男人天堂日韩,中文字幕18页,天天伊人网,成人性生交大片免费视频

初中數(shù)學(xué)試講教案《一元二次方程復(fù)習(xí)》

時間:2024-05-18 14:16:06 秀雯 教案 我要投稿
  • 相關(guān)推薦

初中數(shù)學(xué)試講教案《一元二次方程復(fù)習(xí)》(通用10篇)

  作為一無名無私奉獻(xiàn)的教育工作者,總歸要編寫教案,教案是教學(xué)活動的依據(jù),有著重要的地位。那要怎么寫好教案呢?下面是小編為大家整理的初中數(shù)學(xué)試講教案《一元二次方程復(fù)習(xí)》,僅供參考,歡迎大家閱讀。

初中數(shù)學(xué)試講教案《一元二次方程復(fù)習(xí)》(通用10篇)

  初中數(shù)學(xué)試講教案《一元二次方程復(fù)習(xí)》 1

  知識點:

  二元一次方程的概念及一般形式,二次項系數(shù)、一次項系數(shù)、常數(shù)項、判別式、一元二次方程解法

  重點、難點:

  二元一次方程四種解法,直接開平方、配方法、公式法、因式分解法

  教學(xué)形式:

  例題演示,加深印象!學(xué)完即用,鞏固記憶!你問我答,有來有往!

  教學(xué)過程:

  1、自我介紹:30s

  大家下午好!我叫XXX,20XX年畢業(yè)于暨南大學(xué),學(xué)的行政管理,現(xiàn)在教的是初中數(shù)學(xué),希望能與大家有一個愉快的下午!

  2、一元二次方程概念、系數(shù)、根的判別式:8min30s

  我們今天的課堂內(nèi)容是復(fù)習(xí)一元二次方程。首先請同學(xué)們看黑板上的這4個等式,請判斷等式是否是一元二次方程,如果是請說出該一元二次方程的二次項系數(shù)、一次項系數(shù)以及常數(shù)項:

  (1)x -10x+9=0 是 1 -10 9

  (2)x +2=0 是 1 0 2

  (3)ax +bx+c=0 不是 a必須不等于0(追問為什么)

  (4)3x -5x=3x 不是 整理式子得-5x=0所以為一元一次方程(追問為什么) 好,同學(xué)們都回答得非常好!那么我們所說的一元二次方程究竟是什么呢?我們從它的名字可以得出它的定義!

  一元:只含一個未知數(shù)

  二次:含未知數(shù)項的最高次數(shù)為2

  方程:一個等式

  一元二次方程的一般形式為:ax +bx+c=0 (a ≠0)其中,a 為二次項系數(shù)、b 為一次項系數(shù)、c 為常數(shù)項。記住,a 一定不為0,b 、c 都有可能等于0,一元二次方程的形式多種多樣,所以大家要注意找系數(shù)時先將一元二次方程化為一般式! 至于一個一元二次方程有沒有根怎么判斷,有同學(xué)能告訴老師嗎?(沒有就自己講),好非常好!我們知道Δ是等于2-4ac 的,當(dāng)Δ>0時,方程有2個不相同的實數(shù)根;當(dāng)Δ=0時,方程有兩個相同的實數(shù)根;當(dāng)Δ<0時,方程無實根。 那我們在求方程根之前先利用Δ判斷一下根的情況,如果小于0,那么就直接判斷無解,如果大于等于0,則需要進(jìn)一步求方程根。

  3、一元二次方程的解法:20min

  那說到求方程的根我們究竟學(xué)了幾種求一元二次方程根的方法呢?我知道同學(xué)們肯定心里有答案,就讓老師為你們一一梳理~

  (1)直接開方法

  遇到形如x =n的二元一次方程,可以直接使用開方法來求解。若n<0,方程無解;若n=0,則x=0,若n>0, 則x=±n 。同學(xué)們能明白嗎?

  (2)配方法

  大家覺得直接開平方好不好用?簡不簡單?那大家肯定都想用直接開方法來做題,是吧?當(dāng)然,中考題簡單也不至于這么簡單~但是我們可以通過配方法來將方程往完全平方形式變化。配方法我們通過2道例題來鞏固一下:

  簡單的一眼看出來的:x -2x+1=0 (x-1)=0(讓同學(xué)回答)

  需要變換的:2x +4x-8=0

  步驟:將二次項系數(shù)化為1,左右同除2得:x +2x-4=0

  將常數(shù)項移到等號右邊得:x +2x=4

  左右同時加上一次項系數(shù)一半的平方得:x +2x+1=4+1

  所以有方程為:(x+1)=5 形似 x=n

  然后用直接開平方解得x+1=±5 x=±5-1

  大家能聽懂嗎?現(xiàn)在我們一起來做一道練習(xí)題,2min 時間,大家一起報個答案給我!

  題目:1/2x-5x-1=0 答案:x=±+5

  大家都會做嗎?還需要講解詳細(xì)步驟嗎?

  (3)講完了直接開方法、配方法之后我們來講一個萬能的公式法。只要知道abc ,沒有公式法求不出來的解,當(dāng)然啦,除非是無解~

  首先,公式法里面的公式大家還記得嗎?

  x=(-b ±2-4ac )/2a

  這個公式是怎么來的呢?有同學(xué)知道的嗎?就是將一般式配方法得到的x 的表達(dá)式,大家記住,會用就可以了,如果有興趣可以課后試著用配方法進(jìn)行推導(dǎo),也歡迎課后找我探討~這個公式法用起來非常簡單,一找數(shù)、二代入、三化簡。 我們來做一道簡單的例題:

  3x -2x-4=0

  其中a=3,b=-2,c=-4

  帶入公式得:x=((-(-2))± 2) 2-4*(-4)*3/(2*3)

  化簡得:x1=(1-)/3 x2=(1+)/3

  同學(xué)們你們解對了嗎?

  使用公式法時要注意的點:系數(shù)的符號要看準(zhǔn)、代入和化簡要細(xì)心,不要馬失前蹄哈~

  (4)今天的第四種解方程的方法叫因式分解法。因式分解大家會嗎?好那今天由我來帶大家一起見識一下因式分解的'魅力!

