(jì)劃 篇2
一、學(xué)情分析
這節(jié)課是在學(xué)生已經(jīng)學(xué)過的二維的平面直角坐標(biāo)系的基礎(chǔ)上的推廣,是以后學(xué)習(xí)空間向量等內(nèi)容的基礎(chǔ)。
二、教學(xué)目標(biāo)
1. 讓學(xué)生經(jīng)歷用類比的數(shù)學(xué)思想方法探索空間直角坐標(biāo)系的建立方法,進(jìn)一步體會數(shù)學(xué)概念、方法產(chǎn)生和發(fā)展的過程,學(xué)會科學(xué)的思維方法。
2. 理解空間直角坐標(biāo)系與點(diǎn)的坐標(biāo)的意義,掌握由空間直角坐標(biāo)系內(nèi)的點(diǎn)確定其坐標(biāo)或由坐標(biāo)確定其在空間直角坐標(biāo)系內(nèi)的點(diǎn),認(rèn)識空間直角坐標(biāo)系中的點(diǎn)與坐標(biāo)的關(guān)系。
3. 進(jìn)一步培養(yǎng)學(xué)生的空間想象能力與確定性思維能力。
三、教學(xué)重點(diǎn):在空間直角坐標(biāo)系中點(diǎn)的坐標(biāo)的確定。
四、教學(xué)難點(diǎn):通過建立空間直角坐標(biāo)系利用點(diǎn)的坐標(biāo)來確定點(diǎn)在空間內(nèi)的位置
五、教學(xué)過程
(一)、問題情景
1. 確定一個(gè)點(diǎn)在一條直線上的位置的方法。
2. 確定一個(gè)點(diǎn)在一個(gè)平面內(nèi)的位置的方法。
3. 如何確定一個(gè)點(diǎn)在三維空間內(nèi)的位置?
例:如圖,在房間(立體空間)內(nèi)如何確定一個(gè)同學(xué)的頭所在位置?
在學(xué)生思考討論的基礎(chǔ)上,教師明確:確定點(diǎn)在直線上,通過數(shù)軸需要一個(gè)數(shù);確定點(diǎn)在平面內(nèi),通過平面直角坐標(biāo)系需要兩個(gè)數(shù)。那么,要確定點(diǎn)在空間內(nèi),應(yīng)該需要幾個(gè)數(shù)呢?通過類比聯(lián)想,容易知道需要三個(gè)數(shù)。要確定同學(xué)的頭的位置,知道同學(xué)的頭到地面的距離、到相鄰的兩個(gè)墻面的距離即可。
(此時(shí)學(xué)生只是意識到需要三個(gè)數(shù),還不能從坐標(biāo)的角度去思考,因此,教師在這兒要重點(diǎn)引導(dǎo))
教師明晰:在地面上建立直角坐標(biāo)系xOy,則地面上任一點(diǎn)的位置只須利用x,y就可確定。為了確定不在地面內(nèi)的電燈的位置,須要用第三個(gè)數(shù)表示物體離地面的高度,即需第三個(gè)坐標(biāo)z.因此,只要知道電燈到地面的距離、到相鄰的兩個(gè)墻面的距離即可。例如,若這個(gè)電燈在平面xOy上的射影的兩個(gè)坐標(biāo)分別為4和5,到地面的距離為3,則可以用有序數(shù)組(4,5,3)確定這個(gè)電燈的位置(如圖26-3)。
這樣,仿照初中平面直角坐標(biāo)系,就建立了空間直角坐標(biāo)系O-xyz,從而確定了空間點(diǎn)的位置。
(二)、建立模型
1. 在前面研究的基礎(chǔ)上,先由學(xué)生對空間直角坐標(biāo)系予以抽象概括,然后由教師給出準(zhǔn)確的定義。
從空間某一個(gè)定點(diǎn)O引三條互相垂直且有相同單位長度的數(shù)軸,這樣就建立了空間直角坐標(biāo)系O-xyz,點(diǎn)O叫作坐標(biāo)原點(diǎn),x軸、y軸、z軸叫作坐標(biāo)軸,這三條坐標(biāo)軸中每兩條確定一個(gè)坐標(biāo)平面,分別稱為xOy平面,yOz平面,zOx平面。
教師進(jìn)一步明確:
(1)在空間直角坐標(biāo)系中,讓右手拇指指向x軸的正方向,食指指向y軸的正方向,若中指指向z軸的正方向則稱這個(gè)坐標(biāo)系為右手坐標(biāo)系,課本中建立的坐標(biāo)系都是右手坐標(biāo)系。
(2)將空間直角坐標(biāo)系O-xyz畫在紙上時(shí),x軸與y軸、x軸與z軸成135,而y軸垂直于z軸,y軸和z軸的單位長度相等,但x軸上的單位長度等于y軸和z軸上的單位長度的 ,這樣,三條軸上的單位長度直觀上大致相等。
2. 空間直角坐標(biāo)系O-xyz中點(diǎn)的坐標(biāo)。
思考:在空間直角坐標(biāo)系中,空間任意一點(diǎn)A與有序數(shù)組(x,y,z)有什么樣的對應(yīng)關(guān)系?
在學(xué)生充分討論思考之后,教師明確:
(1)過點(diǎn)A作三個(gè)平面分別垂直于x軸,y軸,z軸,它們與x軸、y軸、z軸分別交于點(diǎn)P,Q,R,點(diǎn)P,Q,R在相應(yīng)數(shù)軸上的坐標(biāo)依次為x,y,z,這樣,對空間任意點(diǎn)A,就定義了一個(gè)有序數(shù)組(x,y,z)。
(2)反之,對任意一個(gè)有序數(shù)組(x,y,z),按照剛才作圖的相反順序,在坐標(biāo)軸上分別作出點(diǎn)P,Q,R,使它們在x軸、y軸、z軸上的坐標(biāo)分別是x,y,z,再分別過這些點(diǎn)作垂直于各自所在的坐標(biāo)軸的平面,這三個(gè)平面的交點(diǎn)就是所求的點(diǎn)A.
這樣,在空間直角坐標(biāo)系中,空間任意一點(diǎn)A與有序數(shù)組(x,y,z)之間就建立了一種一一對應(yīng)關(guān)系:A (x,y,z)。
教師進(jìn)一步指出:空間直角坐標(biāo)系O-xyz中任意點(diǎn)A的坐標(biāo)的概念
對于空間任意點(diǎn)A,作點(diǎn)A在三條坐標(biāo)軸上的射影,即經(jīng)過點(diǎn)A作三個(gè)平面分別垂直于x軸、y軸和z軸,它們與x軸、y軸、z軸分別交于點(diǎn)P,Q,R,點(diǎn)P,Q,R在相應(yīng)數(shù)軸上的坐標(biāo)依次為x,y,z,我們把有序數(shù)組(x,y,z)叫作點(diǎn)A的坐標(biāo),記為A(x,y,z)。
(三)、例 題 與 練 習(xí)
1. 課本135頁例1.
