男人天堂日韩,中文字幕18页,天天伊人网,成人性生交大片免费视频

函數(shù)的奇偶性教案

時(shí)間:2023-03-13 17:07:15 教案 我要投稿
  • 相關(guān)推薦

函數(shù)的奇偶性教案(通用8篇)

  作為一位兢兢業(yè)業(yè)的人民教師,很有必要精心設(shè)計(jì)一份教案,借助教案可以恰當(dāng)?shù)剡x擇和運(yùn)用教學(xué)方法,調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性。來參考自己需要的教案吧!下面是小編收集整理的函數(shù)的奇偶性教案,歡迎閱讀,希望大家能夠喜歡。

函數(shù)的奇偶性教案(通用8篇)

  函數(shù)的奇偶性教案 篇1

  教學(xué)目標(biāo):了解奇偶性的含義,會(huì)判斷函數(shù)的奇偶性。能證明一些簡單函數(shù)的奇偶性。弄清函數(shù)圖象對(duì)稱性與函數(shù)奇偶性的關(guān)系。

  重點(diǎn):判斷函數(shù)的奇偶性

  難點(diǎn):函數(shù)圖象對(duì)稱性與函數(shù)奇偶性的關(guān)系。

  一、復(fù)習(xí)引入

  1、函數(shù)的單調(diào)性、最值

  2、函數(shù)的奇偶性

 。1)奇函數(shù)

  (2)偶函數(shù)

 。3)與圖象對(duì)稱性的關(guān)系

  (4)說明(定義域的'要求)

  二、例題分析

  例1、判斷下列函數(shù)是否為偶函數(shù)或奇函數(shù)

  例2、證明函數(shù) 在R上是奇函數(shù)。

  例3、試判斷下列函數(shù)的奇偶性

  三、隨堂練習(xí)

  1、函數(shù) ( )

  是奇函數(shù)但不是偶函數(shù) 是偶函數(shù)但不是奇函數(shù)

  既是奇函數(shù)又是偶函數(shù) 既不是奇函數(shù)又不是偶函數(shù)

  2、下列4個(gè)判斷中,正確的是_______.

 。1) 既是奇函數(shù)又是偶函數(shù);

 。2) 是奇函數(shù);

  (3) 是偶函數(shù);

  (4) 是非奇非偶函數(shù)

  3、函數(shù) 的圖象是否關(guān)于某直線對(duì)稱?它是否為偶函數(shù)?

  函數(shù)的奇偶性教案 篇2

  一、教學(xué)目標(biāo)

  【知識(shí)與技能】

  理解函數(shù)的奇偶性及其幾何意義.

  【過程與方法】

  利用指數(shù)函數(shù)的圖像和性質(zhì),及單調(diào)性來解決問題.

  【情感態(tài)度與價(jià)值觀】

  體會(huì)指數(shù)函數(shù)是一類重要的函數(shù)模型,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣.

  二、教學(xué)重難點(diǎn)

  【重點(diǎn)】

  函數(shù)的奇偶性及其幾何意義

  【難點(diǎn)】

  判斷函數(shù)的奇偶性的方法與格式.

  三、教學(xué)過程

  (一)導(dǎo)入新課

  取一張紙,在其上畫出平面直角坐標(biāo)系,并在第一象限任畫一可作為函數(shù)圖象的圖形,然后按如下操作并回答相應(yīng)問題:

  1 以y軸為折痕將紙對(duì)折,并在紙的背面(即第二象限)畫出第一象限內(nèi)圖形的痕跡,然后將紙展開,觀察坐標(biāo)系中的圖形;

  問題:將第一象限和第二象限的圖形看成一個(gè)整體,則這個(gè)圖形可否作為某個(gè)函數(shù)y=f(x)的圖象,若能請(qǐng)說出該圖象具有什么特殊的性質(zhì)?函數(shù)圖象上相應(yīng)的點(diǎn)的坐標(biāo)有什么特殊的關(guān)系?

  答案:(1)可以作為某個(gè)函數(shù)y=f(x)的圖象,并且它的圖象關(guān)于y軸對(duì)稱;

  (2)若點(diǎn)(x,f(x))在函數(shù)圖象上,則相應(yīng)的點(diǎn)(-x,f(x))也在函數(shù)圖象上,即函數(shù)圖象上橫坐標(biāo)互為相反數(shù)的點(diǎn),它們的縱坐標(biāo)一定相等.

  (二)新課教學(xué)

  1.函數(shù)的奇偶性定義

  像上面實(shí)踐操作1中的圖象關(guān)于y軸對(duì)稱的函數(shù)即是偶函數(shù),操作2中的圖象關(guān)于原點(diǎn)對(duì)稱的'函數(shù)即是奇函數(shù).

  (1)偶函數(shù)(even function)

  一般地,對(duì)于函數(shù)f(x)的定義域內(nèi)的任意一個(gè)x,都有f(-x)=f(x),那么f(x)就叫做偶函數(shù).

  (學(xué)生活動(dòng)):仿照偶函數(shù)的定義給出奇函數(shù)的定義

  (2)奇函數(shù)(odd function)

  一般地,對(duì)于函數(shù)f(x)的定義域內(nèi)的任意一個(gè)x,都有f(-x)=f(x),那么f(x)就叫做奇函數(shù).

  注意:

  1 函數(shù)是奇函數(shù)或是偶函數(shù)稱為函數(shù)的奇偶性,函數(shù)的奇偶性是函數(shù)的整體性質(zhì);

  2 由函數(shù)的奇偶性定義可知,函數(shù)具有奇偶性的一個(gè)必要條件是,對(duì)于定義域內(nèi)的任意一個(gè)x,則-x也一定是定義域內(nèi)的一個(gè)自變量(即定義域關(guān)于原點(diǎn)對(duì)稱).

  2.具有奇偶性的函數(shù)的圖象的特征

  偶函數(shù)的圖象關(guān)于y軸對(duì)稱;

  奇函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱.