  簡單來說,因式分解就是將多項式化為式子的乘積形式。

  比如說ab+ab 可以化成ab (1+a)的乘積形式。

  那么對于二元一次方程,我們的目標(biāo)是要將其化成(mx+a)*(nx+b)=0 這樣就可以解出x=-a/m x=-b/n

  我們一起做一個例題鞏固一下:4x +5x+1=0

  則可以化成4x +x+4x+1=0 x(4x+1)+(4x+1)=0 (x+1)(4x+1)=0

  所以有x=-1 x=-1/4

  同學(xué)們都能明白嗎?就是找出公因式,將多項式化為因式的乘積形式從而求解。 練習(xí)題:x -5x+6=0 x=2 x=3

  x-9=0 x=3 x=-3

  4、總結(jié):1min

  好,復(fù)習(xí)完了二元一次方程我們熟知它的概念。只含有一個未知數(shù)且未知數(shù)項最高次數(shù)為2的等式,叫做二元一次方程。我們還要會找abc 系數(shù),會用Δ=b-4ac 來判別方程實根的情況。還需要熟悉四種方程的解法,這是中考的重點考察內(nèi)容。當(dāng)然,具體用哪一種解題方法就需要結(jié)合具體的題目來選擇了。如果形式簡單可以直接用開平方則直接用開平方,否則首選因式分解法,再者選擇配方法,最后的底線是公式法~當(dāng)然每個人的習(xí)慣不一樣,熟悉的方法也不一樣,同學(xué)們可以自行選擇萬無一失的方法,像老師不到萬不得已絕對不用公式法,哈哈哈哈~好啦,上完這一個復(fù)習(xí)課希望大家都能有收獲!

  初中數(shù)學(xué)試講教案《一元二次方程復(fù)習(xí)》 2

  教學(xué)目標(biāo)

  知識與技能目標(biāo)

  1、構(gòu)建本章的部分知識框圖。

  2、復(fù)習(xí)一元二次方程的概念、解法。

  過程與方法

  1、通過對本章方程解法的復(fù)習(xí),進(jìn)一步提高學(xué)生的運算能力。

  2、在解一元二次方程的過程中體會轉(zhuǎn)化等數(shù)學(xué)思想。

  情感、態(tài)度與價值觀

  通過師生共同的活動,使學(xué)生在交流和反思的過程中建立本章的知識體系,從而體驗學(xué)習(xí)數(shù)學(xué)的成就感。

  教學(xué)重點

  1、一元二次方程的概念

  2、一元二次方程的四種解法:直接開平方法、配方法、公式法、因式分解法;

  教學(xué)難點

  解法的靈活選擇;例4和例5的'解法。

  教學(xué)過程

  一、創(chuàng)設(shè)情境

  導(dǎo)入新課

  問題:本章中,我們有哪些收獲?(教師點撥引導(dǎo)學(xué)生構(gòu)建本章部分知識框圖)

  二、師生互動

  共同探究

  1、復(fù)習(xí)概念

  例1

  例2

  2、四種解法

  (1)

  解法及其關(guān)系

 。2)

  根的形式

  x1=3

  x2=4

 。3)熟悉解法

  例3用四種解法分別解此方程

 。4)方法優(yōu)選

  3、方法補充

  例4

  4、解法糾錯

  例5

  解關(guān)于x的方程

  錯誤解法

  正確解法

  三、小結(jié)反思

  提煉思想

  我們有哪些收獲?解方程的思想方法是什么?

  四、布置作業(yè)

  鞏固提高

  初中數(shù)學(xué)試講教案《一元二次方程復(fù)習(xí)》 3

  一、教學(xué)目標(biāo)

 。ㄒ唬┲R目標(biāo)

  1、理解求解一元二次方程的實質(zhì)。

  2、掌握解一元二次方程的配方法。

 。ǘ┠芰δ繕(biāo)

  1、體會數(shù)學(xué)的轉(zhuǎn)化思想。

  2、能根據(jù)配方法解一元二次方程的一般步驟解一元二次方程。

 。ㄈ┣楦袘B(tài)度及價值觀

  通過用配方法將一元二次方程變形的過程,讓學(xué)生進(jìn)一步體會轉(zhuǎn)化的思想方法,并增強他們學(xué)習(xí)數(shù)學(xué)的興趣。

  二、教學(xué)重點

  配方法解一元二次方程的一般步驟

  三、教學(xué)難點

  具體用配方法的一般步驟解一元二次方程。

  四、知識考點

  運用配方法解一元二次方程。

  五、教學(xué)過程

 。ㄒ唬⿵(fù)習(xí)引入

  1、復(fù)習(xí):

  解一元一次方程的一般步驟:

 。1)去分母;

 。2)去括號;

 。3)移項;

 。4)合并同類項;

 。5)系數(shù)化為1。

  2、引入:

  二次根式的意義:若x2=a (a為非負(fù)數(shù)),則x叫做a的平方根,即x=±√a 。實際上,x2 =a(a為非負(fù)數(shù))就是關(guān)于x的一元二次方程,求x的平方根就是解一元二次方程。

 。ǘ┬抡n探究

  通過實際問題的解答,引出我們所要學(xué)習(xí)的知識點。通過問題吸引學(xué)生的注意力,引發(fā)學(xué)生思考。

  問題1:

  一桶某種油漆可刷的面積為1500dm李林用這桶油漆剛好刷完10個同樣的正方體形狀的盒子的全部外表面,你能算出盒子的棱長嗎?

  問題1重在引出用直接開平方法解一元二次方程。這一問題學(xué)生可通過“平方根的意義”的講解過程具體的解答出來,具體解題步驟:2解:設(shè)正方體的棱長為x dm,則一個正方體的表面積為6xdm

  列出方程:60x2=1500

  x2=25

  x=±5

  因為x為棱長不能為負(fù)值,所以x=5

  即:正方體的棱長為5dm。

  1、用直接開平方法解一元二次方程

 。1)定義:運用平方根的定義直接開方求出一元二次方程解。

 。2)備注:用直接開平方法解一元二次方程,實質(zhì)是把一個一元二次方程“降次”,轉(zhuǎn)化為兩個一元二次方程來求方程的根。

  問題2:

  要使一塊矩形場地的長比寬多6cm,并且面積為16O,場地的長和寬應(yīng)各為多少?