注意:在分析中緊扣坐標(biāo)定義,強(qiáng)調(diào)三個(gè)步驟,第一步從原點(diǎn)出發(fā)沿x軸正方向移動5個(gè)單位,第二步沿與y軸平行的方向向右移動4個(gè)單位,第三步沿與z軸平行的方向向上移動6個(gè)單位(如圖26-5)。
2. 課本135頁例2
探究: (1)在空間直角坐標(biāo)系中,坐標(biāo)平面xOy,xOz,yOz上點(diǎn)的坐標(biāo)有什么特點(diǎn)?
(2)在空間直角坐標(biāo)系中,x軸、y軸、z軸上點(diǎn)的坐標(biāo)有什么特點(diǎn)?
解:(1)xOy平面、xOz平面、yOz平面內(nèi)的點(diǎn)的坐標(biāo)分別形如(x,y,0),(x,0,z),(0,y,z)。
(2)x軸、y軸、z軸上點(diǎn)的坐標(biāo)分別形如(x,0,0),(0,y,0),(0,0,z)。
3. 已知長方體ABCD-ABCD的邊長AB=12,AD=8,AA=5,以這個(gè)長方體的頂點(diǎn)A為坐標(biāo)原點(diǎn),射線AB,AD,AA分別為x軸、y軸和z軸的正半軸,建立空間直角坐標(biāo)系,求這個(gè)長方體各個(gè)頂點(diǎn)的坐標(biāo)。
注意:此題可以由學(xué)生口答,教師點(diǎn)評。
解:A(0,0,0),B(12,0,0),D(0,8,0),A(0,0,5),C(12,8,0),B(12,0,5),D(0,8,5),C(12,8,5)。
討論:若以C點(diǎn)為原點(diǎn),以射線CB,CD,CC方向分別為x,y,z軸的正半軸,建立空間直角坐標(biāo)系,那么各頂點(diǎn)的坐標(biāo)又是怎樣的呢?
得出結(jié)論:建立不同的坐標(biāo)系,所得的同一點(diǎn)的坐標(biāo)也不同。
[練 習(xí)]
1. 在空間直角坐標(biāo)系中,畫出下列各點(diǎn):A(0,0,3),B(1,2,3),C(2,0,4),D(-1,2,-2)。
2. 已知:長方體ABCD-ABCD的邊長AB=12,AD=8,AA=7,以這個(gè)長方體的頂點(diǎn)B為坐標(biāo)原點(diǎn),射線AB,BC,BB分別為x軸、y軸和z軸的正半軸,建立空間直角坐標(biāo)系,求這個(gè)長方體各個(gè)頂點(diǎn)的坐標(biāo)。
3. 寫出坐標(biāo)平面yOz上yOz平分線上的點(diǎn)的坐標(biāo)滿足的條件。
(四)、拓展延伸
分別寫出點(diǎn)(1,1,1)關(guān)于各坐標(biāo)軸和各個(gè)坐標(biāo)平面對稱的點(diǎn)的坐標(biāo)。
六、評價(jià)設(shè)計(jì)
1、 練習(xí) : 課本P136. 1、2、3
2、 課堂作業(yè): 課本P138. 1、2
高一數(shù)學(xué)教學(xué)工作計(jì)劃 篇3
本學(xué)期擔(dān)任高一12、13兩班的數(shù)學(xué)教學(xué)工作,兩班學(xué)生共有100人,初中的基礎(chǔ)參差不齊,但兩個(gè)班的學(xué)生整體水平還可以;部分學(xué)生學(xué)習(xí)習(xí)慣不好,很多學(xué)生不能正確評價(jià)自己,這給教學(xué)工作帶來了一定的難度,為把本學(xué)期教學(xué)工作做好,制定如下教學(xué)工作計(jì)劃。
一、教學(xué)目標(biāo).
(一)情意目標(biāo)
。1)通過分析問題的方法的教學(xué),培養(yǎng)學(xué)生的學(xué)習(xí)的興趣。
。2)提供生活背景,通過數(shù)學(xué)建模,讓學(xué)生體會數(shù)學(xué)就在身邊,培養(yǎng)學(xué)數(shù)學(xué)用數(shù)學(xué)的意識。
(3)在探究函數(shù)的性質(zhì),體驗(yàn)獲得數(shù)學(xué)規(guī)律的艱辛和樂趣,在分組研究合作學(xué)習(xí)中學(xué)會交流、相互評價(jià),提高學(xué)生的合作意識
。4)基于情意目標(biāo),調(diào)控教學(xué)流程,堅(jiān)定學(xué)習(xí)信念和學(xué)習(xí)信心。
(5)還時(shí)空給學(xué)生、還課堂給學(xué)生、還探索和發(fā)現(xiàn)權(quán)給學(xué)生,給予學(xué)生自主探索與合作交流的機(jī)會,在發(fā)展他們思維能力的同時(shí),發(fā)展他們的數(shù)學(xué)情感、學(xué)好數(shù)學(xué)的自信心和追求數(shù)學(xué)的科學(xué)精神。
。6)讓學(xué)生體驗(yàn)“發(fā)現(xiàn)——挫折——矛盾——頓悟——新的發(fā)現(xiàn)”這一科學(xué)發(fā)現(xiàn)歷程法。
(二)能力要求
1、培養(yǎng)學(xué)生記憶能力。
(1)通過定義、命題的總體結(jié)構(gòu)教學(xué),揭示其本質(zhì)特點(diǎn)和相互關(guān)系,培養(yǎng)對數(shù)學(xué)本質(zhì)問題的背景事實(shí)及具體數(shù)據(jù)的記憶。
(3)通過揭示立體集合、函數(shù)、三角函數(shù)、平面向量有關(guān)概念、公式和圖形的對應(yīng)關(guān)系,培養(yǎng)記憶能力。
2、培養(yǎng)學(xué)生的運(yùn)算能力。
。1)通過三角函數(shù)的訓(xùn)練,培養(yǎng)學(xué)生的運(yùn)算能力。
。2)加強(qiáng)對概念、公式、法則的明確性和靈活性的教學(xué),培養(yǎng)學(xué)生的運(yùn)算能力。
。3)通過函數(shù)教學(xué),提高學(xué)生是運(yùn)算過程具有明晰性、合理性、簡捷性能力。
(4)通過一題多解、一題多變培養(yǎng)正確、迅速與合理、靈活的運(yùn)算能力,促使知識間的滲透和遷移。
。5)利用數(shù)形結(jié)合,另辟蹊徑,提高學(xué)生運(yùn)算能力。
3、培養(yǎng)學(xué)生的思維能力。
。1)通過對簡易邏輯的教學(xué),培養(yǎng)學(xué)生思維的周密性及思維的邏輯性。
。2)通過不等式、函數(shù)的一題多解、多題一解,培養(yǎng)思維的靈活性和敏捷性,發(fā)展發(fā)散思維能力。
。3)通過不等式、函數(shù)的引伸、推廣,培養(yǎng)學(xué)生的創(chuàng)造性思維。
(4)加強(qiáng)知識的橫向聯(lián)系,培養(yǎng)學(xué)生的數(shù)形結(jié)合的能力。
。5)通過典型例題不同思路的分析,培養(yǎng)思維的靈活性,是學(xué)生掌握轉(zhuǎn)化思想方法。
(三)知識目標(biāo)
1.集合、簡易邏輯
。1)理解集合、子集、補(bǔ)訂、交集、交集的概念.了解空集和全集的意義.了解屬于、包含、相等關(guān)系的意義.掌握有關(guān)的術(shù)語和符號,并會用它們正確表示一些簡單的集合.