  3.典型例題

  (1)判斷函數(shù)的奇偶性

  例1.(教材P36例3)應(yīng)用函數(shù)奇偶性定義說明兩個(gè)觀察思考中的四個(gè)函數(shù)的奇偶性.(本例由學(xué)生討論,師生共同總結(jié)具體方法步驟)

  解:(略)

  總結(jié):利用定義判斷函數(shù)奇偶性的格式步驟:

  1 首先確定函數(shù)的定義域,并判斷其定義域是否關(guān)于原點(diǎn)對(duì)稱;

  2 確定f(-x)與f(x)的關(guān)系;

  3 作出相應(yīng)結(jié)論:

  若f(-x) = f(x) 或 f(-x)-f(x) = 0,則f(x)是偶函數(shù);

  若f(-x) =-f(x) 或 f(-x)+f(x) = 0,則f(x)是奇函數(shù).

  (三)鞏固提高

  1.教材P46習(xí)題1.3 B組每1題

  解:(略)

  說明:函數(shù)具有奇偶性的一個(gè)必要條件是,定義域關(guān)于原點(diǎn)對(duì)稱,所以判斷函數(shù)的奇偶性應(yīng)應(yīng)首先判斷函數(shù)的定義域是否關(guān)于原點(diǎn)對(duì)稱,若不是即可斷定函數(shù)是非奇非偶函數(shù).

  2.利用函數(shù)的奇偶性補(bǔ)全函數(shù)的圖象

  (教材P41思考題)

  規(guī)律:

  偶函數(shù)的圖象關(guān)于y軸對(duì)稱;

  奇函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱.

  說明:這也可以作為判斷函數(shù)奇偶性的依據(jù).

  (四)小結(jié)作業(yè)

  本節(jié)主要學(xué)習(xí)了函數(shù)的奇偶性,判斷函數(shù)的奇偶性通常有兩種方法,即定義法和圖象法,用定義法判斷函數(shù)的奇偶性時(shí),必須注意首先判斷函數(shù)的定義域是否關(guān)于原點(diǎn)對(duì)稱.單調(diào)性與奇偶性的綜合應(yīng)用是本節(jié)的一個(gè)難點(diǎn),需要學(xué)生結(jié)合函數(shù)的圖象充分理解好單調(diào)性和奇偶性這兩個(gè)性質(zhì).

  課本P46 習(xí)題1.3(A組) 第9、10題, B組第2題.

  四、板書設(shè)計(jì)

  函數(shù)的奇偶性

  一、偶函數(shù):一般地,對(duì)于函數(shù)f(x)的定義域內(nèi)的任意一個(gè)x,都有f(-x)=f(x),那么f(x)就叫做偶函數(shù).

  二、奇函數(shù):一般地,對(duì)于函數(shù)f(x)的定義域內(nèi)的任意一個(gè)x,都有f(-x)=f(x),那么f(x)就叫做奇函數(shù).

  三、規(guī)律:

  偶函數(shù)的圖象關(guān)于y軸對(duì)稱;

  奇函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱.

  函數(shù)的奇偶性教案 篇3

  學(xué)習(xí)目標(biāo) 1.函數(shù)奇偶性的概念

  2.由函數(shù)圖象研究函數(shù)的奇偶性

  3.函數(shù)奇偶性的判斷

  重點(diǎn):能運(yùn)用函數(shù)奇偶性的定義判斷函數(shù)的奇偶性

  難點(diǎn):理解函數(shù)的奇偶性

  知識(shí)梳理:

  1.軸對(duì)稱圖形:

  2中心對(duì)稱圖形:

  【概念探究】

  1、 畫出函數(shù) ,與 的圖像;并觀察兩個(gè)函數(shù)圖像的對(duì)稱性。

  2、 求出 , 時(shí)的函數(shù)值,寫出 , 。

  結(jié)論: 。

  3、 奇函數(shù):___________________________________________________

  4、 偶函數(shù):______________________________________________________

  【概念深化】

  (1)、強(qiáng)調(diào)定義中任意二字,奇偶性是函數(shù)在定義域上的整體性質(zhì)。

  (2)、奇函數(shù)偶函數(shù)的定義域關(guān)于原點(diǎn)對(duì)稱。

  5、奇函數(shù)與偶函數(shù)圖像的對(duì)稱性:

  如果一個(gè)函數(shù)是奇函數(shù),則這個(gè)函數(shù)的圖像是以坐標(biāo)原點(diǎn)為對(duì)稱中心的__________。反之,如果一個(gè)函數(shù)的圖像是以坐標(biāo)原點(diǎn)為對(duì)稱中心的中心對(duì)稱圖形,則這個(gè)函數(shù)是___________。

  如果一個(gè)函數(shù)是偶函數(shù),則這個(gè)函數(shù)的圖像是以 軸為對(duì)稱軸的__________。反之,如果一個(gè)函數(shù)的圖像是關(guān)于 軸對(duì)稱,則這個(gè)函數(shù)是___________。

  6. 根據(jù)函數(shù)的奇偶性,函數(shù)可以分為____________________________________.

  題型一:判定函數(shù)的奇偶性。

  例1、判斷下列函數(shù)的奇偶性:

  (1) (2) (3)

  (4) (5)

  練習(xí):教材第49頁,練習(xí)A第1題

  總結(jié):根據(jù)例題,你能給出用定義判斷函數(shù)奇偶性的步驟?