  問題2重在引出用配方法解一元二次方程。而問題2應(yīng)該大部分同學(xué)都不會,所以由我來具體的講解。主要通過與完全平方式對比逐步解這個方程。再由這個方程的求解過程師生共同總結(jié)出配方法解一元二次方程的一般步驟。讓學(xué)生加深映像。

  具體解題步驟:

  解:設(shè)場地寬x m,長(x +6)m。

  列方程:x(x +6)=16

  即:x2+6x-16=0

  x2+6x=16

  x2+6x+9=16+9

 。▁+3)2=25

  x+3=±5

  x+3=5x+3=-5

  x1=2,x2=-8

  2、配方法解一元二次方程

  (1)定義:通過配成完全平方的形式來解一元二次方程的方法。

  (2)配方法解一元二次方程一般步驟:

  一化:先將常數(shù)移到方程右邊,后將二次項系數(shù)化為1

  二配:方程左右兩端都加上一次項系數(shù)一半的平方

  三成式:將方程左邊化為一個含有未知數(shù)的完全平方式

  四開:直接開平方

  五寫:寫出方程的.解

  (三)應(yīng)用舉例

  針對每個知識點各舉了一個例子,每個例子有兩個方程,逐漸加深。讓學(xué)生更易接受。讓學(xué)生在例題中進(jìn)行思考和總結(jié)。具體的例1鏈接知識點1,例2鏈接知識點2。

  例1解方程

  (1)9x2-1=0;

  (2)x2+2x+1=16。

  解:(1)原方程變形為:9x2=1

  x2=1/9

  x=±1/3

  即x1=1/3,x2=-1/3

 。2)原方程變形為:(x+1)=16

  x+1=±4

  x1=3,x2=-5

  2例1講解完之后,我會讓學(xué)生思考:形如(ax +b) =c(a≠0;cR0)的一元二次方程的解。讓學(xué)生能夠從特殊的到一般的題目。

  例2用配方法解下列方程:

 。1)x2-3x-2=0(2)2x2-3x-6=0

  解:(1)移項x2-3x=2

  配方x2-3x+(3/2)2=2+(3/2)2

 。▁-3/2)2=17/4

  x-3/2=±√17/2

  x1= 3/2+√17/2,x2=3/2-√17/2

  (2)將二次項系數(shù)化為1

  x2-3/2x-3=0

  x2-3/2x=3

  x2-3/2x+(3/4)2=3+(3/4)2

  (x-3/4)2=57/16

  x-3/4=±√57/4

  x1= 3/4+√57/4,x2=3/4-√57/4

  (四)反饋練習(xí)

  了解學(xué)生知識的掌握程度,即時發(fā)現(xiàn)問題。而這道題目重在學(xué)生自己去發(fā)現(xiàn)錯誤,加深配方法解一元二次方程的一般步驟。從而突破這一重難點。練習(xí):

  觀察下列用配方法解方程2x2-4x+1=0的兩種解答是否正確,若不正確請你寫出正確的解答。

  解:(1)配方2x2-4x+4-4=1,即(2x-2)2=5

  所以,2x-2= √5或2x-2= -√5

  所以,x1= 1+ √5 /2,x2=1- √5 /2

 。2)系數(shù)化為1 x2-2x=1/2

  配方x2-2x+1=1/2即(x-1)2=1/2

  所以x-1=√2 /2或x-1=-√2 /2

  所以x1= 1+ √2 /2,x2=1- √2/2。

  六、課堂小結(jié)

  對本堂課的內(nèi)容進(jìn)行鞏固和反思。主要由學(xué)生歸納,老師補充總結(jié)。

  小結(jié):

  1、本節(jié)課主要學(xué)習(xí)了用配方法解一元二次方程,其中運用到了解一元一次方程,二次根式等方面的知識。

  2、重點理解和掌握配方法解一元二次方程一般步驟并會運用配方法解一元二次方程。

  七、布置作業(yè)

  對本堂課的知識進(jìn)行鞏固和提高。根據(jù)新課程標(biāo)準(zhǔn)“人人學(xué)習(xí)不同的數(shù)學(xué)”的理念,把作業(yè)分為必做題和選作題,給學(xué)生更大的空間。

  初中數(shù)學(xué)試講教案《一元二次方程復(fù)習(xí)》 4

  【教材分析】

  一元二次方程是中學(xué)數(shù)學(xué)的主要內(nèi)容之一,在初中數(shù)學(xué)中占有重要地位。通過一元二次方程的學(xué)習(xí),可以對已學(xué)過實數(shù)、一元一次方程、因式分解、二次根式等知識加以鞏固,同時又是今后學(xué)習(xí)可化為一元二次方程的其它高元方程、一元二次不等式、二次函數(shù)等知識的基礎(chǔ)。此外,學(xué)習(xí)一元二次方程對其它學(xué)科有重要意義。本節(jié)課是一元二次方程的概念,是通過豐富的實例,讓學(xué)生建立一元二次方程,并通過觀察歸納出一元二次方程的概念。

  【教學(xué)目標(biāo)】

  1、理解一元二次方程的概念,能熟練地把一元二次方程整理成一般形式(≠0)并知道各項及其系數(shù)。

  2、在分析、揭示實際問題的數(shù)量關(guān)系并把實際問題轉(zhuǎn)化為數(shù)學(xué)模型(一元二次方程)的過程中使學(xué)生感受方程是刻畫現(xiàn)實世界數(shù)量關(guān)系的工具,增加對一元二次方程的進(jìn)一步認(rèn)識。

  【教學(xué)重點與難點】

  理解一元二次方程的概念及一般形式,會正確識別一般式中的“項”及“系數(shù)”。

  【教法、學(xué)法】

  因為學(xué)生已經(jīng)學(xué)習(xí)了一元一次方程及相關(guān)概念,所以本節(jié)課我主要采用啟發(fā)式、類比法教學(xué)。教學(xué)中力求體現(xiàn)“問題情景---數(shù)學(xué)模型-----概念歸納”的模式。本節(jié)課借助多媒體輔助教學(xué),指導(dǎo)學(xué)生從具體的問題情景中抽象出數(shù)學(xué)問題,建立數(shù)學(xué)方程,從而突破難點。同時學(xué)生在現(xiàn)實的生活情景中,經(jīng)歷數(shù)學(xué)建模,經(jīng)過自主探索和合作交流的學(xué)習(xí)過程,產(chǎn)生積極的情感體驗,進(jìn)而創(chuàng)造性地解決問題,有效發(fā)揮學(xué)生的思維能力。

  【教學(xué)過程】

  一、復(fù)習(xí)舊知,類比新知

  1、一元一次方程的概念

  像這樣的等號兩邊都是整式,只含有一個未知數(shù)(一元),并且未知數(shù)的次數(shù)是1(一次)的方程叫做一元一次方程

  2、一般形式:

