男人天堂日韩,中文字幕18页,天天伊人网,成人性生交大片免费视频

圓周角教案設計及反思

時間:2021-06-12 20:38:54 教案 我要投稿

圓周角教案設計及反思

  教材依據(jù)

圓周角教案設計及反思

  圓周角是新課標人教版九年級數(shù)學上冊第二十四章第一節(jié)圓的有關性質的重要內容,本節(jié)內容依據(jù)新人教版九年級《課程標準》和《教師教學用書》及《初中數(shù)學新教材詳解》。

  設計思想

  本節(jié)課是在學習了圓心角的定義、性質定理和推論的基礎上,由生活實例引出圓周角,類比圓心角認識圓周角,類比圓心角的性質探究圓周角定理,精選例題及習題對本節(jié)內容進行遷移應用。

  在教學過程中本著“以人為本,讓課堂變?yōu)閷W堂,把時間和空間更多地留給學生”為原則,注重學生的實踐活動,通過讓學生作圖、度量、分析、猜想、驗證得出結論,教學過程中充分利用學生已有的認知水平,由淺入深、逐層遞進,并能適時地應用直觀教具引導學生運用分類討論及轉化的數(shù)學思想對圓周角定理進行證明,化解本節(jié)課的難點。這樣學生易于接受新知識,也能很快地理解并掌握圓周角定理的內容,同時給學生自主探索留有很大空間,讓學生在實踐探究、合作交流活動中,親身體驗應用數(shù)學的樂趣和成功的喜悅,發(fā)展學生的思維,培養(yǎng)學生的多種學習能力。

  教學目標

  1.知識與技能

  (1)理解圓周角的概念,掌握圓周角定理,并運用它進行簡單的論證和計算。

  (2)經歷圓周角定理的證明,使學生初步學會運用分類討論的數(shù)學思想和轉化的數(shù)學思想解決問題。

  2.過程與方法

  采用“活動與探究”的學習方法,由感性到理性、由簡單到復雜、由特殊到一般的思維過程研究新知識,引導學生理解知識的發(fā)生發(fā)展過程,并使學生能應用所學知識解決簡單的實際問題。

  3.情感、態(tài)度與價值觀

  通過學生探索圓周角定理,自主學習、合作交流的學習過程,激發(fā)學生的好奇心和求知欲,并在運用數(shù)學知識解答問題的活動中獲取成功的體驗,建立學習數(shù)學的自信心。

  教學重點

  圓周角的概念、圓周角定理及應用。

  教學難點

  圓周角定理的探究過程及定理的應用。

  教學準備

  學生:圓規(guī)、量角器、尺子

  教師:多媒體課件、活動教具

  教學過程

  一、 創(chuàng)設情景,引入新課

  大屏幕顯示學生熟悉的畫面(足球射門游戲)

  足球場有句順口溜:“沖向球門跑,越近就越好;歪著球門跑,射點要選好!逼渲刑N藏了一定的數(shù)學道理,學習了本節(jié)課,我們就可以解釋其中的道理。

  二、實踐探索,揭示新知

 。ㄒ唬﹫A周角的概念

  在射門游戲中,球員射中球門的難易程度與他所處的`位置B對球門AC的張角∠ABC有關.(教師出示圖片,提出問題)

  圖中∠ABC是圓心角嗎?什么是圓心角?圖中∠ABC有什么特點?

 。▽W生通過與圓心角的類比、分析、觀察得出∠ABC的特點,進而概括出圓周角的概念,教師引導并板書)

  定義:頂點在圓上,并且兩邊都與圓相交的角叫做圓周角。

  概念辨析:

  判斷下列各圖形中的角是不是圓周角,并說明理由。(圖略)

 。ㄍㄟ^概念辨析,讓學生理解圓周角的定義,提高學生的語言表達能力,教師強調知識要點)

  強調:圓周角必須具備的兩個條件:①頂點在圓上;②兩邊都與圓相交.

  (二)圓周角定理

  1.提出問題,引發(fā)思考

  類比圓心角的結論:同弧或等弧所對的圓心角相等。提出本節(jié)課研究的問題:同弧或等弧所對的圓周角相等嗎?為了搞清這個問題,我們可以先研究:同弧所對的圓心角和圓周角的關系。

  2.活動與探究

  畫一個圓心角,然后再畫同弧所對的圓周角。你能畫多少個圓周角? 用量角器量一量這些圓周角及圓心角的度數(shù),你有何發(fā)現(xiàn)呢?

  (教師提出問題,學生作圖、度量、分析、歸納出發(fā)現(xiàn)的結論。)

  結論:(1)同一條弧所對的圓周角有無數(shù)個,同弧所對的任意一個圓周角都相等。

 。2)同一條弧所對的圓周角等于它所對的圓心角的一半.