  題型二:利用奇偶性求函數(shù)解析式

  例2:若f(x)是定義在R上的`奇函數(shù),當(dāng)x0時(shí),f(x)=x(1-x),求當(dāng) 時(shí)f(x)的解析式。

  練習(xí):若f(x)是定義在R上的奇函數(shù),當(dāng)x0時(shí),f(x)=x|x-2|,求當(dāng)x0時(shí)f(x)的解析式。

  已知定義在實(shí)數(shù)集 上的奇函數(shù) 滿足:當(dāng)x0時(shí), ,求 的表達(dá)式

  題型三:利用奇偶性作函數(shù)圖像

  例3 研究函數(shù) 的性質(zhì)并作出它的圖像

  練習(xí):教材第49練習(xí)A第3,4,5題,練習(xí)B第1,2題

  當(dāng)堂檢測

  1 已知 是定義在R上的奇函數(shù),則( D )

  A. B. C. D.

  2 如果偶函數(shù) 在區(qū)間 上是減函數(shù),且最大值為7,那么 在區(qū)間 上是( B )

  A. 增函數(shù)且最小值為-7 B. 增函數(shù)且最大值為7

  C. 減函數(shù)且最小值為-7 D. 減函數(shù)且最大值為7

  3 函數(shù) 是定義在區(qū)間 上的偶函數(shù),且 ,則下列各式一定成立的是(C )

  A. B. C. D.

  4 已知函數(shù) 為奇函數(shù),若 ,則 -1

  5 若 是偶函數(shù),則 的單調(diào)增區(qū)間是

  6 下列函數(shù)中不是偶函數(shù)的是(D )

  A B C D

  7 設(shè)f(x)是R上的偶函數(shù),切在 上單調(diào)遞減,則f(-2),f(- ),f(3)的大小關(guān)系是( A )

  A B f(- )f(-2) f(3) C f(- )

  8 奇函數(shù) 的圖像必經(jīng)過點(diǎn)( C )

  A (a,f(-a)) B (-a,f(a)) C (-a,-f(a)) D (a,f( ))

  9 已知函數(shù) 為偶函數(shù),其圖像與x軸有四個(gè)交點(diǎn),則方程f(x)=0的所有實(shí)根之和是( A )

  A 0 B 1 C 2 D 4

  10 設(shè)f(x)是定義在R上的奇函數(shù),且x0時(shí),f(x)= ,則f(-2)=_-5__

  11若f(x)在 上是奇函數(shù),且f(3)_f(-1)

  12.解答題

  用定義判斷函數(shù) 的奇偶性。

  13定義證明函數(shù)的奇偶性

  已知函數(shù) 在區(qū)間D上是奇函數(shù),函數(shù) 在區(qū)間D上是偶函數(shù),求證: 是奇函數(shù)

  14利用函數(shù)的奇偶性求函數(shù)的解析式:

  已知分段函數(shù) 是奇函數(shù),當(dāng) 時(shí)的解析式為 ,求這個(gè)函數(shù)在區(qū)間 上的解析表達(dá)式。

  函數(shù)的奇偶性教案 篇4

  教學(xué)目標(biāo):了解奇偶性的含義,會(huì)判斷函數(shù)的奇偶性。能證明一些簡單函數(shù)的奇偶性。弄清函數(shù)圖象對(duì)稱性與函數(shù)奇偶性的關(guān)系。

  重點(diǎn):判斷函數(shù)的`奇偶性

  難點(diǎn):函數(shù)圖象對(duì)稱性與函數(shù)奇偶性的關(guān)系。

  一、復(fù)習(xí)引入

  1、函數(shù)的單調(diào)性、最值

  2、函數(shù)的奇偶性

 。1)奇函數(shù)

  (2)偶函數(shù)

 。3)與圖象對(duì)稱性的關(guān)系

 。4)說明(定義域的要求)

  二、例題分析

  例1、判斷下列函數(shù)是否為偶函數(shù)或奇函數(shù)

 。1) (2)

  (3) (4)

  例2、證明函數(shù) 在R上是奇函數(shù)。

  例3、試判斷下列函數(shù)的奇偶性

  三、隨堂練習(xí)

  1、函數(shù) ( )

  是奇函數(shù)但不是偶函數(shù) 是偶函數(shù)但不是奇函數(shù)

  既是奇函數(shù)又是偶函數(shù) 既不是奇函數(shù)又不是偶函數(shù)

  2、下列4個(gè)判斷中,正確的是_______.

 。1) 既是奇函數(shù)又是偶函數(shù);

 。2) 是奇函數(shù);

 。3) 是偶函數(shù);

 。4) 是非奇非偶函數(shù)

  3、函數(shù) 的圖象是否關(guān)于某直線對(duì)稱?它是否為偶函數(shù)?

  函數(shù)的奇偶性教案 篇5

  課標(biāo)分析

  函數(shù)的奇偶性是函數(shù)的重要性質(zhì),是對(duì)函數(shù)概念的深化.它把自變量取相反數(shù)時(shí)函數(shù)值間的關(guān)系定量地聯(lián)系在一起,反映在圖像上為:偶函數(shù)的圖像關(guān)于y軸對(duì)稱,奇函數(shù)的圖像關(guān)于坐標(biāo)原點(diǎn)成中心對(duì)稱.這樣,就從數(shù)、形兩個(gè)角度對(duì)函數(shù)的奇偶性進(jìn)行了定量和定性的分析.

  教材分析

  教材首先通過對(duì)具體函數(shù)的圖像及函數(shù)值對(duì)應(yīng)表歸納和抽象,概括出了函數(shù)奇偶性的準(zhǔn)確定義.然后,為深化對(duì)概念的理解,舉出了奇函數(shù)、偶函數(shù)、既是奇函數(shù)又是偶函數(shù)的函數(shù)和非奇非偶函數(shù)的實(shí)例.最后,為加強(qiáng)前后聯(lián)系,從各個(gè)角度研究函數(shù)的性質(zhì),講清了奇偶性和單調(diào)性的聯(lián)系.這節(jié)課的重點(diǎn)是函數(shù)奇偶性的定義,難點(diǎn)是根據(jù)定義判斷函數(shù)的奇偶性.

  教學(xué)目標(biāo)

  1 通過具體函數(shù),讓學(xué)生經(jīng)歷奇函數(shù)、偶函數(shù)定義的討論,體驗(yàn)數(shù)學(xué)概念的建立過程,培養(yǎng)其抽象的概括能力.

  教學(xué)重難點(diǎn)

  1理解、掌握函數(shù)奇偶性的定義,奇函數(shù)和偶函數(shù)圖像的特征,并能初步應(yīng)用定義判斷一些簡單函數(shù)的奇偶性.

  2 在經(jīng)歷概念形成的過程中,培養(yǎng)學(xué)生歸納、抽象概括能力,體驗(yàn)數(shù)學(xué)既是抽象的又是具體的.