。2)掌握一元二次不等式、絕對值不等式的解法。
2.函數(shù)
。1)了解映射的概念,理解函數(shù)的概念.
(2)了解函數(shù)的單調(diào)性、奇偶性的概念,掌握判斷一些簡單函數(shù)的單調(diào)性、奇偶性的方法.
。3)了解反函數(shù)的概念及互為反函數(shù)的函數(shù)圖像間的.關(guān)系,會求一些簡單函數(shù)的反函數(shù).
。4)理解分?jǐn)?shù)指數(shù)冪的概念,掌握有理指數(shù)冪的運(yùn)算性質(zhì).掌握指數(shù)函數(shù)的概念、圖像和性質(zhì).
(5)理解對數(shù)的概念,掌握對數(shù)的運(yùn)算性質(zhì).掌握對數(shù)函數(shù)的概念、圖像和性質(zhì).
。6)能夠運(yùn)用函數(shù)的性質(zhì)、指數(shù)函數(shù)和對數(shù)函數(shù)的性質(zhì)解決某些簡單的實(shí)際問題.
3.三角函數(shù)
4.平面向量
三、教學(xué)重點(diǎn)
1、集合、子集、補(bǔ)集、交集、并集.一元二次不等式的解法
2.映射、函數(shù)、函數(shù)的單調(diào)性、反函數(shù)、指數(shù)函數(shù)、對數(shù)函數(shù)、函數(shù)的應(yīng)用.
3.三角函數(shù)的圖像和性質(zhì)
4、平面向量的基礎(chǔ)知識和基本的運(yùn)算。
四、教學(xué)難點(diǎn)
1.函數(shù)、指數(shù)函數(shù)、對數(shù)函數(shù)
2.三角函數(shù)的概念、圖像和性質(zhì)
五、工作措施.
1、抓好課堂教學(xué),提高教學(xué)效益。
課堂教學(xué)是教學(xué)的主要環(huán)節(jié),因此,抓好課堂教學(xué)是教學(xué)之根本,是大面積提高數(shù)學(xué)成績的主途徑。
。1)、扎實(shí)落實(shí)集體備課,通過集體討論,抓住教學(xué)內(nèi)容的實(shí)質(zhì),形成較好的教學(xué)方案,擬好典型例題、練習(xí)題、周練題、章考題、月考題。
(2)、加大課堂教改力度,培養(yǎng)學(xué)生的自主學(xué)習(xí)能力。最有效的學(xué)習(xí)是自主學(xué)習(xí),因此,課堂教學(xué)要大力培養(yǎng)學(xué)生自主探究的精神,通過“知識的產(chǎn)生,發(fā)展”,逐步形成知識體系;通過“知識質(zhì)疑、展活”遷移知識、應(yīng)用知識,提高能力。同時(shí)要養(yǎng)成學(xué)生良好的學(xué)習(xí)習(xí)慣,不斷提高學(xué)生的數(shù)學(xué)素養(yǎng),從而提高數(shù)學(xué)素養(yǎng),并大面積提高數(shù)學(xué)成績。
高一數(shù)學(xué)教學(xué)工作計(jì)劃 篇4
一、高考要求
①了解映射的概念,理解函數(shù)的概念;
、诹私夂瘮(shù)的單調(diào)性和奇偶性的概念,掌握判斷一些簡單函數(shù)單調(diào)性奇偶性的方法;
、哿私夥春瘮(shù)的概念及互為反函數(shù)的函數(shù)圖象間的關(guān)系,會求一些簡單函數(shù)的反函數(shù);
、芾斫夥?jǐn)?shù)指數(shù)冪的概念,掌握有理數(shù)冪的運(yùn)算性質(zhì),掌握指數(shù)函數(shù)的概念、圖像和性質(zhì);
、堇斫鈱(shù)函數(shù)的概念、圖象和性質(zhì);⑥能夠應(yīng)用函數(shù)的性質(zhì)、指數(shù)函數(shù)和對數(shù)函數(shù)性質(zhì)解決某些簡單實(shí)際問題.
二、兩點(diǎn)解讀
重點(diǎn):①求函數(shù)定義域;②求函數(shù)的值域或最值;③求函數(shù)表達(dá)式或函數(shù)值;④二次函數(shù)與二次方程、二次不等式相結(jié)合的有關(guān)問題;⑤指數(shù)函數(shù)與對數(shù)函數(shù);⑥求反函數(shù);⑦利用原函數(shù)和反函數(shù)的定義域值域互換關(guān)系解題.
難點(diǎn):①抽象函數(shù)性質(zhì)的研究;②二次方程根的分布.
三、課前訓(xùn)練
1.函數(shù)的定義域是 ( D )
(A) (B) (C) (D)
2.函數(shù)的反函數(shù)為 ( B )
(A) (B)
(C) (D)
3.設(shè)則 .
4.設(shè),函數(shù)是增函數(shù),則不等式的解集為 (2,3)
四、典型例題
例1 設(shè),則的定義域?yàn)?( )
(A) (B)
(C) (D)
解:∵在中,由,得, ∴,
∴在中,.
故選B
例2 已知是上的減函數(shù),那么a的取值范圍是 ( )
(A) (B) (C) (D)
解:∵是上的減函數(shù),當(dāng)時(shí),,∴;又當(dāng)時(shí),,∴,∴,且,解得:.∴綜上,,故選C
例3 函數(shù)對于任意實(shí)數(shù)滿足條件,若,則
解:∵函數(shù)對于任意實(shí)數(shù)滿足條件,
∴,即的周期為4,
高一數(shù)學(xué)教學(xué)工作計(jì)劃 篇5
平面上的直線就是由平面直角坐標(biāo)系中的一個(gè)二元一次方程所表示的圖形 。
教學(xué)目標(biāo)
(1)掌握由一點(diǎn)和斜率導(dǎo)出直線方程的方法,掌握直線方程的點(diǎn)斜式、兩點(diǎn)式和直線方程的一般式,并能根據(jù)條件熟練地求出直線的方程.