  是常數(shù)且

  設(shè)計意圖:復(fù)習(xí)一元一次方程,讓學(xué)生回憶起一元一次方程的概念,回憶起“項”及“系數(shù)”的概念,通過類比,讓學(xué)生能更好的理解一元二次方程的概念。

  二、生活情境,自主學(xué)習(xí)

 。1)正方形桌面的面積是2m,設(shè)正方形桌面的邊長是x m,可得方程

  (2)矩形花圃一面靠墻,另外三面所圍的柵欄的總長度是19米。如果花圃的面積是24m2,設(shè)花圃的寬是x m則花圃的長是m,可得方程

 。3)一張面積是600cm2的長方形紙片,把它的一邊剪短10cm,恰好得到一個正方形。設(shè)這個正方形的邊長是x cm,可得方程

 。4)長5米的梯子斜靠在墻上,梯子的'底端與墻的距離比梯子的頂端到地面的距離多1m,設(shè)梯子的底端到墻面的距離是x m,可得方程

  設(shè)計意圖:因為數(shù)學(xué)來源與生活,所以以學(xué)生的實際生活背景為素材創(chuàng)設(shè)情景,易于被學(xué)生接受、感知。讓學(xué)生從實際問題中提煉出數(shù)學(xué)問題,初步培養(yǎng)學(xué)生的空間概念和抽象能力。情景分析中學(xué)生自然會想到用方程來解決問題,但所列的方程不是以前學(xué)過的,從而激發(fā)學(xué)生的求知欲望,順利地進(jìn)入新課。

  三、探究學(xué)習(xí):

  1、概念得出

  討論交流:以上所列方程有哪些共同特征?

  設(shè)計意圖:英國一位著名的數(shù)學(xué)教育心理學(xué)家曾說:概念的教學(xué)要從大量實例出發(fā),通過實例幫助完成定義,而不是教定義。讓學(xué)生充分感受所列方程的特點,再通過類比的方法得到定義,從而達(dá)到真正理解定義的目的。

  2、鞏固概念

  下列方程中那些是一元二次方程。

  設(shè)計意圖:

  這組練習(xí)目的在于鞏固學(xué)生對一元二次方程定義中3個特征的理解。題目的設(shè)置,目的在于進(jìn)一步加深學(xué)生對定義的掌握,提高學(xué)生對變式的理解能力.此環(huán)節(jié)采取搶答的形式,提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣和積極性。

  3、一元二次方程的一般形式:

  設(shè)計意圖:此環(huán)節(jié)讓學(xué)生通過自主探究,類比一元一次方程一般形式,得出一元二次方程一般形式和項,系數(shù)的概念,從而達(dá)到真正理解并掌握的目的.

  4.典型例題

  例將下列方程化為一元二次方程的一般形式,并分別指出它們的二次項系數(shù)、一次項系數(shù)和常數(shù)項

  設(shè)計意圖:此題設(shè)置的目的在于加深學(xué)生對一般形式的理解。

  5.鞏固練習(xí)

  把下列方程化成一元二次方程的一般形式,并寫出它的二次項系數(shù)、一次項系數(shù)和常數(shù)項

  設(shè)計意圖:此題設(shè)置的目的在于加深學(xué)生對一般形式的理解

  6、拓展應(yīng)用

  (1)、若是關(guān)于x的一元二次方程,則( )

  A、p為任意實數(shù)B、p=0 C、p≠0 D、p=0或1

 。2)、若關(guān)于x的方程mx

  -2x+1=2x(x-1)是一元二次方程,那么m的取值范圍是

  (3)、若方程是關(guān)于x的一元二次方程,則m的值為

  設(shè)計意圖:此題讓學(xué)生進(jìn)行思考,討論,讓學(xué)生進(jìn)行講解,教師作適當(dāng)歸納,可留疑,讓學(xué)生課下思考。此題需進(jìn)行分類討論,開拓學(xué)生思維,體現(xiàn)數(shù)學(xué)的嚴(yán)謹(jǐn)性。

  7.課堂小結(jié)

  設(shè)計意圖:小結(jié)反思中,不同學(xué)生有不同的體會,要尊重學(xué)生的個體差異,激發(fā)學(xué)生主動參與意識,為每個學(xué)生都創(chuàng)造了數(shù)學(xué)活動中獲得活動經(jīng)驗的機會。

  【課后作業(yè)】

  1、下列方程中哪些是一元二次方程?試說明理由。

  2、將下列方程化為一般形式,并分別指出它們的二次項系數(shù)、一次項系數(shù)和常數(shù)項:

  初中數(shù)學(xué)試講教案《一元二次方程復(fù)習(xí)》 5

  教學(xué)內(nèi)容

  一元二次方程概念及一元二次方程一般式及有關(guān)概念

  教學(xué)目標(biāo)

  了解一元二次方程的概念;一般式ax2+bx+c=0(a≠0)及其派生的概念;應(yīng)用一元二次方程概念解決一些簡單題目

  1.通過設(shè)置問題,建立數(shù)學(xué)模型,模仿一元一次方程概念給一元二次方程下定義

  2.一元二次方程的一般形式及其有關(guān)概念

  3.解決一些概念性的題目

  4.態(tài)度、情感、價值觀

  4.通過生活學(xué)習(xí)數(shù)學(xué),并用數(shù)學(xué)解決生活中的問題來激發(fā)學(xué)生的學(xué)習(xí)熱情

  重難點關(guān)鍵

  1.重點:一元二次方程的概念及其一般形式和一元二次方程的有關(guān)概念并用這些概念解決問題

  2.難點關(guān)鍵:通過提出問題,建立一元二次方程的數(shù)學(xué)模型,再由一元一次方程的概念遷移到一元二次方程的概念

  教學(xué)過程

  一、復(fù)習(xí)引入

  學(xué)生活動:列方程

  問題(1)《九章算術(shù)》“勾股”章有一題:“今有戶高多于廣六尺八寸,兩隅相去適一丈,問戶高、廣各幾何?”

  大意是說:已知長方形門的高比寬多6尺8寸,門的對角線長1丈,那么門的高和寬各是多少?

  如果假設(shè)門的高為x尺,那么,這個門的寬為_______尺,根據(jù)題意,得________

  整理、化簡,得:__________

  問題(2)如圖,如果 ,那么點C叫做線段AB的黃金分割點

  如果假設(shè)剪后的正方形邊長為x,那么原來長方形長是________,寬是_____,根據(jù)題意,得:_______

  整理,得:________

  老師點評并分析如何建立一元二次方程的.數(shù)學(xué)模型,并整理

  二、探索新知

  學(xué)生活動:請口答下面問題

 。1)上面三個方程整理后含有幾個未知數(shù)?