  學(xué)生分析

  這節(jié)內(nèi)容學(xué)生在初中雖沒學(xué)過,但已經(jīng)學(xué)習(xí)過具有奇偶性的具體的函數(shù):正比例函數(shù)y=kx,反比例函數(shù) ,(k≠0),二次函數(shù)y=ax2,(a≠0),故可在此基礎(chǔ)上,引入奇、偶函數(shù)的概念,以便于學(xué)生理解.在引入概念時(shí)始終結(jié)合具體函數(shù)的圖像,以增加直觀性,這樣更符合學(xué)生的認(rèn)知規(guī)律,同時(shí)為闡述奇、偶函數(shù)的幾何特征埋下了伏筆.對(duì)于概念可從代數(shù)特征與幾何特征兩個(gè)角度去分析,讓學(xué)生理解:奇函數(shù)、偶函數(shù)的定義域是關(guān)于原點(diǎn)對(duì)稱的非空數(shù)集;對(duì)于在有定義的奇函數(shù)y=f(x),一定有f(0)=0;既是奇函數(shù),又是偶函數(shù)的函數(shù)有f(x)=0,x∈R.在此基礎(chǔ)上,讓學(xué)生了解:奇函數(shù)、偶函數(shù)的矛盾概念———非奇非偶函數(shù).關(guān)于單調(diào)性與奇偶性關(guān)系,引導(dǎo)學(xué)生拓展延伸,可以取得理想效果.

  教學(xué)過程

  一、探究導(dǎo)入

  1 觀察如下兩圖,思考并討論以下問題:

 。1)這兩個(gè)函數(shù)圖像有什么共同特征?

 。2)相應(yīng)的兩個(gè)函數(shù)值對(duì)應(yīng)表是如何體現(xiàn)這些特征的?

  可以看到兩個(gè)函數(shù)的圖像都關(guān)于y軸對(duì)稱.從函數(shù)值對(duì)應(yīng)表可以看到,當(dāng)自變量x取一對(duì)相反數(shù)時(shí),相應(yīng)的兩個(gè)函數(shù)值相同.

  對(duì)于函數(shù)f(x)=x2,有f(-3)=9=f(3),f(-2)=4=f(2),f(-1)=1=f(1).事實(shí)上,對(duì)于R內(nèi)任意的一個(gè)x,都有f(-x)=(-x)2=x2=f(x).此時(shí),稱函數(shù)y=x2為偶函數(shù).

  2觀察函數(shù)f(x)=x和f(x)= 的圖像,并完成下面的兩個(gè)函數(shù)值對(duì)應(yīng)表,然后說出這兩個(gè)函數(shù)有什么共同特征.

  可以看到兩個(gè)函數(shù)的圖像都關(guān)于原點(diǎn)對(duì)稱.函數(shù)圖像的這個(gè)特征,反映在解析式上就是:當(dāng)自變量x取一對(duì)相反數(shù)時(shí),相應(yīng)的函數(shù)值f(x)也是一對(duì)相反數(shù),即對(duì)任一x∈R都有f(-x)=-f(x).此時(shí),稱函數(shù)y=f(x)為奇函數(shù).

  二、師生互動(dòng)

  由上面的分析討論引導(dǎo)學(xué)生建立奇函數(shù)、偶函數(shù)的定義

  1 奇、偶函數(shù)的定義

  如果對(duì)于函數(shù)f(x)的定義域內(nèi)任意一個(gè)x,都有f(-x)=-f(x),那么函數(shù)f(x)就叫作奇函數(shù).

  如果對(duì)于函數(shù)f(x)的定義域內(nèi)任意一個(gè)x,都有f(-x)=f(x),那么函數(shù)f(x)就叫作偶函數(shù).

  2 提出問題,組織學(xué)生討論

 。1)如果定義在R上的`函數(shù)f(x)滿足f(-2)=f(2),那么f(x)是偶函數(shù)嗎?

 。╢(x)不一定是偶函數(shù))

  (2)奇、偶函數(shù)的圖像有什么特征?

 。ㄆ、偶函數(shù)的圖像分別關(guān)于原點(diǎn)、y軸對(duì)稱)

  (3)奇、偶函數(shù)的定義域有什么特征?

 。ㄆ妗⑴己瘮(shù)的定義域關(guān)于原點(diǎn)對(duì)稱)

  三、難點(diǎn)突破

  例題講解

  1 判斷下列函數(shù)的奇偶性.

  注:①規(guī)范解題格式;②對(duì)于(5)要注意定義域x∈(-1,1〕.

  2 已知:定義在R上的函數(shù)f(x)是奇函數(shù),當(dāng)x>0時(shí),f(x)=x(1+x),求f(x)的表達(dá)式.

  解:(1)任取x<0,則-x>0,∴f(-x)=-x(1-x),

  而f(x)是奇函數(shù),∴f(-x)=-f(x).∴f(x)=x(1-x).

 。2)當(dāng)x=0時(shí),f(-0)=-f(0),∴f(0)=-f(0),故f(0)=0.

  3 已知:函數(shù)f(x)是偶函數(shù),且在(-∞,0)上是減函數(shù),判斷f(x)在(0,+∞)上是增函數(shù),還是減函數(shù),并證明你的結(jié)論.

  解:先結(jié)合圖像特征:偶函數(shù)的圖像關(guān)于y軸對(duì)稱,猜想f(x)在(0,+∞)上是增函數(shù),證明如下:

  任取x1>x2>0,則-x1<-x2<0.

  ∵f(x)在(-∞,0)上是減函數(shù),∴f(-x1)>f(-x2).

  又f(x)是偶函數(shù),∴f(x1)>f(x2).

  ∴f(x)在(0,+∞)上是增函數(shù).

  思考:奇函數(shù)或偶函數(shù)在關(guān)于原點(diǎn)對(duì)稱的兩個(gè)區(qū)間上的單調(diào)性有何關(guān)系?

  鞏固創(chuàng)新

  1 已知:函數(shù)f(x)是奇函數(shù),在〔a,b〕上是增函數(shù)(b>a>0),問f(x)在〔-b,-a〕上的單調(diào)性如何.