  由上述操作可以看出:同一條弧所對的任意一個圓周角都等于該條弧所對的圓心角的一半。

 。▽W生通過實踐探究,討論概括出結論,教師點評)

  3.推理與論證

  (1)教師演示活動教具,一條弧所對的圓心角只有一個,所對的圓周角有無數(shù)個,我們沒有辦法一一論證,提出本節(jié)課研究方法:分類討論法。

 。ń處熝菔,引導學生觀察圓心與圓周角的位置關系,學生觀察、小組交流,最后得出結論,教師出示圓心和圓周角的三種位置關系圖片)

  (2)分類討論,證明結論 ① 當圓心在圓周角的一條邊上時,如何證明?(從特殊情況入手,學生通過觀察、分析、討論,證明所發(fā)現(xiàn)的結論,教師鼓勵學生看清此數(shù)學模型。)

  ②另外兩種情況如何證明,可否轉化成第一種情況呢?

 。▽W生采取小組合作的學習方式進行探索發(fā)現(xiàn),教師巡視指導,啟發(fā)并引導學生,通過添加輔助線,將問題進行轉化,學生寫出證明過程,并討論歸納出結論,教師做出點評)

  結論:在同圓中,同弧所對的圓周角相等,都等于該條弧所對圓心角的一半

  4.變式拓展,引出重點

  將上述結論改為“在同圓或等圓中,等弧所對的圓周角相等嗎?

  (學生思考、推理、討論、總結出圓周角定理,教師板書)

  圓周角定理: 在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半。

  強調:(1)定理的適用范圍:同圓或等圓(2)同弧或等弧所對的圓周角相等(3)同弧或等弧所對的圓周角等于它所對圓心角的一半

 。ń處煆娬{圓周角定理的內容,學生思考、默記、熟悉定理,加深對定理的理解)

  三、應用練習,鞏固提高

  1.范例精析:

  例:如圖,在⊙O中,∠CBD=30° ,∠BDC=20°,求∠A(圖略)

 。ü膭顚W生用多種方法解決問題,發(fā)散學生的思維,培養(yǎng)學生良好的思維品質,讓學生書寫推力計算過程,教師補充、點評、并和學生一起歸納解法。兩種解法分別應用了圓周角定理中的兩個結論,進一步對本節(jié)課的重點知識熟練深化,同時又培養(yǎng)了學生規(guī)范的書寫表達能力)

  2.應用遷移:

 。1)比比看誰算得快:(圖略)

 。ū拘☆}既可鞏固圓周角定理,又可培養(yǎng)學生的競爭意識以適應時代的要求,同時對回答問題積極準確的學生提出表揚,激發(fā)學生的學習積極性)

 。2)生活中的數(shù)學

  如圖.在足球比賽中,甲帶球向對方球門PQ進攻,當他帶球沖到A點時,同伴乙已經沖到B點,這時甲是直接射門好,還是將球傳給乙,讓乙射門好﹙僅從射門角度考慮﹚(圖略)

 。ㄟx用學生熟悉的生活材料,讓學生通過合作交流,討論找出合理的解答方法,通過本小題的練習,使學生體味到生活離不開數(shù)學,從而激發(fā)學生應用數(shù)學的意識)

  四、總結評價,感悟收獲

  通過本節(jié)課的學習你有哪些收獲?(學生歸納總結,老師點評)

  知識:(1)圓周角的定義;

 。2)圓周角定理。

  能力:觀察、操作、分析、歸納、表達等能力.

  思想方法:分類討論思想、轉化思想、類比思想、數(shù)形結合思想、

  五、作業(yè)設計,查漏補缺

  1.課本習題:P88.1,2,3,P89.5,P124.11

  2.在⊙O中,圓心角∠AOB=70°,點C是⊙O上異于A、B的一點,求圓周角∠AOB的度數(shù)。

  3.生活中的數(shù)學:監(jiān)控器的監(jiān)控范圍是65度,圓形的博物館內需要安裝幾盞才能全方位監(jiān)控?(圖略)

  (設計課本習題與課外拓展作業(yè),不僅可以使學生對本節(jié)課的知識加以鞏固、提高和查漏補缺,而且讓學生會用數(shù)學的眼光和頭腦去觀察和思考世界,達到學以致用)

  教學反思

  成功之處:本節(jié)課內容豐富,結構合理,設計精細。教學時能根據(jù)學生實際遵循認知規(guī)律,由淺入深,循序漸進,及時了解學生的學習情況,靈活調整教學內容。能適時的用教材又不拘泥于教材,挖掘教材的多種功能,在教學結構的安排上也體現(xiàn)了新課標、新理念,重視學生自主學習、自主探究、合作交流、主動地觀察與思考,各個環(huán)節(jié)銜接緊密、合理、流暢,教學效果比較理想。

  不足之處:學生不易理解用分類討論思想證明圓周角定理,在后面的教學中逐步讓學生了解分類討論思想在解題時的應用。另外學生語言表達的準確性還需不斷加強。

【圓周角教案設計及反思】相關文章:

圓周角的教學反思02-22

圓周角教學反思05-17

圓周角教學反思05-17

圓周角定理的教學反思05-13

《圓周角與圓心角的關系》教學反思范文12-29

《圓周角的概念和圓周角定理》備課教案04-25

圓周角和圓心角的關系教學反思范文11-25

數(shù)學《圓周角和圓心角的關系》教學反思09-11

圓周角教學課件03-31