  (2)按照整式中的多項式的規(guī)定,它們最高次數(shù)是幾次?

 。3)有等號嗎?或與以前多項式一樣只有式子?

  (1)都只含一個未知數(shù)x;

 。2)它們的最高次數(shù)都是2次的;

 。3)都有等號,是方程。

  因此,像這樣的方程兩邊都是整式,只含有一個未知數(shù)(一元),并且未知數(shù)的最高次數(shù)是2(二次)的方程,叫做一元二次方程。

  一般地,任何一個關(guān)于x的一元二次方程,經(jīng)過整理,都能化成如下形式ax2+bx+c=0(a≠0)。這種形式叫做一元二次方程的一般形式。

  一個一元二次方程經(jīng)過整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次項,a是二次項系數(shù);bx是一次項,b是一次項系數(shù);c是常數(shù)項。

  例1.將方程(8-2x)(5-2x)=18化成一元二次方程的一般形式,并寫出其中的二次項系數(shù)、一次項系數(shù)及常數(shù)項。

  分析:一元二次方程的一般形式是ax2+bx+c=0(a≠0)。因此,方程(8-2x)(5-2x)=18必須運用整式運算進(jìn)行整理,包括去括號、移項等。

  解:去括號,得:

  40-16x-10x+4x2=18

  移項,得:4x2-26x+22=0

  其中二次項系數(shù)為4,一次項系數(shù)為-26,常數(shù)項為22。

  例2.(學(xué)生活動:請二至三位同學(xué)上臺演練) 將方程(x+1)2+(x-2)(x+2)=1化成一元二次方程的一般形式,并寫出其中的二次項、二次項系數(shù);一次項、一次項系數(shù);常數(shù)項。

  分析:通過完全平方公式和平方差公式把(x+1)2+(x-2)(x+2)=1化成ax2+bx+c=0(a≠0)的形式。

  解:去括號,得:

  x2+2x+1+x2-4=1

  移項,合并得:2x2+2x-4=0

  其中:二次項2x2,二次項系數(shù)2;一次項2x,一次項系數(shù)2;常數(shù)項-4。

  三、鞏固練習(xí)

  教材P32 練習(xí)1、2

  四、應(yīng)用拓展

  例3.求證:關(guān)于x的方程(2-8+17)x2+2x+1=0,不論取何值,該方程都是一元二次方程。

  分析:要證明不論取何值,該方程都是一元二次方程,只要證明2-8+17≠0即可。

  證明:2-8+17=(-4)2+1

  ∵(-4)2≥0

  ∴(-4)2+1>0,即(-4)2+1≠0

  ∴不論取何值,該方程都是一元二次方程。

  五、歸納小結(jié)(學(xué)生總結(jié),老師點評)

  本節(jié)課要掌握:

 。1)一元二次方程的概念;

  (2)一元二次方程的一般形式ax2+bx+c=0(a≠0)和二次項、二次項系數(shù),一次項、一次項系數(shù),常數(shù)項的概念及其它們的運用。

  六、布置作業(yè)

  初中數(shù)學(xué)試講教案《一元二次方程復(fù)習(xí)》 6

  學(xué)習(xí)目標(biāo)

  1、一元二次方程的求根公式的推導(dǎo)

  2、會用求根公式解一元二次方程

  3、通過運用公式法解一元二次方程的訓(xùn)練,提高學(xué)生的運算能力,養(yǎng)成良好的運算習(xí)慣

  學(xué)習(xí)重、難點

  重點:一元二次方程的求根公式

  難點:求根公式的條件:b2 -4ac≥0

  學(xué)習(xí)過程:

  一、自學(xué)質(zhì)疑:

  1、用配方法解方程:2x2-7x+3=0

  2、用配方解一元二次方程的步驟是什么?

  3、用配方法解一元二次方程,計算比較麻煩,能否研究出一種更好的方法,迅速求得一元二次方程的實數(shù)根呢?

  二、交流展示:

  剛才我們已經(jīng)利用配方法求解了一元二次方程,那你能否利用配方法的基本步驟解方程ax2+bx+c=0(a≠0)呢?

  三、互動探究:

  一般地,對于一元二次方程ax2+bx+c=0

  (a≠0),當(dāng)b2-4ac≥0時,它的根是

  用求根公式解一元二次方程的方法稱為公式法

  由此我們可以看到:一元二次方程ax2+bx+c=0(a≠0)的根是由方程的系數(shù)a、b、c確定的因此,在解一元二次方程時,先將方程化為一般形式,然后在b2-4ac≥0的前提條件下,把各項系數(shù)a、b、c的值代入,就可以求得方程的根。

  注:(1)把方程化為一般形式后,在確定a、b、c時,需注意符號。

  (2)在運用求根公式求解時,應(yīng)先計算b2-4ac的值;當(dāng)b2-4ac≥0時,可以用公式求出兩個不相等的實數(shù)解;當(dāng)b2-4ac<0時,方程沒有實數(shù)解.就不必再代入公式計算了

  四、精講點撥:

  例1、課本例題

  總結(jié):其一般步驟是:

  (1)把方程化為一般形式,進(jìn)而確定a、b,c的值.(注意符號)

  (2)求出b2-4ac的'值.(先判別方程是否有根)

  (3)在b2-4ac≥0的前提下,把a、b、c的直代入求根公式,求出 的值,最后寫出方程的根.

  例2、解方程:

  (1)2x2-7x+3=0 (2) x2-7x-1=0

  (3) 2x2-9x+8=0 (4) 9x2+6x+1=0

  五、糾正反饋:

  做書上第P90練習(xí)。

  六、遷移應(yīng)用:

  例3、一個直角三角形三邊的長為三個連續(xù)偶數(shù),求這個三角形的三條邊長。

  例4、求方程 的兩根之和以及兩根之積

  初中數(shù)學(xué)試講教案《一元二次方程復(fù)習(xí)》 7

  教學(xué)目標(biāo):

  1、經(jīng)歷抽象一元二次方程概念的過程,進(jìn)一步體會是刻畫現(xiàn)實世界的有效數(shù)學(xué)模型

  2、理解什么是一元二次方程及一元二次方程的一般形式。

  3、能將一元二次方程轉(zhuǎn)化為一般形式,正確識別二次項系數(shù)、一次項系數(shù)及常數(shù)項。

  教學(xué)重點

  1、一元二次方程及其它有關(guān)的概念。

  2、利用實際問題建立一元二次方程的數(shù)學(xué)模型。

  教學(xué)難點

  1、建立一元二次方程實際問題的數(shù)學(xué)模型

  2、把一元二次方程化為一般形式

  教學(xué)方法:

  指導(dǎo)自學(xué),自主探究

  教學(xué)過程:

 。▽W(xué)生通過導(dǎo)學(xué)提綱,了解本節(jié)課自己應(yīng)該掌握的內(nèi)容)

  一、自主探索:(學(xué)生通過自學(xué),經(jīng)歷思考、討論、分析的過程,最終形成一元二次方程及其有關(guān)概念)

  1、請認(rèn)真完成課本P39—40議一議以上的內(nèi)容;化簡上述三個方程。

  2、你發(fā)現(xiàn)上述三個方程有什么共同特點?