  2 f(x)=-x|x|的大致圖像可能是( )

  3 函數(shù)f(x)=ax2+bx+c,(a,b,c∈R),當(dāng)a,b,c滿足什么條件時(shí),(1)函數(shù)f(x)是偶函數(shù).(2)函數(shù)f(x)是奇函數(shù).

  4 設(shè)f(x),g(x)分別是R上的奇函數(shù)和偶函數(shù),并且f(x)+g(x)=x(x+1),求f(x),g(x)的解析式.

  四、課后拓展

  1 有既是奇函數(shù),又是偶函數(shù)的函數(shù)嗎?若有,有多少個(gè)?

  2 設(shè)f(x),g(x)分別是R上的奇函數(shù),偶函數(shù),試研究:

 。1)F(x)=f(x)·g(x)的奇偶性.

 。2)G(x)=|f(x)|+g(x)的奇偶性.

  3已知a∈R,f(x)=a- ,試確定a的值,使f(x)是奇函數(shù).

  4 一個(gè)定義在R上的函數(shù),是否都可以表示為一個(gè)奇函數(shù)與一個(gè)偶函數(shù)的和的形式?

  教學(xué)后記

  這篇案例設(shè)計(jì)由淺入深,由具體的函數(shù)圖像及對(duì)應(yīng)值表,抽象概括出了奇、偶函數(shù)的定義,符合職高學(xué)生的認(rèn)知規(guī)律,有利于學(xué)生理解和掌握.應(yīng)用深化的設(shè)計(jì)層層遞進(jìn),深化了學(xué)生對(duì)奇、偶函數(shù)概念的理解和應(yīng)用.拓展延伸為學(xué)生思維能力、創(chuàng)新能力的培養(yǎng)提供了平臺(tái)。

  函數(shù)的奇偶性教案 篇6

  教學(xué)目標(biāo)

  1.使學(xué)生理解奇函數(shù)、偶函數(shù)的概念;

  2.使學(xué)生掌握判斷某些函數(shù)奇偶性的方法;

  3.培養(yǎng)學(xué)生判斷、推理的能力、加強(qiáng)化歸轉(zhuǎn)化能力的訓(xùn)練;

  教學(xué)重點(diǎn)

  函數(shù)奇偶性的概念

  教學(xué)難點(diǎn)

  函數(shù)奇偶性的判斷

  教學(xué)方法

  講授法

  教具裝備

  幻燈片3張

  第一張:上節(jié)課幻燈片A。

  第二張:課本P58圖2—8(記作B)。

  第三張:本課時(shí)作業(yè)中的預(yù)習(xí)內(nèi)容及提綱。

  教學(xué)過程

 。↖)復(fù)習(xí)回顧

  師:上節(jié)課我們學(xué)習(xí)了函數(shù)單調(diào)性的`概念,請(qǐng)同學(xué)們回憶一下:增函數(shù)、減函數(shù)的定義,并復(fù)述證明函數(shù)單調(diào)性的步驟。

  生:(略)

  師:這節(jié)課我們來研究函數(shù)的另外一個(gè)性質(zhì)——奇偶性(導(dǎo)入課題,板書課題)。

 。↖I)講授新課

 。ù虺龌脽羝珹)

  師:請(qǐng)同學(xué)們觀察圖形,說出函數(shù)y=x2的圖象有怎樣的對(duì)稱性?

  生:(關(guān)于y軸對(duì)稱)。

  師:從函數(shù)y=f(x)=x2本身來說,其特點(diǎn)是什么?

  生:(當(dāng)自變量取一對(duì)相反數(shù)時(shí),函數(shù)y取同一值)。

  師:(舉例),例如:

  f(-2)=4, f(2)=4,即f(-2)= f(-2);

  f(-1)=1,f(1)=1,即f(-1)= f(1);

  ……

  由于(-x)2=x2 ∴f(-x)= f(x).

  以上情況反映在圖象上就是:如果點(diǎn)(x,y)是函數(shù)y=x2的圖象上的任一點(diǎn),那么,與它關(guān)于y軸的對(duì)稱點(diǎn)(-x,y)也在函數(shù)y=x2的圖象上,這時(shí),我們說函數(shù)y=x2是偶函數(shù)。

  一般地,(板書)如果對(duì)于函數(shù)f(x)的定義域內(nèi)任意一個(gè)x,都有f(-x)= f(x),那么函數(shù)f(x)就叫做偶函數(shù)。

  例如:函數(shù)f(x)=x2+1, f(x)=x4-2等都是偶函數(shù)。

  (打出幻燈片B)

  師:觀察函數(shù)y=x3的圖象,當(dāng)自變量取一對(duì)相反數(shù)時(shí),它們對(duì)應(yīng)的函數(shù)值有什么關(guān)系?

  生:(也是一對(duì)相反數(shù))

  師:這個(gè)事實(shí)反映在圖象上,說明函數(shù)的圖象有怎樣的對(duì)稱性呢?

  生:(函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱)。

  師:也就是說,如果點(diǎn)(x,y)是函數(shù)y=x3的圖象上任一點(diǎn),那么與它關(guān)于原點(diǎn)對(duì)稱的點(diǎn)(-x,-y)也在函數(shù)y=x3的圖象上,這時(shí),我們說函數(shù)y=x3是奇函數(shù)。

  一般地,(板書)如果對(duì)于函數(shù)f(x)的定義域內(nèi)任意一個(gè)x,都有f(-x) =-f(x),那么函數(shù)f(x)就叫做奇函數(shù)。

  例如:函數(shù)f(x)=x,f(x) =都是奇函數(shù)。

  如果函數(shù)f(x)是奇函數(shù)或偶函數(shù),那么我們就說函數(shù)f(x)具有奇偶性。

  注意:從函數(shù)奇偶性的定義可以看出,具有奇偶性的函數(shù):

 。1)其定義域關(guān)于原點(diǎn)對(duì)稱;

  (2)f(-x)= f(x)或f(-x)=- f(x)必有一成立。因此,判斷某一函數(shù)的奇偶性時(shí)。

  首先看其定義域是否關(guān)于原點(diǎn)對(duì)稱,若對(duì)稱,再計(jì)算f(-x),看是等于f(x)還是等于- f(x),然后下結(jié)論;若定義域關(guān)于原點(diǎn)不對(duì)稱,則函數(shù)沒有奇偶性。

