男人天堂日韩,中文字幕18页,天天伊人网,成人性生交大片免费视频

正多邊形的計算的教案設(shè)計

時間:2021-06-18 16:08:32 教案 我要投稿

正多邊形的有關(guān)計算的教案設(shè)計

  教學(xué)目標(biāo) :

正多邊形的有關(guān)計算的教案設(shè)計

  (1)會將正多邊形的邊長、半徑、邊心距和中心角、周長、面積等有關(guān)的計算問題轉(zhuǎn)化為解直角三角形的問題;

  (2)鞏固學(xué)生解直角三角形的能力,培養(yǎng)學(xué)生正確迅速的運(yùn)算能力;

  (3)通過正多邊形有關(guān)計算公式的推導(dǎo),激發(fā)學(xué)生探索和創(chuàng)新.

  教學(xué)重點(diǎn):

  把問題轉(zhuǎn)化為解直角三角形的問題.

  教學(xué)難點(diǎn) :

  正確地將問題轉(zhuǎn)化為解直角三角形的問題解決、綜合運(yùn)用幾何知識準(zhǔn)確計算.

  教學(xué)活動設(shè)計:

  (一)創(chuàng)設(shè)情境、觀察、分析、歸納結(jié)論

  1、情境一:給出圖形.

  問題1:正n邊形內(nèi)角的規(guī)律.

  觀察:在圖形中,應(yīng)用以有的知識(多邊形內(nèi)角和定理,多邊形的每個內(nèi)角都相等)得出新結(jié)論.

  教師組織學(xué)生自主觀察,學(xué)生回答.(正n邊形的每個內(nèi)角都等于 .)

  2、情境二:給出圖形.

  問題2:每個圖形的半徑,分別將它們分割成什么樣的三角形?它們有什么規(guī)律?

  教師引導(dǎo)學(xué)生觀察,學(xué)生回答.

  觀察:三角形的形狀,三角形的個數(shù).

  歸納:正n邊形的n條半徑分正n邊形為n個全等的等腰三角形.

  3、情境三:給出圖形.

  問題3:作每個正多邊形的邊心距,又有什么規(guī)律?

  觀察、歸納:這些邊心距又把這n個等腰三角形分成了個直角三角形,這些直角三角形也是全等的.

  (二)定理、理解、應(yīng)用:

  1、定理: 正n邊形的半徑和邊心距把正n邊形分成2n 個全等的直角三角形.

  2、理解:定理的實質(zhì)是把正多邊形的問題向直角三角形轉(zhuǎn)化.

  由于這些直角三角形的斜邊都是正n邊形的半徑R,一條直角邊是正n邊形的邊心距rn,另一條直角邊是正n邊形邊長an的一半,一個銳角是正n邊形中心角 的一半,即 ,所以,根據(jù)上面定理就可以把正n邊形的有關(guān)計算歸結(jié)為解直角三角形問題.

  3、應(yīng)用:

  例1、已知正六邊形ABCDEF的半徑為R,求這個正六邊形的邊長、周長P6和面積S6.

  教師引導(dǎo)學(xué)生分析解題思路:

  n=6 =30,又半徑為R a6 、r6. P6、S6.

  學(xué)生完成解題過程,并關(guān)注學(xué)生解直角三角形的能力.

  解:作半徑OA、OB;作OGAB,垂足為G,得Rt△OGB.

  ∵GOB=,

  a6 =2Rsin30=R,

  P6=6a6=6R,

  ∵r6=Rcos30=,

  .

  歸納:如果用Pn表示正n邊形的周長,由例1可知,正n邊形的面積S6=Pn rn.

  4、研究:(應(yīng)用例1的方法進(jìn)一步研究)

  問題:已知圓的半徑為R,求它的內(nèi)接正三角形、正方形的邊長、邊心距及面積.

  學(xué)生以小組進(jìn)行研究,并初步歸納:

  ; ; ; ;

  ; .

  上述公式是運(yùn)用解直角三角形的方法得到的.

  通過上式六公式看出,只要給定兩個條件,則正多邊形就完全確定了.例如:(1)圓的半徑或邊數(shù);(2)圓的半徑和邊心距;(3)邊長及邊心距,就可以確定正多邊形的其它元素.

  (三)小節(jié)

  知識:定理、正三角形、正方形、正六邊形的元素的.計算問題.

  思想:轉(zhuǎn)化思想.

  能力:解直角三角形的能力、計算能力;觀察、分析、研究、歸納能力.

  (四)作業(yè)

  歸納正三角形、正方形、正六邊形以及正n邊形的有關(guān)計算公式.