(2)理解直線方程幾種形式之間的內(nèi)在聯(lián)系,能在整體上把握直線的方程.
(3)掌握直線方程各種形式之間的互化.
(4)通過直線方程一般式的教學(xué)培養(yǎng)學(xué)生全面、系統(tǒng)、周密地分析、討論問題的能力.
(5)通過直線方程特殊式與一般式轉(zhuǎn)化的教學(xué),培養(yǎng)學(xué)生靈活的思維品質(zhì)和辯證唯物主義觀點(diǎn).
(6)進(jìn)一步理解直線方程的概念,理解直線斜率的意義和解析幾何的思想方法.
教學(xué)建議
1.教材分析
(1)知識結(jié)構(gòu)
由直線方程的概念和直線斜率的概念導(dǎo)出直線方程的點(diǎn)斜式;由直線方程的點(diǎn)斜式分別導(dǎo)出直線方程的斜截式和兩點(diǎn)式;再由兩點(diǎn)式導(dǎo)出截距式;最后都可以轉(zhuǎn)化歸結(jié)為直線的一般式;同時(shí)一般式也可以轉(zhuǎn)化成特殊式.
(2)重點(diǎn)、難點(diǎn)分析
①本節(jié)的重點(diǎn)是直線方程的點(diǎn)斜式、兩點(diǎn)式、一般式,以及根據(jù)具體條件求出直線的方程.
解析幾何有兩項(xiàng)根本性的任務(wù):一個(gè)是求曲線的方程;另一個(gè)就是用方程研究曲線.本節(jié)內(nèi)容就是求直線的方程,因此是非常重要的內(nèi)容,它對以后學(xué)習(xí)用方程討論直線起著直接的作用,同時(shí)也對曲線方程的學(xué)習(xí)起著重要的作用.
直線的點(diǎn)斜式方程是平面解析幾何中所求出的第一個(gè)方程,是后面幾種特殊形式的源頭.學(xué)生對點(diǎn)斜式學(xué)習(xí)的效果將直接影響后繼知識的學(xué)習(xí).
、诒竟(jié)的難點(diǎn)是直線方程特殊形式的限制條件,直線方程的整體結(jié)構(gòu),直線與二元一次方程的關(guān)系證明.
2.教法建議
(1)教材中求直線方程采取先特殊后一般的思路,特殊形式的方程幾何特征明顯,但局限性強(qiáng);一般形式的方程無任何限制,但幾何特征不明顯.教學(xué)中各部分知識之間過渡要自然流暢,不生硬.
(2)直線方程的一般式反映了直線方程各種形式之間的統(tǒng)一性,教學(xué)中應(yīng)充分揭示直線方程本質(zhì)屬性,建立二元一次方程與直線的對應(yīng)關(guān)系,為繼續(xù)學(xué)習(xí)曲線方程打下基礎(chǔ).
直線一般式方程都是字母系數(shù),在揭示這一概念深刻內(nèi)涵時(shí),還需要進(jìn)行正反兩方面的分析論證.教學(xué)中應(yīng)重點(diǎn)分析思路,還應(yīng)抓住這一有利時(shí)使學(xué)生學(xué)會嚴(yán)謹(jǐn)科學(xué)的分類討論方法,從而培養(yǎng)學(xué)生全面、系統(tǒng)、辯證、周密地分析、討論問題的能力,特別是培養(yǎng)學(xué)生邏輯思維能力,同時(shí)培養(yǎng)學(xué)生辯證唯物主義觀點(diǎn)
(3)在強(qiáng)調(diào)幾種形式互化時(shí)要向?qū)W生充分揭示各種形式的特點(diǎn),它們的幾何特征,參數(shù)的意義等,使學(xué)生明白為什么要轉(zhuǎn)化,并加深對各種形式的理解.
(4)教學(xué)中要使學(xué)生明白兩個(gè)獨(dú)立條件確定一條直線,如兩個(gè)點(diǎn)、一個(gè)點(diǎn)和一個(gè)方向或其他兩個(gè)獨(dú)立條件.兩點(diǎn)確定一條直線,這是學(xué)生很早就接觸的幾何公理,然而在解析幾何,平面向量等理論中,直線或向量的方向是極其重要的要素,解析幾何中刻畫直線方向的量化形式就是斜率.因此,直線方程的兩點(diǎn)式和點(diǎn)斜式在直線方程的幾種形式中占有很重要的地位,而已知兩點(diǎn)可以求得斜率,所以點(diǎn)斜式又可推出兩點(diǎn)式(斜截式和截距式僅是它們的特例),因此點(diǎn)斜式最重要.教學(xué)中應(yīng)突出點(diǎn)斜式、兩點(diǎn)式和一般式三個(gè)教學(xué)高潮.
求直線方程需要兩個(gè)獨(dú)立的條件,要依不同的幾何條件選用不同形式的方程.根據(jù)兩個(gè)條件運(yùn)用待定系數(shù)法和方程思想求直線方程.
(5)注意正確理解截距的概念,截距不是距離,截距是直線(也是曲線)與坐標(biāo)軸交點(diǎn)的相應(yīng)坐標(biāo),它是有向線段的數(shù)量,因而是一個(gè)實(shí)數(shù);距離是線段的長度,是一個(gè)正實(shí)數(shù)(或非負(fù)實(shí)數(shù)).
(6)本節(jié)中有不少與函數(shù)、不等式、三角函數(shù)有關(guān)的問題,是函數(shù)、不等式、三角與直線的重要知識交匯點(diǎn)之一,教學(xué)中要適當(dāng)選擇一些有關(guān)的問題指導(dǎo)學(xué)生練習(xí),培養(yǎng)學(xué)生的綜合能力.
(7)直線方程的理論在其他學(xué)科和生產(chǎn)生活實(shí)際中有大量的應(yīng)用.教學(xué)中注意聯(lián)系實(shí)際和其它學(xué)科,教師要注意引導(dǎo),增強(qiáng)學(xué)生用數(shù)學(xué)的意識和能力.
(8)本節(jié)不少內(nèi)容可安排學(xué)生自學(xué)和討論,還要適當(dāng)增加練習(xí),使學(xué)生能更好地掌握,而不是僅停留在觀念上.