  (III)例題分析

  課本P61例4,讓學(xué)生自看去領(lǐng)悟注意的問題并判斷的方法。

  注意:函數(shù)中有奇函數(shù),也有偶函數(shù),但是還有些函數(shù)既不是奇函數(shù)也不是偶函數(shù),唯有f(x)=0(x∈R或x∈(-a,a).a>0)既是奇函數(shù)又是偶函數(shù)。

 。↖V)課堂練習(xí):課本P63練習(xí)1。

 。╒)課時(shí)小結(jié)

  本節(jié)課我們學(xué)習(xí)了函數(shù)奇偶性的定義及判斷函數(shù)奇偶性的方法。特別要注意判斷函數(shù)奇偶性時(shí),一定要首先看其定義域是否關(guān)于原點(diǎn)對(duì)稱,否則將會(huì)導(dǎo)致結(jié)論錯(cuò)誤或做無用功。

 。╒I)課后作業(yè)

  一、課本p65習(xí)題2.3 7。

  二、預(yù)習(xí):課本P62例5、例6。預(yù)習(xí)提綱:

  1.請(qǐng)自己理一下例5的證題思路。

  2.奇偶函數(shù)的圖角各有什么特征?

  板書設(shè)計(jì)

  課題

  奇偶函數(shù)的定義

  注意:

  判斷函數(shù)奇偶性的方法步驟。

  小結(jié):

  教學(xué)后記

  函數(shù)的奇偶性教案 篇7

  今天我說課的課題是高中數(shù)學(xué)人教A版必修一第一章第三節(jié) 函數(shù)的基本性質(zhì)中的函數(shù)的奇偶性 ,下面我將從教材分析,教法、學(xué)法分析,教學(xué)過程,教輔手段,板書設(shè)計(jì)等方面對(duì)本課時(shí)的教學(xué)設(shè)計(jì)進(jìn)行說明。

  一、教材分析

  (一)教材特點(diǎn)、教材的地位與作用

  本節(jié)課的主要學(xué)習(xí)內(nèi)容是理解函數(shù)的奇偶性的概念,掌握利用定義和圖象判斷函數(shù)的奇偶性,以及函數(shù)奇偶性的幾個(gè)性質(zhì)。

  函數(shù)的奇偶性是函數(shù)中的一個(gè)重要內(nèi)容,它不僅與現(xiàn)實(shí)生活中的對(duì)稱性密切相關(guān),而且為后面學(xué)習(xí)冪函數(shù)、指數(shù)函數(shù)、對(duì)數(shù)函數(shù)的性質(zhì)打下了堅(jiān)實(shí)的基礎(chǔ)。因此本節(jié)課的內(nèi)容是至關(guān)重要的,它對(duì)知識(shí)起到了承上啟下的作用。

  (二)重點(diǎn)、難點(diǎn)

  1、本課時(shí)的教學(xué)重點(diǎn)是:函數(shù)的奇偶性及其幾何意義。

  2、本課時(shí)的教學(xué)難點(diǎn)是:判斷函數(shù)的'奇偶性的方法與格式。

  (三)教學(xué)目標(biāo)

  1、知識(shí)與技能:使學(xué)生理解函數(shù)奇偶性的概念,初步掌握判斷函數(shù)奇偶性的方法;

  2、方法與過程:引導(dǎo)學(xué)生通過觀察、歸納、抽象、概括,自主建構(gòu)奇函數(shù)、偶函數(shù)等概念;能運(yùn)用函數(shù)奇偶性概念解決簡單的問題;使學(xué)生領(lǐng)會(huì)數(shù)形結(jié)合思想方法,培養(yǎng)學(xué)生發(fā)現(xiàn)問題、分析問題和解決問題的能力。

  3、情感態(tài)度與價(jià)值觀:在奇偶性概念形成過程中,使學(xué)生體會(huì)數(shù)學(xué)的科學(xué)價(jià)值和應(yīng)用價(jià)值,培養(yǎng)學(xué)生善于觀察、勇于探索的良好習(xí)慣和嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度。

  二、教法、學(xué)法分析

  1.教學(xué)方法:啟發(fā)引導(dǎo)式

  結(jié)合本章實(shí)際,教材簡單易懂,重在應(yīng)用、解決實(shí)際問題,本節(jié)課準(zhǔn)備采用"引導(dǎo)發(fā)現(xiàn)法"進(jìn)行教學(xué),引導(dǎo)發(fā)現(xiàn)法可激發(fā)學(xué)生學(xué)習(xí)的積極性和創(chuàng)造性,分享到探索知識(shí)的方法和樂趣,在解決問題的過程中,體驗(yàn)成功與失敗,從而逐步建立完善的認(rèn)知結(jié)構(gòu).使用多媒體輔助教學(xué),突出了知識(shí)的產(chǎn)生過程,又增加了課堂的趣味性.

  2.學(xué)法指導(dǎo):引導(dǎo)學(xué)生采用自主探索與互相協(xié)作相結(jié)合的學(xué)習(xí)方式。讓每一位學(xué)生都能參與研究,并最終學(xué)會(huì)學(xué)習(xí).