  你能把這些特點用一個方程概括出來嗎?

  3、請同學(xué)看課本40頁,理解記憶一元二次方程的概念及有關(guān)概念

  你覺得理解這個概念要掌握哪幾個要點?你還掌握了什么?

  二、學(xué)以致用:(通過練習(xí),加深學(xué)生對一元二次方程及其有關(guān)概念的理解與把握)

 。、下列哪些是一元二次方程?哪些不是?

 、佗冖

  ④x2+2x-3=1+x2 ⑤ax2+bx+c=0

  2、判斷下列方程是不是關(guān)于x的一元二次方程,如果是,寫出它的二次項系數(shù)、一次項系數(shù)和常數(shù)項。

 。1)3-6x2=0(2)3x(x+2)=4(x-1)+7(3)(2x+3)2=(x+1)(4x-1)

  3、若關(guān)于x的方程(k-3)x2+2x-1=0是一元二次方程,則k的值是多少?

  4、關(guān)于x的方程(k2-1)x2+2(k+1)x+2k+2=0,在什么條件下它是一元二次方程?在什么條件下它是一元一次方程?

  5、以-2、3、0三個數(shù)作為一個一元二次方程的系數(shù)和常數(shù)項,請你寫出滿足條件的不同的一元二次方程?

  三、反思:(學(xué)生,進(jìn)一步加深本節(jié)課所學(xué)內(nèi)容)

  這節(jié)課你學(xué)到了什么?

  四、自查自省:(通過當(dāng)堂小測,及時發(fā)現(xiàn)問題,及時應(yīng)對)

  1、下列方程中是一元二次方程的有( )

 。、1個B、2個 C、3個D、4個

 。1)(2)(3)(4)(5)(6)2、將方程-5x2+1=6x化為一般形式為____________________,其二次項是_________,系數(shù)為_______,一次項系數(shù)為______,常數(shù)項為______。

  3、關(guān)于x的方程(m2-4)x2+(m+2)x+2m+3=0,當(dāng)m__________時,是一元二次方程;當(dāng)m__________時,是一元一次方程。

  作業(yè):必做題:習(xí)題7.1

  選做題:(挑戰(zhàn)自我)p41隨堂練習(xí)

  1、已知關(guān)于的方程是一元二次方程,則為何值?

  2、當(dāng)m為何值時,方程(m+1)x+1+27mx+5=0是關(guān)x于的一元二次方程?

  3、關(guān)于的一元二次方程(m-1)x2+x+m2-1=0有一根為,則的值多少?

  4、某校為了美化校園,準(zhǔn)備在一塊長32米,寬20米的長方形場地上修筑若干條道路,余下部分作草坪,并請全校同學(xué)參與設(shè)計,現(xiàn)在有兩位學(xué)生各設(shè)計了一種(如圖),根據(jù)兩種設(shè)計各列出方程,求圖中道路的寬分別是多少,使圖(1),(2)的草坪面積為540米2?

 。1)(2)

  板書設(shè)計:一元二次方程

  定義:一個未知數(shù)整式方程可以化為

  一般形式ax2+bx+c=0(a、b、c為常數(shù),a≠0)

  二次項一次項常數(shù)項

  系數(shù)為a系數(shù)為b

  教學(xué)反思

  這次我參加了區(qū)里組織的優(yōu)質(zhì)

  課比賽,這次的優(yōu)質(zhì)課采用市里要求的1/3模式,這對于我們來說具有一定的挑戰(zhàn)性。所謂“1/3模式”,就是把課堂教學(xué)時間大致分為3個部分,1/3的時間個人自主學(xué)習(xí),1/3的時間小組合作學(xué)習(xí),1/3的時間全班交流討論。在1/3模式中,整個教學(xué)過程由教師和學(xué)生共同參與,每個環(huán)節(jié)1/3的時間只是大致的劃分,可根據(jù)學(xué)習(xí)內(nèi)容靈活安排。這就對教師提出了較高的要求。

  首先要準(zhǔn)備好學(xué)案。學(xué)案就是學(xué)生學(xué)習(xí)的依據(jù)。在學(xué)案里,教師要提出明確的學(xué)習(xí)要求。學(xué)習(xí)要求可包括以下方面:完成學(xué)習(xí)任務(wù)的時間、學(xué)習(xí)內(nèi)容的范圍、完成學(xué)習(xí)任務(wù)所要達(dá)到的程度、自主學(xué)習(xí)成果展現(xiàn)的形式等。這就要求教師要提前考慮周全,對于學(xué)生學(xué)習(xí)的要求要一次性提出,內(nèi)容上有梯度。學(xué)生自主學(xué)習(xí)時,教師要深入學(xué)生當(dāng)中,觀察學(xué)生的學(xué)習(xí)狀況,檢查學(xué)習(xí)任務(wù)完成的情況,有針對性的指導(dǎo)和幫助教師對自主學(xué)習(xí)方法和途徑的指導(dǎo)要適度,既要滿足學(xué)生完成學(xué)習(xí)任務(wù)的需要,又不能擠占學(xué)生自主探究的空間

  其次,學(xué)習(xí)氛圍是合作學(xué)習(xí)成功的關(guān)鍵之一,教師要營造安全的心理環(huán)境、充裕的時空環(huán)境、熱情的`幫助環(huán)境、真誠的激勵環(huán)境,只就要求教師在語言上也要有較高水平,會發(fā)動學(xué)生,會調(diào)動學(xué)生的積極性,讓課堂氣氛活躍起來,讓學(xué)生充分發(fā)揮自己的水平。