高一數(shù)學(xué)教學(xué)工作計(jì)劃 篇6
一、指導(dǎo)思想:
本學(xué)期,我將認(rèn)真貫徹我校的教育教學(xué)工作要點(diǎn),在學(xué)校教導(dǎo)處工作計(jì)劃的指導(dǎo)下,圍繞“生本教育”的教學(xué)理念,以更新觀念為前提,以育人為歸宿,以提高課堂教學(xué)效率為重點(diǎn)。轉(zhuǎn)變教學(xué)理念,改進(jìn)教學(xué)方法,優(yōu)化教研模式,積極探索在新課程改革背景下的數(shù)學(xué)教研工作新體系。繼續(xù)推進(jìn)“生本教育”改革的進(jìn)程,提高數(shù)學(xué)教學(xué)質(zhì)量,努力讓自己成為有思想、有追求、有能力、有經(jīng)驗(yàn)、有智慧、有作為的新型教師。
二、目標(biāo)任務(wù):
1、努力提高數(shù)學(xué)教學(xué)質(zhì)量,使各班數(shù)學(xué)成績達(dá)到學(xué)校規(guī)定的有關(guān)標(biāo)準(zhǔn)。
2、在數(shù)學(xué)學(xué)科教研教改中注重素質(zhì)教育,讓自己成為一位思想素質(zhì)、業(yè)務(wù)素質(zhì)過硬的數(shù)學(xué)教師。
3、狠抓生本教育,加強(qiáng)數(shù)學(xué)課堂改革力度,積極參加各項(xiàng)教研活動,提高現(xiàn)代教學(xué)水平,切實(shí)優(yōu)化數(shù)學(xué)課堂教學(xué),充分發(fā)揮多媒體教學(xué)手段,促進(jìn)教學(xué)質(zhì)量的提高。
4、積極參加集體備課和業(yè)務(wù)學(xué)習(xí)活動,共同提高教育教學(xué)水平。聽課后認(rèn)真評課,及時(shí)反饋,如教學(xué)內(nèi)容安排否恰當(dāng)。難點(diǎn)是否突破,教法是否得當(dāng),教學(xué)手段的使用,教學(xué)思想、方法的滲透。是否符合素質(zhì)教育的要求,老師的教學(xué)基本功等方面進(jìn)行中肯,全面的評論、探討。
三、具體措施:
1、把握教材關(guān):
認(rèn)真學(xué)習(xí)新課程標(biāo)準(zhǔn),鉆研教材,把握各單元、各節(jié)的教學(xué)要求和重難點(diǎn),熟悉教材的特點(diǎn)和編者的意圖,訂好所教學(xué)科的教學(xué)計(jì)劃。計(jì)劃要體現(xiàn)每單元重難點(diǎn)以及采取的措施,研究解決難點(diǎn)的方法。從而改進(jìn)自己的教學(xué)方法和練習(xí)策略。對教材中存在的問題及教學(xué)中出現(xiàn)的問題要及時(shí)進(jìn)行記錄,及時(shí)進(jìn)行反思,認(rèn)真反思個(gè)人的教育教學(xué)心得。
2、規(guī)范日常工作:
嚴(yán)格規(guī)范數(shù)學(xué)教學(xué)常規(guī)。要認(rèn)真制定教學(xué)計(jì)劃,認(rèn)真?zhèn)湔n、上課、布置和批改作業(yè)、輔導(dǎo)學(xué)生。學(xué)生作業(yè)的規(guī)范性要求,包括學(xué)生書寫作業(yè)的規(guī)范和教師批閱作業(yè)的規(guī)范。
3、教師角色的變化:
要積極實(shí)踐生本教育,真正實(shí)現(xiàn)教師是學(xué)習(xí)的組織者、引導(dǎo)者,是學(xué)生的合作伙伴,不再是在“講”的基礎(chǔ)上“扶”著學(xué)生、“牽”著學(xué)生去掌握知識,而是要將知識“放”給學(xué)生,放心、放手地讓學(xué)生自主學(xué)習(xí)。
總之,我們愿與新課程同行,在探索中前進(jìn),在失敗中成熟,把新課改引向深入。因?yàn)槲覀儓?jiān)信我們的新課改最終可以使學(xué)生學(xué)會:用自己的眼睛去觀察,用自己的頭腦去思考,用自己的語言去表達(dá),用自己的心靈去感悟。
高一數(shù)學(xué)教學(xué)工作計(jì)劃 篇7
針對我校高一學(xué)生的具體情況,我在高一數(shù)學(xué)新教材教學(xué)實(shí)踐與探究中,貫徹因人施教,因材施教原則。以學(xué)法指導(dǎo)為突破口;著重在讀、講、練、輔、作業(yè)等方面下功夫,取得一定效果。
加強(qiáng)學(xué)法指導(dǎo),培養(yǎng)良好學(xué)習(xí)習(xí)慣。良好的學(xué)習(xí)習(xí)慣包括制定計(jì)劃、課前自學(xué)、專心上課、及時(shí)復(fù)習(xí)、獨(dú)立作業(yè)、解決疑難、系統(tǒng)小結(jié)和課外學(xué)習(xí)幾個(gè)方面。
制定計(jì)劃使學(xué)習(xí)目的明確,時(shí)間安排合理,不慌不忙,穩(wěn)扎穩(wěn)打,它是推動學(xué)生主動學(xué)習(xí)和克服困難的內(nèi)在動力。但計(jì)劃一定要切實(shí)可行,既有長遠(yuǎn)打算,又有短期安排,執(zhí)行過程中嚴(yán)格要求自己,磨煉學(xué)習(xí)意志。
課前自學(xué)是學(xué)生上好新課,取得較好學(xué)習(xí)效果的基礎(chǔ).課前自學(xué)不僅能培養(yǎng)自學(xué)能力,而且能提高學(xué)習(xí)新課的興趣,掌握學(xué)習(xí)主動權(quán).自學(xué)不能搞走過場,要講究質(zhì)量,力爭在課前把教材弄懂,上課著重聽老師講課的思路,把握重點(diǎn),突破難點(diǎn),盡可能把問題解決在課堂上。
上課是理解和掌握基本知識、基本技能和基本方法的關(guān)鍵環(huán)節(jié)。學(xué)然后知不足,課前自學(xué)過的同學(xué)上課更能專心聽課,他們知道什么地方該詳,什么地方可略;什么地方該精雕細(xì)刻,什么地方可以一帶而過,該記的地方才記下來,而不是全抄全錄,顧此失彼。
及時(shí)復(fù)習(xí)是高效率學(xué)習(xí)的重要一環(huán),通過反復(fù)閱讀教材,多方查閱有關(guān)資料,強(qiáng)化對基本概念知識體系的理解與記憶,將所學(xué)的新知識與有關(guān)舊知識聯(lián)系起來,進(jìn)行分析比較,一邊復(fù)習(xí)一邊將復(fù)習(xí)成果整理在筆記上,使對所學(xué)的新知識由懂到會。