  三、教輔手段

  以學(xué)生獨(dú)立思考、自主探究、合作交流,教師啟發(fā)引導(dǎo)為主,以多媒體演示為輔的教學(xué)方式進(jìn)行教學(xué)

  四、教學(xué)過程

  為了達(dá)到預(yù)期的教學(xué)目標(biāo),我對(duì)整個(gè)教學(xué)過程進(jìn)行了系統(tǒng)地規(guī)劃,設(shè)計(jì)了五個(gè)主要的教學(xué)程序:設(shè)疑導(dǎo)入,觀圖激趣。指導(dǎo)觀察,形成概念。學(xué)生探索、發(fā)展思維。知識(shí)應(yīng)用,鞏固提高。歸納小結(jié),布置作業(yè)。

  (一)設(shè)疑導(dǎo)入,觀圖激趣

  讓學(xué)生感受生活中的美:展示圖片蝴蝶,雪花

  學(xué)生舉例生活中的對(duì)稱現(xiàn)象

  折紙:取一張紙,在其上畫出直角坐標(biāo)系,并在第一象限任畫一函數(shù)的圖象,以y軸為折痕將紙對(duì)折,并在紙的背面(即第二象限)畫出第一象限內(nèi)圖形的痕跡,然后將紙展開,觀察坐標(biāo)系中的圖形。

  問題:將第一象限和第二象限的圖形看成一個(gè)整體,觀察圖象上相應(yīng)的點(diǎn)的坐標(biāo)有什么特點(diǎn)

  以y軸為折痕將紙對(duì)折,然后以x 軸為折痕將紙對(duì)折,在紙的背面(即第三象限)畫出第二象限內(nèi)圖象的痕跡,然后將紙展開.觀察坐標(biāo)喜之中的圖形:

  問題:將第一象限和第三象限的圖形看成一個(gè)整體,觀察圖象上相應(yīng)的點(diǎn)的坐標(biāo)有什么特點(diǎn)

  (二)指導(dǎo)觀察,形成概念

  這節(jié)課我們首先從兩類對(duì)稱:軸對(duì)稱和中心對(duì)稱展開研究.

  思考:請(qǐng)同學(xué)們作出函數(shù)y=x2的圖象,并觀察這兩個(gè)函數(shù)圖象的對(duì)稱性如何

  給出圖象,然后問學(xué)生初中是怎樣判斷圖象關(guān)于軸對(duì)稱呢此時(shí)提出研究方向:今天我們將從數(shù)值角度研究圖象的這種特征體現(xiàn)在自變量與函數(shù)值之間有何規(guī)律

  借助課件演示,學(xué)生會(huì)回答自變量互為相反數(shù),函數(shù)值相等.接著再讓學(xué)生分別計(jì)算f(1),f(-1),f(2),f(-2),學(xué)生很快會(huì)得到f(-1)=f(1),f(-2)=f(2),進(jìn)而提出在定義域內(nèi)是否對(duì)所有的x,都有類似的情況借助課件演示,學(xué)生會(huì)得出結(jié)論,f(-x)=f(x),從而引導(dǎo)學(xué)生先把它們具體化,再用數(shù)學(xué)符號(hào)表示.

  思考:由于對(duì)任一x,必須有一-x與之對(duì)應(yīng),因此函數(shù)的定義域有什么特征

  引導(dǎo)學(xué)生發(fā)現(xiàn)函數(shù)的定義域一定關(guān)于原點(diǎn)對(duì)稱.根據(jù)以上特點(diǎn),請(qǐng)學(xué)生用完整的語言敘述定義,同時(shí)給出板書:

  (1)函數(shù)f(x)的定義域?yàn)锳,且關(guān)于原點(diǎn)對(duì)稱,如果有f(-x)=f(x),則稱f(x)為偶函數(shù)

  提出新問題:函數(shù)圖象關(guān)于原點(diǎn)對(duì)稱,它的自變量與函數(shù)值之間的數(shù)值規(guī)律是什么呢 (同時(shí)打出 y=1/x的圖象讓學(xué)生觀察研究)

  學(xué)生可類比剛才的方法,很快得出結(jié)論,再讓學(xué)生給出奇函數(shù)的定義:

  (2)函數(shù)f(x)的定義域?yàn)锳,且關(guān)于原點(diǎn)對(duì)稱,如果有f(-x)=f(x), 則稱f(x)為奇函數(shù)

  強(qiáng)調(diào)注意點(diǎn):"定義域關(guān)于原點(diǎn)對(duì)稱"的條件必不可少.

  接著再探究函數(shù)奇偶性的判斷方法,根據(jù)前面所授知識(shí),歸納步驟:

  (1)求出函數(shù)的定義域,并判斷是否關(guān)于原點(diǎn)對(duì)稱

  (2)驗(yàn)證f(-x)=f(x)或f(-x)=-f(x) 3)得出結(jié)論

  給出例題,加深理解:

  例1,利用定義,判斷下列函數(shù)的奇偶性:

  (1)f(x)= x2+1

  (2)f(x)=x3-x

  (3)f(x)=x4-3x2-1

  (4)f(x)=1/x3+1

  提出新問題:在例1中的函數(shù)中有奇函數(shù),也有偶函數(shù),但象(4)這樣的是什么函數(shù)呢?

  得到注意點(diǎn):既不是奇函數(shù)也不是偶函數(shù)的稱為非奇非偶函數(shù)

  接著進(jìn)行課堂鞏固,強(qiáng)調(diào)非奇非偶函數(shù)的原因有兩種,一是定義域不關(guān)于原點(diǎn)對(duì)稱,二是定義域雖關(guān)于原點(diǎn)對(duì)稱,但不滿足f(-x)=f(x)或f(-x)=-f(x)

  然后根據(jù)前面引入知識(shí)中,繼續(xù)探究函數(shù)奇偶性的第二種判斷方法:圖象法:

  函數(shù)f(x)是奇函數(shù)=圖象關(guān)于原點(diǎn)對(duì)稱

  函數(shù)f(x)是偶函數(shù)=圖象關(guān)于y軸對(duì)稱

  給出例2:書P63例3,再進(jìn)行當(dāng)堂鞏固,

  1,書P65ex2

  2,說出下列函數(shù)的奇偶性:

  Y=x4 ; Y=x-1 ;Y=x ;Y=x-2 ;Y=x5 ;Y=x-3

  歸納:對(duì)形如:y=xn的函數(shù),若n為偶數(shù)則它為偶函數(shù),若n為奇數(shù),則它為奇函數(shù)

  (三)學(xué)生探索,發(fā)展思維

  思考:1,函數(shù)y=2是什么函數(shù)

  2,函數(shù)y=0有是什么函數(shù)

  (四)布置作業(yè)

  課本P39 習(xí)題1.3(A組) 第6題, B組第3

  函數(shù)的奇偶性教案 篇8

  一、三維目標(biāo):