  再是,由于課堂上主要是以學(xué)生為主。這就要求教師盡量少講,要充當(dāng)好組織者、引導(dǎo)者、傾聽者的角色,不要急于發(fā)表自己的觀點,只要學(xué)生能講的教師就不要講,要避免因為教師呈現(xiàn)自己的觀點而打破學(xué)生的討論。學(xué)生說完的東西,如果沒有問題,教師就不要重復(fù)。教師對學(xué)習(xí)內(nèi)容要點的講解要有的放矢,能起到畫龍點睛的作用。要在學(xué)生原有的水平上進(jìn)行提升,有助于學(xué)生加深對知識的理解。

  我們只有在教學(xué)中不斷的學(xué)習(xí),不斷的改進(jìn)自己,才能保證我們的課堂很精彩,是名副其實的優(yōu)質(zhì)課。

  初中數(shù)學(xué)試講教案《一元二次方程復(fù)習(xí)》 8

  教學(xué)內(nèi)容

  根據(jù)面積與面積之間的關(guān)系建立一元二次方程的數(shù)學(xué)模型并解決這類問題.

  教學(xué)目標(biāo)

  掌握面積法建立一元二次方程的數(shù)學(xué)模型并運用它解決實際問題.

  利用提問的方法復(fù)習(xí)幾種特殊圖形的面積公式來引入新課,解決新課中的問題.

  重難點關(guān)鍵

  1.重點:根據(jù)面積與面積之間的等量關(guān)系建立一元二元方程的數(shù)學(xué)模型并運用它解決實際問題.

  2.難點與關(guān)鍵:根據(jù)面積與面積之間的等量關(guān)系建立一元二次方程的數(shù)學(xué)模型.

  教學(xué)過程

  一、復(fù)習(xí)引入

  1.直角三角形的面積公式是什么?一般三角形的面積公式是什么呢?

  2.正方形的面積公式是什么呢?長方形的面積公式又是什么?

  3.梯形的面積公式是什么?

  4.菱形的面積公式是什么?

  5.平行四邊形的面積公式是什么?

  6.圓的面積公式是什么?

  二、探索新知

  現(xiàn)在,我們根據(jù)剛才所復(fù)習(xí)的.面積公式來建立一些數(shù)學(xué)模型,解決一些實際問題

  例1.某林場計劃修一條長750m,斷面為等腰梯形的渠道,斷面面積為1.6m2,上口寬比渠深多2m,渠底比渠深多0.4m

 。1)渠道的上口寬與渠底寬各是多少?

 。2)如果計劃每天挖土48m3,需要多少天才能把這條渠道挖完?

  分析:因為渠深最小,為了便于計算,不妨設(shè)渠深為xm,則上口寬為x+2,渠底為x+0.4,那么,根據(jù)梯形的面積公式便可建模

  解:(1)設(shè)渠深為xm

  則渠底為(x+0.4)m,上口寬為(x+2)m

  依題意,得: (x+2+x+0.4)x=1.6

  整理,得:5x2+6x-8=0

  解得:x1= =0.8m,x2=-2(舍)

  ∴上口寬為2.8m,渠底為1.2m.

 。2) =25天

  答:渠道的上口寬與渠底深各是2.8m和1.2m;需要25天才能挖完渠道

  例2.如圖,要設(shè)計一本書的封面,封面長27cm,寬21cm,正中央是一個與整個封面長寬比例相同的矩形,如果要使四周的彩色邊襯所占面積是封面面積的四分之一,上、下邊襯等寬,左、右邊襯等寬,應(yīng)如何設(shè)計四周邊襯的寬度(精確到0.1cm)?

  初中數(shù)學(xué)試講教案《一元二次方程復(fù)習(xí)》 9

  教材分析:

  1.本節(jié)以生活中的實際問題為背景,引出一元二次方程的概念,讓學(xué)生掌握一元二次方程的特點,歸納出一元二次方程的一般形式,給出一元二次方程的根的概念,并指出一元二次方程的根不唯一。本節(jié)內(nèi)容是在前面所學(xué)方程、一元一次方程、整式、方程的解的基礎(chǔ)上進(jìn)行學(xué)習(xí),也是后面學(xué)習(xí)二次函數(shù)的一個基礎(chǔ)。

  2.這些概念是全章后繼內(nèi)容的基礎(chǔ)。

  3.讓學(xué)生體會數(shù)學(xué)來源于生活,又服務(wù)于生活的基本思想。

  學(xué)情分析:

  1.授課班級學(xué)生基礎(chǔ)較差,學(xué)生成績參差不齊,差生較多。教學(xué)中應(yīng)給予充分思考的時間,注意講練結(jié)合,以學(xué)生為本,體現(xiàn)生本課堂的理念。

  2.該班級學(xué)生在平時訓(xùn)練中已經(jīng)形成了良好的合作精神和合作氣氛,可以充分發(fā)揮合作的優(yōu)勢,從而充分調(diào)動學(xué)生主動性和積極性,使課堂氣氛活躍,讓學(xué)生在愉快的環(huán)境中學(xué)習(xí)。

  3.作為該班的班主任,同時又擔(dān)任該班的數(shù)學(xué)教學(xué),對學(xué)生學(xué)習(xí)情況有比較深入地了解,在解決具體問題的時候可以兼顧不同能力的學(xué)生,充分調(diào)動學(xué)生的積極性,在練習(xí)題的設(shè)計上要針對學(xué)生的差異采取分層設(shè)計的方法,著重加強對學(xué)生的雙基訓(xùn)練。

  教學(xué)目標(biāo):

  一、知識與技能:

  1.理解一元二次方程的概念,能判斷一個方程是一元二次方程。

  2.掌握一元二次方程的一般形式,正確認(rèn)識二次項系數(shù)、一次項系數(shù)及常數(shù)項

  二、過程與方法:

  1.引導(dǎo)學(xué)生分析實際問題中的數(shù)量關(guān)系,組織學(xué)生討論,讓學(xué)生類比、抽象出一元二次方程的概念。

  2.培養(yǎng)獨立思考,合作交流學(xué),分析問題,解決問題的能力。

  三、情感態(tài)度與價值觀:

  1.培養(yǎng)學(xué)生主動探究知識、自主學(xué)習(xí)和合作交流的意識

  2.激發(fā)學(xué)生學(xué)數(shù)學(xué)的興趣,體會學(xué)數(shù)學(xué)的快樂,培養(yǎng)用數(shù)學(xué)的意識