獨(dú)立作業(yè)是學(xué)生通過自己的獨(dú)立思考,靈活地分析問題、解決問題,進(jìn)一步加深對所學(xué)新知識的理解和對新技能的掌握過程.這一過程是對學(xué)生意志毅力的考驗(yàn),通過運(yùn)用使學(xué)生對所學(xué)知識由會到熟。
解決疑難是指對獨(dú)立完成作業(yè)過程中暴露出來對知識理解的錯(cuò)誤,或由于思維受阻遺漏解答,通過點(diǎn)撥使思路暢通,補(bǔ)遺解答的過程.解決疑難一定要有鍥而 不舍的精神,做錯(cuò)的作業(yè)再做一遍。對錯(cuò)誤的地方?jīng)]弄清楚要反復(fù)思考,實(shí)在解決不了的要請教老師和同學(xué),并要經(jīng)常把易錯(cuò)的地方拿出來復(fù)習(xí)強(qiáng)化,作適當(dāng)?shù)闹貜?fù) 性練習(xí),把求老師問同學(xué)獲得的東西消化變成自己的知識,長期堅(jiān)持使對所學(xué)知識由熟到活。
系統(tǒng)小結(jié)是學(xué)生通過積極思考,達(dá)到全面系統(tǒng)深刻地掌握知識和發(fā)展認(rèn)識能力的重要環(huán)節(jié).小結(jié)要在系統(tǒng)復(fù)習(xí)的基礎(chǔ)上以教材為依據(jù),參照筆記與有關(guān)資料, 通過分析、綜合、類比、概括,揭示知識間的內(nèi)在聯(lián)系.以達(dá)到對所學(xué)知識融會貫通的目的.經(jīng)常進(jìn)行多層次小結(jié),能對所學(xué)知識由活到悟。
課外學(xué)習(xí)包括閱讀課外書籍與報(bào)刊,參加學(xué)科競賽與講座,走訪高年級同學(xué)或老師交流學(xué)習(xí)心得等.課外學(xué)習(xí)是課內(nèi)學(xué)習(xí)的補(bǔ)充和繼續(xù),它不僅能豐富學(xué)生的文化科學(xué)知識,加深和鞏固課內(nèi)所學(xué)的知識,而且能滿足和發(fā)展他們的興趣愛好,培養(yǎng)獨(dú)立學(xué)習(xí)和工作能力,激發(fā)求知欲與學(xué)習(xí)熱情。
1、讀。俗話說不讀不憤,不憤不悱。首先要讀好概念。讀概念要咬文嚼字,掌握概念內(nèi)涵和外延及辨析概念。例如,集合是數(shù)學(xué)中的一個(gè)原始概 念,是不加定義的。它從常見的我校高一年級學(xué)生 、我家的家用電器、太平洋、大西洋、印度洋、北冰洋及自然數(shù)等事物中抽象出來,但集合的概念又不同于特殊具體的實(shí)物集合,集合的確定及性質(zhì)特 征是由一組公理來界定的。確定性、無序性、互異性常常是集合的代名詞。
再如象限角的概念,要向?qū)W生解釋清楚,角的始邊與x軸的非負(fù)半軸重合和與x軸的正半軸重合的細(xì)微差別;根據(jù)定義如果終邊不在某一象限則不能稱為象限 角等等。這樣可以引導(dǎo)學(xué)生從多層次,多角度去認(rèn)識和掌握數(shù)學(xué)概念。其次讀好定理公式和例題。閱讀定理公式時(shí),要分清條件和結(jié)論。如高一新教材(上)等比數(shù) 列的前n項(xiàng)和Sn.有q1和q=1兩種情形;對數(shù)計(jì)算中的一個(gè)公式,其中要求讀例題時(shí),要注重審題分析,注意題中的隱含條件,掌握解題的方法和書寫規(guī) 范。如在解對數(shù)函數(shù)題時(shí),要注意真數(shù)大于0的隱含條件;解有關(guān)二次函數(shù)題時(shí)要注意二次項(xiàng)系數(shù)不為零的隱含條件等。讀書要鼓勵(lì)學(xué)生相互議論。俗語說議 一議知是非,爭一爭明道理。例如,讓學(xué)生議論數(shù)列與數(shù)集的聯(lián)系與區(qū)別。數(shù)列與數(shù)的集合都是具有某種共同屬性的全體。數(shù)列中的數(shù)是有順序的,而數(shù)集中的元 素是沒有順序的;同一個(gè)數(shù)可以在數(shù)列中重復(fù)出現(xiàn),而數(shù)集中的元素是沒有重復(fù)的(相同的數(shù)在數(shù)集中算作同一個(gè)元素)。在引導(dǎo)學(xué)生閱讀時(shí),教師要經(jīng)常幫助學(xué)生 歸類、總結(jié),盡可能把相關(guān)知識表格化。如一元二次不等式的解情況列表,三角函數(shù)的圖象與性質(zhì)列表等,便于學(xué)生記憶掌握。
2、講。外國有一位教育家曾經(jīng)說過:教師的作用在于將冰冷的知識加溫后傳授給學(xué)生。講是實(shí)踐這種傳授的最直接和最有效的教學(xué)手段。首先講要注意 循序漸進(jìn)的原則。循序漸進(jìn),防止急躁。由于學(xué)生年齡較小,閱歷有限,為數(shù)不少的高中學(xué)生容易急躁,有的同學(xué)貪多求快,囫圇吞棗,有的同學(xué)想靠幾天沖刺 一蹴而就,有的取得一點(diǎn)成績便洋洋自得,遇到挫折又一蹶不振。針對這些情況,教師要讓學(xué)生懂得學(xué)習(xí)是一個(gè)長期的鞏固舊知識、發(fā)現(xiàn)新知識的積累過程,決非一 朝一夕可以完成,為什么高中要上三年而不是三天!許多優(yōu)秀的同學(xué)能取得好成績,其中一個(gè)重要原因是他們的基本功扎實(shí),他們的閱讀、書寫、運(yùn)算技能達(dá)到了自 動化或半自動化的熟練程度。
每堂新授課中,在復(fù)習(xí)必要知識和展示教學(xué)目標(biāo)的基礎(chǔ)上,老師著重揭示知識的產(chǎn)生、形成、發(fā)展過程,解決學(xué)生疑惑。比如在學(xué)習(xí)兩角和差公式之前,學(xué)生 已經(jīng)掌握五套誘導(dǎo)公式,可以將求任意角三角函數(shù)值問題轉(zhuǎn)化為求某一個(gè)銳角三角函數(shù)值的問題。此時(shí)教師應(yīng)進(jìn)一步引導(dǎo)學(xué)生:對于一些半特殊的教(750 度,150度等)能不能不通過查表而求出精確值呢?這樣兩角和差的三角函數(shù)就呼之欲出了,極大激發(fā)了學(xué)生的學(xué)習(xí)興趣。講課要注意從簡單到復(fù)雜的過程,要讓 學(xué)生從感性認(rèn)識上升到理性認(rèn)識。鼓勵(lì)學(xué)生應(yīng)積極、主動參與課堂活動的全過程,教、學(xué)同步。讓學(xué)生自己真正做學(xué)習(xí)的主人。
