方程的根與函數(shù)的零點教學教案
教學目標:
1、 能夠結合二次函數(shù)的圖像判斷一元二次方程根的存在性及根的個數(shù)。
2、 理解函數(shù)的零點與方程的聯(lián)系。
3、 滲透由特殊到一般的認識規(guī)律,提升學生的抽象和概括能力。
教學重點、難點:
1、 重點:理解函數(shù)的零點與方程根的聯(lián)系,使學生遇到一元二次方程根的問題時能順利聯(lián)想函數(shù)的思想和方法。
2、 難點:函數(shù)零點存在的條件。
教學過程:
1、 問題引入
探究一元二次方程與相應二次函數(shù)的關系。
出示表格,引導學生填寫表格,并分析填出的表格,從二次方程的根和二次函數(shù)的圖像與x軸的交點的坐標,探究一元二次方程與相應二次函數(shù)的.關系。
一元二次方程
f(1)=12 -2*1-3=1-2-3=-4
f(2)* f(1)=-4*5=-20﹤0
問題2:在區(qū)間[2,4]呢?
解:f(2)=(2)2-2*2-3=-3
f(4)=42-2*4-3=5
f(4)*f(2)=(-3)* 5=-15﹤0
歸納:
f(2)* f(1)﹤0,函數(shù)=x2-2x-3在[-2,1]內(nèi)有零點x=-1;f(2)* f(4)﹤0,函數(shù)=x2-2x-3在[2,4]內(nèi)有零點x=3,它們分別是方程=x2-2x-3的兩個根。
結論:
如果函數(shù) 在區(qū)間 上的圖像是連續(xù)不斷的一條曲線并且有 ,那么,函數(shù) 在區(qū)間 內(nèi)有零點,即存在 ,使得 ,這個 也就是方程 的根。
、 圖像在 上的圖像是連續(xù)不斷的
②
、 函數(shù) 在區(qū)間 內(nèi)至少有一個零點
4、 習題演練
利用函數(shù)圖像判斷下列二次函數(shù)有幾個零點
① =-x2+3x+5 , ②=2x(x-2)+3
解:①令f(x)=-x2+3x+5,
做出函數(shù)f(x)的圖像,如下
、=2x(x-2)+3可化為
做出函數(shù)f(x)的圖像,如下:
。▓D4-2)
它與x軸沒有交點,所以方程2x(x-2)=-3無實數(shù)根,則函數(shù)=2x(x-2)+3沒有零點。
【方程的根與函數(shù)的零點教學教案】相關文章:
方程的根與函數(shù)的零點教案06-11
方程的根與函數(shù)的零點教案11-11
方程的根與函數(shù)的零點的教學反思11-05
《方程的根與函數(shù)的零點》說課稿07-12
《方程的根與函數(shù)的零點》說課稿11-27
方程的根與函數(shù)零點的說課稿07-04