  知識(shí)與技能:使學(xué)生理解奇函數(shù)、偶函數(shù)的概念,學(xué)會(huì)運(yùn)用定義判斷函數(shù)的奇偶性。

  過程與方法:通過設(shè)置問題情境培養(yǎng)學(xué)生判斷、推斷的能力。

  情感態(tài)度與價(jià)值觀:通過繪制和展示優(yōu)美的函數(shù)圖象來陶冶學(xué)生的情操. 通過組織學(xué)生分組討論,培養(yǎng)學(xué)生主動(dòng)交流的合作精神,使學(xué)生學(xué)會(huì)認(rèn)識(shí)事物的特殊性和一般性之間的關(guān)系,培養(yǎng)學(xué)生善于探索的思維品質(zhì)。

  二、學(xué)習(xí)重、難點(diǎn):

  重點(diǎn):函數(shù)的奇偶性的概念。

  難點(diǎn):函數(shù)奇偶性的判斷。

  三、學(xué)法指導(dǎo):

  學(xué)生在獨(dú)立思考的基礎(chǔ)上進(jìn)行合作交流,在思考、探索和交流的過程中獲得對(duì)函數(shù)奇偶性的全面的體驗(yàn)和理解。對(duì)于奇偶性的應(yīng)用采取講練結(jié)合的方式進(jìn)行處理,使學(xué)生邊學(xué)邊練,及時(shí)鞏固。

  四、知識(shí)鏈接:

  1.復(fù)習(xí)在初中學(xué)習(xí)的軸對(duì)稱圖形和中心對(duì)稱圖形的定義:

  2.分別畫出函數(shù)f (x) =x3與g (x) = x2的圖象,并說出圖象的對(duì)稱性。

  五、學(xué)習(xí)過程:

  函數(shù)的奇偶性:

  (1)對(duì)于函數(shù) ,其定義域關(guān)于原點(diǎn)對(duì)稱:

  如果______________________________________,那么函數(shù) 為奇函數(shù);

  如果______________________________________,那么函數(shù) 為偶函數(shù)。

  (2)奇函數(shù)的圖象關(guān)于__________對(duì)稱,偶函數(shù)的圖象關(guān)于_________對(duì)稱。

  (3)奇函數(shù)在對(duì)稱區(qū)間的增減性 ;偶函數(shù)在對(duì)稱區(qū)間的`增減性 。

  六、達(dá)標(biāo)訓(xùn)練:

  A1、判斷下列函數(shù)的奇偶性。

  (1)f(x)=x4; (2)f(x)=x5;

  (3)f(x)=x+ (4)f(x)=

  A2、二次函數(shù) ( )是偶函數(shù),則b=___________ .

  B3、已知 ,其中 為常數(shù),若 ,則

  _______ .

  B4、若函數(shù) 是定義在R上的奇函數(shù),則函數(shù) 的圖象關(guān)于 ( )

  (A) 軸對(duì)稱 (B) 軸對(duì)稱 (C)原點(diǎn)對(duì)稱 (D)以上均不對(duì)

  B5、如果定義在區(qū)間 上的函數(shù) 為奇函數(shù),則 =_____ .

  C6、若函數(shù) 是定義在R上的奇函數(shù),且當(dāng) 時(shí), ,那么當(dāng)

  時(shí), =_______ .

  D7、設(shè) 是 上的奇函數(shù), ,當(dāng) 時(shí), ,則 等于 ( )

  (A)0.5 (B) (C)1.5 (D)

  D8、定義在 上的奇函數(shù) ,則常數(shù) ____ , _____ .

  七、學(xué)習(xí)小結(jié):

  本節(jié)主要學(xué)習(xí)了函數(shù)的奇偶性,判斷函數(shù)的奇偶性通常有兩種方法,即定義法和圖象法,用定義法判斷函數(shù)的奇偶性時(shí),必須注意首先判斷函數(shù)的定義域是否關(guān)于原點(diǎn)對(duì)稱。單調(diào)性與奇偶性的綜合應(yīng)用是本節(jié)的一個(gè)難點(diǎn),需要學(xué)生結(jié)合函數(shù)的圖象充分理解好單調(diào)性和奇偶性這兩個(gè)性質(zhì)。

  補(bǔ)充練習(xí)題:

  1.下列各圖中,不能是函數(shù)f(x)圖象的是( )

  解析:選C.結(jié)合函數(shù)的定義知,對(duì)A、B、D,定義域中每一個(gè)x都有唯一函數(shù)值與之對(duì)應(yīng);而對(duì)C,對(duì)大于0的x而言,有兩個(gè)不同值與之對(duì)應(yīng),不符合函數(shù)定義,故選C.

  2.若f(1x)=11+x,則f(x)等于( )

  A.11+x(x≠-1) B.1+xx(x≠0)

  C.x1+x(x≠0且x≠-1) D.1+x(x≠-1)

  解析:選C.f(1x)=11+x=1x1+1x(x≠0),

  ∴f(t)=t1+t(t≠0且t≠-1),

  ∴f(x)=x1+x(x≠0且x≠-1).

  3.已知f(x)是一次函數(shù),2f(2)-3f(1)=5,2f(0)-f(-1)=1,則f(x)=( )

  A.3x+2 B.3x-2

  C.2x+3 D.2x-3

  解析:選B.設(shè)f(x)=kx+b(k≠0),

  ∵2f(2)-3f(1)=5,2f(0)-f(-1)=1,

  ∴k-b=5k+b=1,∴k=3b=-2,∴f(x)=3x-2.

【函數(shù)的奇偶性教案】相關(guān)文章:

《函數(shù)的奇偶性》說課稿12-23

《函數(shù)的奇偶性》說課稿07-28

關(guān)于《函數(shù)的奇偶性》說課稿01-18

函數(shù)的奇偶性說課稿設(shè)計(jì)01-12

關(guān)于《函數(shù)的奇偶性》說課稿5篇06-16

初中數(shù)學(xué)函數(shù)教案01-03

《二次函數(shù)》教案02-21

數(shù)學(xué)函數(shù)的教案 15篇03-06

函數(shù)及其表示的教案范文01-26

反比例函數(shù)教案03-28