  教學(xué)設(shè)計示例2

  教學(xué)目標(biāo) :

  (1)進(jìn)一步研究正多邊形的計算問題,解決實際應(yīng)用問題;

  (2)通過正十邊形的邊長a10與半徑R的關(guān)系的證明,學(xué)習(xí)邊計算邊推理的數(shù)學(xué)方法;

  (3)通過解決實際問題,培養(yǎng)學(xué)生簡單的數(shù)學(xué)建模能力;

  (4)培養(yǎng)學(xué)生用數(shù)學(xué)意識,滲透理論聯(lián)系實際、實踐論的觀點(diǎn).

  教學(xué)重點(diǎn):

  應(yīng)用正多邊形的基本計算圖解決實際應(yīng)用問題及代數(shù)計算的證明方法.

  教學(xué)難點(diǎn) :

  例3的證明方法.

  教學(xué)活動設(shè)計:

  (一)知識回顧

  (1)方法:運(yùn)用將正多邊形分割成三角形的方法,把正多邊形有關(guān)計算轉(zhuǎn)化為解直角三角形問題.

  (2)知識:正三角形、正方形、正六邊形的有關(guān)計算問題,.

  組織學(xué)生填寫教材P165練習(xí)中第2題的表格.

  (二)正多邊形的應(yīng)用

  方法是基本的幾何計算知識之一,掌握這些知識,一方面可以為學(xué)生進(jìn)一步學(xué)習(xí)打好基礎(chǔ),另一方面,這些知識在生產(chǎn)和生活中常常會用到,掌握后對學(xué)生參加實踐活動具有實用意義.

  例2、在一種聯(lián)合收割機(jī)上,撥禾輪的側(cè)面是正五邊形,測得這個正五邊形的邊長是48cm,求它的半徑R5和邊心距r5(精確到0.1cm).

  解:設(shè)正五邊形為ABCDE,它的中心為點(diǎn)O,連接OA,作OFAB,垂足為F,則OA=R5,OF=r5,AOF=.

  ∵AF=(cm),R5=(cm).

  r5=(cm).

  答:這個正多邊形的半徑約為40.8cm,邊心距約為33.0cm

  建議:①組織學(xué)生,使學(xué)生主動參與教學(xué);②滲透簡單的數(shù)學(xué)建模思想和實際應(yīng)用意識;③對與本題除解直角三角形知識外,還要主要學(xué)生的近似計算能力的培養(yǎng).

  以小組的學(xué)習(xí)形式,每個小組自己舉一個實際生活中的例子加以研究,班內(nèi)交流.

  例3、已知:正十邊形的半徑為R,求證:它的邊長 .

  教師引導(dǎo)學(xué)生:

  (1)AOB=?

  (2)在△OAB中,A與B的度數(shù)?

  (3)如果BM平分OBA交OA于M,你發(fā)現(xiàn)圖形中相等的線段有哪些?你發(fā)現(xiàn)圖中三角形有什么關(guān)系?

  (4)已知半徑為R,你能不通過解三角形的方法求出AB嗎?怎么計算?

  解:如圖,設(shè)AB=a10.作OBA的平分線BM,交OA于點(diǎn)M,則

  AOB=2=36,OAB=3=72.

  OM=MB=AB=a10.

  △ OAB∽△BAM OA:AB=BA:AM,即R :a10=a10:(R- a10),整理,得

  , (取正根).

  由例3的結(jié)論可得 .

  回顧:黃金分割線段.AD2=DCAC,也就是說點(diǎn)D將線段AC分為兩部分,其中較長的線段AD是較小線段CD與全線段AC的比例中項.頂角36角的等腰三角形的底邊長是它腰長的黃金分割線段.

  反思:解決方法.在推導(dǎo)a10與R關(guān)系時,輔助線角平分線是怎么想出來的.解決方法是復(fù)習(xí)等腰三角形的性質(zhì)、判定及相似三角形的有關(guān)知識.

  練習(xí)P.165中練習(xí)1

  (三)總結(jié)

  (1)應(yīng)用解決實際問題;

  (2)綜合代數(shù)列方程的方法證明了 .

  (四)作業(yè)

  教材P173中8、9、10、11、12.

  探究活動

  已知下列圖形分別為正方形、正五邊形、正六邊形,試計算角 、 、 的大小.

  探究它們存在什么規(guī)律?你能證明嗎?

【正多邊形的計算的教案設(shè)計】相關(guān)文章:

正多邊形的有關(guān)計算的教案設(shè)計08-29

正多邊形的有關(guān)計算的教案08-30

《正多邊形的有關(guān)計算》數(shù)學(xué)教案06-20

《正多邊形的有關(guān)計算》數(shù)學(xué)教案08-30

初中數(shù)學(xué)正多邊形計算公式總結(jié)11-22

正多邊形的優(yōu)秀教案09-13

畫正多邊形教案11-26

正多邊形的優(yōu)秀教案08-25

數(shù)學(xué)用計算器計算教案設(shè)計06-17