實際問題與反比例函數(shù)教案設(shè)計
一、教學目標
1.利用反比例函數(shù)的知識分析、解決實際問題
2.滲透數(shù)形結(jié)合思想,提高學生用函數(shù)觀點解決問題的能力
二、重點、難點
1.重點:利用反比例函數(shù)的知識分析、解決實際問題
2.難點:分析實際問題中的數(shù)量關(guān)系,正確寫出函數(shù)解析式
3.難點的突破方法:
用函數(shù)觀點解實際問題,一要搞清題目中的基本數(shù)量關(guān)系,將實際問題抽象成數(shù)學問題,看看各變量間應(yīng)滿足什么樣的關(guān)系式(包括已學過的基本公式),這一步很重要;二是要分清自變量和函數(shù),以便寫出正確的函數(shù)關(guān)系式,并注意自變量的取值范圍;三要熟練掌握反比例函數(shù)的意義、圖象和性質(zhì),特別是圖象,要做到數(shù)形結(jié)合,這樣有利于分析和解決問題。教學中要讓學生領(lǐng)會這一解決實際問題的基本思路。
三、例題的意圖分析
教材第57頁的例1,數(shù)量關(guān)系比較簡單,學生根據(jù)基本公式很容易寫出函數(shù)關(guān)系式,此題實際上是利用了反比例函數(shù)的定義,同時也是要讓學生學會分析問題的方法。
教材第58頁的例2是一道利用反比例函數(shù)的.定義和性質(zhì)來解決的實際問題,此題的實際背景較例1稍復(fù)雜些,目的是為了提高學生將實際問題抽象成數(shù)學問題的能力,掌握用函數(shù)觀點去分析和解決問題的思路。
補充例題一是為了鞏固反比例函數(shù)的有關(guān)知識,二是為了提高學生從圖象中讀取信息的能力,掌握數(shù)形結(jié)合的思想方法,以便更好地解決實際問題
【實際問題與反比例函數(shù)教案設(shè)計】相關(guān)文章:
《實際問題與反比例函數(shù)》說課稿07-03
《實際問題與反比例函數(shù)》說課稿11-27
實際問題與反比例函數(shù)的說課稿02-12
實際問題與反比例函數(shù)的教學反思12-07
反比例函數(shù)的性質(zhì)10-02
反比例函數(shù)性質(zhì)09-21
反比例函數(shù)的說課稿04-02