例如,講解函數(shù)的圖象應(yīng)從振幅、周期、相位依次各自進(jìn)行變化,然后再綜合,并盡可能利用多媒體輔助教學(xué),使學(xué)生容易接受。其次講要注重突出數(shù)學(xué)思想 方法的教學(xué),注重學(xué)生數(shù)學(xué)能力的培養(yǎng)。例如講到等比數(shù)列的概念、通項(xiàng)公式、等比中項(xiàng)、等比數(shù)列的性質(zhì)、等比數(shù)列的前n項(xiàng)和?梢砸龑(dǎo)學(xué)生對照等差數(shù)列的相 應(yīng)的內(nèi)容,比較聯(lián)系。讓學(xué)生更清楚等差數(shù)列和等比數(shù)列是兩個(gè)對偶概念。
3、練。數(shù)學(xué)是以問題為中心。學(xué)生怎么應(yīng)用所學(xué)知識和方法去分析問題和解決問題,必須進(jìn)行練習(xí)。首先練習(xí)要重視基礎(chǔ)知識和基本技能,切忌過早地進(jìn)行 高、深、難練習(xí)。鑒于目前我校高一的生源現(xiàn)狀,基礎(chǔ)訓(xùn)練是很有必要的。課本的例題、練習(xí)題和習(xí)題要求學(xué)生要題題過關(guān);補(bǔ)充的練習(xí),應(yīng)先是課本中練習(xí)及 習(xí)題的簡單改造題,這有利于學(xué)生鞏固基礎(chǔ)知識和基本技能。讓學(xué)生通過認(rèn)真思考可以完成。即讓學(xué)生跳一跳可以摸得著。一定要讓學(xué)生在練習(xí)中強(qiáng)化知識、應(yīng) 用方法,在練習(xí)中分步達(dá)到教學(xué)目標(biāo)要求并獲得再練習(xí)的興趣和信心。例如根據(jù)數(shù)列前幾項(xiàng)求通項(xiàng)公式練習(xí),在新教材高一(上)P111例題2上簡單地做一些改 造,便可以變化出各種求解通項(xiàng)公式方法的題目;再如數(shù)列復(fù)習(xí)參考題第12題;就是一個(gè)改造性很強(qiáng)的數(shù)學(xué)題,教師可以在上面做很多文章。其次要講練結(jié)合。學(xué) 生要練習(xí),老師要評講。多講解題思路和解題方法,其中包括成功的與錯(cuò)誤的。特別是注意要充分暴露錯(cuò)誤的思維發(fā)生過程,在課堂造就民主氣氛,充分傾聽學(xué)生意 見,哪怕走點(diǎn)彎路 ,吃點(diǎn)苦頭另一方面,則引導(dǎo)學(xué)生各抒己見,評判各方面之優(yōu)劣,最后選出大家公認(rèn)的最佳方法。還可適當(dāng)讓學(xué)生涉及一些一題多解的題目,拓展思維空間, 培養(yǎng)學(xué)生思維的多面性和深刻性。
例如,高一(下)P26例5求證 。可以從一邊證到另一邊,也可以作差、作商比較,還可以用分析法來證明;再如解不等式。常用的解法是將無理不等式化為有理不等式求解。但還可以利用換元 法,將無理不等式化為關(guān)于t的一元二次不等式求解。除此之外,亦可利用圖象法求解。在同一直角坐標(biāo)系中作出它們的圖像。求兩圖在x軸上方的交點(diǎn)的橫坐標(biāo)為 2,最終得解。要求學(xué)生掌握通解通法同時(shí),也要講究特殊解法。最后練習(xí)要增強(qiáng)應(yīng)用性。例如用函數(shù)、不等式、數(shù)列、三角、向量等相關(guān)知識解實(shí)際應(yīng)用題。引導(dǎo) 學(xué)生學(xué)會建立數(shù)學(xué)模型,并應(yīng)用所學(xué)知識,研究此數(shù)學(xué)模型。
4、作業(yè)。鑒于學(xué)生現(xiàn)有的知識、能力水平差異較大,為了使每一位學(xué)生都能在自己的最近發(fā)展區(qū)更好地學(xué)習(xí)數(shù)學(xué),得到最好的發(fā)展,制定分層次作 業(yè)。即將作業(yè)難度和作業(yè)量由易到難分成A、B、C三檔,由學(xué)生根據(jù)自身學(xué)習(xí)情況自主選擇,然后在充分尊重學(xué)生意見的基礎(chǔ)上再進(jìn)行協(xié)調(diào)。以后的時(shí)間里,根 據(jù)學(xué)生實(shí)際學(xué)習(xí)情況,隨時(shí)進(jìn)行調(diào)整。
5、輔導(dǎo)。輔導(dǎo)指兩方面,培優(yōu)和補(bǔ)差。對于數(shù)學(xué)尖子生,主要培養(yǎng)其自學(xué)能力、獨(dú)立鉆研精神和集體協(xié)作能力。具體做法:成立由三至六名學(xué)生組成的討論 組,教師負(fù)責(zé)為他們介紹高考、競賽參考書,并定期提供學(xué)習(xí)資料和咨詢、指導(dǎo)。下面著重談?wù)勓a(bǔ)差工作。輔導(dǎo)要鼓勵(lì)學(xué)生多提出問題,對于不能提高的同學(xué)要從平 時(shí)作業(yè)及練習(xí)考試中發(fā)現(xiàn)問題,跟蹤到人,跟蹤到具體知識。要有計(jì)劃,有針對性和目的性地輔導(dǎo),切忌冷飯重抄和無目標(biāo)性。要及時(shí)檢查輔導(dǎo)效果,做到學(xué)生人人 知道自己存在問題(越具體越好),老師對輔導(dǎo)學(xué)生情況要了如指掌。對學(xué)有困難的同學(xué),要耐心細(xì)致輔導(dǎo),還要注意鼓勵(lì)學(xué)生戰(zhàn)勝自己,提高自已的分析和解決問 題的能力。
高一數(shù)學(xué)教學(xué)工作計(jì)劃 篇8
教學(xué)分析
課本從學(xué)生熟悉的集合(自然數(shù)的集合、有理數(shù)的集合等)出發(fā),通過類比實(shí)數(shù)間的大小關(guān)系引入集合間的關(guān)系,同時(shí),結(jié)合相關(guān)內(nèi)容介紹子集等概念.在安排這部分內(nèi)容時(shí),課本注重體現(xiàn)邏輯思考的方法,如類比等.