  3.讓學(xué)生體會數(shù)學(xué)來源于生活,又服務(wù)于生活的.基本思想,從而意識到數(shù)學(xué)在生活中的作用。

  教學(xué)重點:

  一元二次方程的概念及一般形式,利用概念解決實際問題。

  教學(xué)難點:

  1.由實際問題向數(shù)學(xué)問題的轉(zhuǎn)化過程

  2.正確識別一般式中的“項”及“系數(shù)”

  3.一元二次方程的特點,如何判斷一個方程是一元二次方程。

  教學(xué)過程:

  一、創(chuàng)設(shè)情境,引入新課

  1.問題1:廣安區(qū)為增加農(nóng)民收入,需要調(diào)整農(nóng)作物種植結(jié)構(gòu),計劃無公害蔬菜的產(chǎn)量比翻一番,要實現(xiàn)這一目標(biāo),和20無公害蔬菜產(chǎn)量的年平均增長率是多?(通過放幻燈片引入)

  設(shè)無公害蔬菜產(chǎn)量的年平均增長率為x,20的產(chǎn)量為a(a≠0),翻一番的意思就是a變?yōu)?a,那么

  (1)用代數(shù)式表示20的產(chǎn)量;

  (2)年蔬菜的產(chǎn)量比年增加了2x,對嗎?為什么?你能用代數(shù)式表示出來嗎?

  學(xué)生思考交流得出方程a(1+x)2=2a

  整理得,x2+2x-1=0…………①

  2.通過幻燈片引入情境,提出問題:

  問題2:廣安市政府在一塊寬200m、長320m的矩形廣場上,修筑寬相等的三條小路(兩條縱向、一條橫向,縱向與橫向垂直),把矩形空地分成大小一樣的6塊,建成小花壇,要使花壇的總面積為57000m2,問小路的寬應(yīng)為多?

  設(shè)小路的寬為x m,則橫向小路的面積如何表示?縱向的呢?重疊部分的面積是多?小路所占的面積用x的代數(shù)式如何表示?

  這個問題的相等關(guān)系是什么?

  320×200-(320x+2×200x-2x2)=57000

  整理得x2-36x+35=0

  誰還能換一種思路考慮這個問題?

  把6個小花壇拼起來是一個多長多寬的矩形,由此你會得出什么樣的方程?

  (320-2x)(200-x)=57000

  整理得x2-36x+35=0…………②

  比較一下,哪種方法更巧妙?

  3.通過幻燈片引入情景。問題3:廣安重百商場銷售某品牌服裝,若每件盈利50元,則每月可銷售100件。若每件降價1元,則每月可多賣出5件,若每月要盈利6000元,則商場決定每件服裝降價多?

  設(shè)每件降價x元,則現(xiàn)在的盈利為(50-x)元,降價后銷售量為(100+5x)件?闪蟹匠虨椋(50-x)(100+5x)=6000

  初中數(shù)學(xué)試講教案《一元二次方程復(fù)習(xí)》 10

  一、教學(xué)目標(biāo)

  1、知識與技能目標(biāo):認(rèn)識一元二次方程,并能分析簡單問題中的數(shù)量關(guān)系列出一元二次方程。

  2、過程與方法:學(xué)生通過觀察與模仿,建立起對一元二次方程的感性認(rèn)識,獲得對代數(shù)式的初步經(jīng)驗,鍛煉抽象思維能力。

  3、情感態(tài)度與價值觀:學(xué)生在獨立思考的過程中,能將生活中的經(jīng)驗與所學(xué)的知識結(jié)合起來,形成實事求是的態(tài)度以及進(jìn)行質(zhì)疑和獨立思考的習(xí)慣。

  二、教學(xué)重難點

  重點:理解一元二次方程的意義,能根據(jù)題目列出一元二次方程,會將不規(guī)則的一元二次方程化成標(biāo)準(zhǔn)的一元二次方程。

  難點:找對題目中的數(shù)量關(guān)系從而列出一元二次方程。

  三、教學(xué)過程

  (一)導(dǎo)入新課

  師:同學(xué)們我們就要開始學(xué)習(xí)一元二次方程了,在開始講新課之前,我們首先來看一看第二十二章的這張圖片,圖片上有一個銅雕塑,有哪位同學(xué)能告訴我這是誰嗎?

  生:老師,這是雷鋒叔叔。

  師:對,這是遼寧省撫順市雷鋒紀(jì)念館前的雷鋒雕像,雷鋒叔叔一生樂于助人,奉獻(xiàn)了自己方便了他人,所以即使他去世了,也活在人們心中,所以人們才給他做一個雕塑紀(jì)念他,同學(xué)們是不是也要向雷鋒叔叔學(xué)習(xí)?

  生:是的老師。

  師:可是原來紀(jì)念館的工作人員在建造這座雕像的時候曾經(jīng)遇到了一個問題,也就是圖片下面的'這個問題,同學(xué)們想不想為他們解決這個問題呢?

  生:想。

  師:同學(xué)們也都很樂于助人,好那我們看一看這個問題是什么,然后帶著這個問題開始我們今天的學(xué)習(xí)一元二次方程。

  (二)新課教學(xué)

  師:我們來看到這個題目,要設(shè)計一座2m高的人體雕像,使雕像的上部(腰以上)與下部(腰以下)的高度比,等于下部與全部(全身)的高度比,雕像的下部應(yīng)設(shè)計為全高?同學(xué)們用AC來表示上部,BC來表示下部先簡單列一下這個比例關(guān)系,待會老師下去看看同學(xué)們的式子。

  (下去巡視)

  (三)小結(jié)作業(yè)

  師:今天大家學(xué)習(xí)了一元二次方程,同學(xué)們回去還要加強鞏固,做練習(xí)題的1、2(2)題。

  四、板書設(shè)計

  五、教學(xué)反思

【初中數(shù)學(xué)試講教案《一元二次方程復(fù)習(xí)》】相關(guān)文章:

小學(xué)數(shù)學(xué)試講教案09-27

初中數(shù)學(xué)總復(fù)習(xí)教案07-20

小學(xué)數(shù)學(xué)試講備課教案09-27

《一元二次方程》數(shù)學(xué)教案(通用11篇)08-29

數(shù)學(xué)一元二次方程公式03-25

《一元二次方程》教案及反思11-02

小學(xué)數(shù)學(xué)面試試講教案08-01

高中數(shù)學(xué)試講教案09-28

《一元二次方程復(fù)習(xí)課》教學(xué)反思(通用5篇)09-13

實際問題與一元二次方程的教案06-21