值得注意的問題:在集合間的關(guān)系教學(xué)中,建議重視使用Venn圖,這有助于學(xué)生通過體會直觀圖示來理解抽象概念;隨著學(xué)習(xí)的深入,集合符號越來越多,建議教學(xué)時(shí)引導(dǎo)學(xué)生區(qū)分一些容易混淆的關(guān)系和符號,例如∈與?的區(qū)別.
三維目標(biāo)
1.理解集合之間包含與相等的含義,能識別給定集合的子集,能判斷給定集合間的關(guān)系,提高利用類比發(fā)現(xiàn)新結(jié)論的能力.
2.在具體情境中,了解空集的含義,掌握并能使用Venn圖表達(dá)集合的關(guān)系,加強(qiáng)學(xué)生從具體到抽象的思維能力,樹立數(shù)形結(jié)合的思想.
重點(diǎn)難點(diǎn)
教學(xué)重點(diǎn):理解集合間包含與相等的含義.
教學(xué)難點(diǎn):理解空集的含義.
課時(shí)安排
1課時(shí)
教學(xué)過程
導(dǎo)入新課
思路1.實(shí)數(shù)有相等、大小關(guān)系,如5=5,5<7 5="">3等等,類比實(shí)數(shù)之間的關(guān)系,你會想到集合之間有什么關(guān)系呢?(讓學(xué)生自由發(fā)言,教師不要急于作出判斷,而是繼續(xù)引導(dǎo)學(xué)生)
欲知誰正確,讓我們一起來觀察、研探.
思路2.復(fù)習(xí)元素與集合的關(guān)系——屬于與不屬于的關(guān)系,填空:(1)0N;(2)2Q;(3)-1.5R.
類比實(shí)數(shù)的大小關(guān)系,如5<7,2≤2,試想集合間是否有類似的“大小”關(guān)系呢?(答案:(1)∈;(2)?;(3)∈)
推進(jìn)新課
提出問題
(1)觀察下面幾個(gè)例子:
①A={1,2,3},B={1,2,3,4,5};
、谠O(shè)A為國興中學(xué)高一(3)班男生的全體組成的集合,B為這個(gè)班學(xué)生的全體組成的集合;
、墼O(shè)C={x|x是兩條邊相等的三角形},D={x|x是等腰三角形};
、蹺={2,4,6},F(xiàn)={6,4,2}.
你能發(fā)現(xiàn)兩個(gè)集合間有什么關(guān)系嗎?
(2)例子①中集合A是集合B的子集,例子④中集合E是集合F的子集,同樣是子集,有什么區(qū)別?
(3)結(jié)合例子④,類比實(shí)數(shù)中的結(jié)論:“若a≤b,且b≤a,則a=b”,在集合中,你發(fā)現(xiàn)了什么結(jié)論?
(4)按升國旗時(shí),每個(gè)班的同學(xué)都聚集在一起站在旗桿附近指定的區(qū)域內(nèi),從樓頂向下看,每位同學(xué)是哪個(gè)班的,一目了然.試想一下,根據(jù)從樓頂向下看的,要想直觀表示集合,聯(lián)想集合還能用什么表示?
(5)試用Venn圖表示例子①中集合A和集合B.
(6)已知A?B,試用Venn圖表示集合A和B的關(guān)系.
(7)任何方程的解都能組成集合,那么x2+1=0的實(shí)數(shù)根也能組成集合,你能用Venn圖表示這個(gè)集合嗎?
(8)一座房子內(nèi)沒有任何東西,我們稱為這座房子是空房子,那么一個(gè)集合沒有任何元素,應(yīng)該如何命名呢?
(9)與實(shí)數(shù)中的結(jié)論“若a≥b,且b≥c,則a≥c”相類比,在集合中,你能得出什么結(jié)論?
活動:教師從以下方面引導(dǎo)學(xué)生:
(1)觀察兩個(gè)集合間元素的特點(diǎn).
(2)從它們含有的元素間的關(guān)系來考慮.規(guī)定:如果A B,但存在x∈B,且x A,我們稱集合A是集合B的真子集,記作A B(或B A).
(3)實(shí)數(shù)中的“≤”類比集合中的 .
(4)把指定位置看成是由封閉曲線圍成的,學(xué)生看成集合中的元素,從樓頂看到的就是把集合中的元素放在封閉曲線內(nèi).教師指出:為了直觀地表示集合間的關(guān)系,我們常用平面上封閉曲線的內(nèi)部代表集合,這種圖稱為Venn圖.
(5)封閉曲線可以是矩形也可以是橢圓等等,沒有限制.
(6)分類討論:當(dāng)A B時(shí),A B或A=B.
(7)方程x2+1=0沒有實(shí)數(shù)解.
(8)空集記為 ,并規(guī)定:空集是任何集合的子集,即 A;空集是任何非空集合的真子集,即 A(A≠ ).
(9)類比子集.
討論結(jié)果:
(1)①集合A中的元素都在集合B中;
②集合A中的元素都在集合B中;
、奂螩中的元素都在集合D中;
、芗螮中的元素都在集合F中.
可以發(fā)現(xiàn):對于任意兩個(gè)集合A,B有下列關(guān)系:集合A中的元素都在集合B中;或集合B中的元素都在集合A中.
(2)例子①中A B,但有一個(gè)元素4∈B,且4 A;而例子②中集合E和集合F中的元素完全相同.
(3)若A B,且B A,則A=B.
(4)可以把集合中元素寫在一個(gè)封閉曲線的內(nèi)部來表示集合.
(5)如圖1121所示表示集合A,如圖1122所示表示集合B.
圖1-1-2-1 圖1-1-2-2
(6)如圖1-1-2-3和圖1-1-2-4所示.
圖1-1-2-3 圖1-1-2-4
(7)不能.因?yàn)榉匠蘹2+1=0沒有實(shí)數(shù)解.
(8)空集.
【高一數(shù)學(xué)教學(xué)工作計(jì)劃集合8篇】相關(guān)文章:
數(shù)學(xué)教學(xué)工作計(jì)劃(15篇)12-25
小學(xué)數(shù)學(xué)教學(xué)工作計(jì)劃(15篇)12-27
小學(xué)數(shù)學(xué)教學(xué)工作計(jì)劃15篇12-23
新學(xué)期數(shù)學(xué)教學(xué)工作計(jì)劃01-03
小學(xué)數(shù)學(xué)教研組工作計(jì)劃(集合15篇)12-29
高一數(shù)學(xué)老師工作總結(jié)01-06
高一數(shù)學(xué)知識點(diǎn)總結(jié)07-20
初中數(shù)學(xué)教學(xué)心得總結(jié)06-19