等腰三角形教案設(shè)計(jì)(通用10篇)
作為一名老師,常常需要準(zhǔn)備教案,借助教案可以更好地組織教學(xué)活動(dòng)。來(lái)參考自己需要的教案吧!下面是小編為大家整理的等腰三角形教案設(shè)計(jì),供大家參考借鑒,希望可以幫助到有需要的朋友。
等腰三角形教案設(shè)計(jì) 篇1
教學(xué)目標(biāo)
(一)教學(xué)知識(shí)點(diǎn)
探索等腰三角形的判定定理.
(二)能力訓(xùn)練要求
通過(guò)探索等腰三角形的判定定理 及其例題的學(xué)習(xí),提高學(xué)生的邏輯思維能力及分析問(wèn)題解決問(wèn)題的能力;
(三)情感與價(jià)值觀要求
通過(guò)對(duì)等腰三角形的判定定理的探索,讓學(xué)生體會(huì)探索學(xué)習(xí)的樂(lè)趣,并通過(guò)等腰三角形的判定定理的簡(jiǎn)單應(yīng)用,加深對(duì)定理的理解.從而培養(yǎng)學(xué)生利用已有知識(shí)解決實(shí)際問(wèn)題的能力.
教學(xué)重點(diǎn)
等腰三角形的判定定理的探索和應(yīng)用。
教學(xué)難點(diǎn)
等腰三角形的判定與性質(zhì)的區(qū)別。
教具準(zhǔn)備
作圖工具和多媒體課件。
教學(xué)方法
引以學(xué)生為主體的討論探索法;
教學(xué)過(guò)程
Ⅰ.提出問(wèn)題,創(chuàng)設(shè)情境
1、等腰三角形性質(zhì)是什么?
性質(zhì)1 等腰三角形的兩底角相等.(等邊對(duì)等角)
性質(zhì)2等腰三角形的頂角的平分線、底邊上的中線、底邊上的高互相重合.
(等腰三角形三線合一)
2、提問(wèn):性質(zhì)1的逆命題是什么?
如果一個(gè)三角形有兩個(gè)角相等, 那么這個(gè)三角形是等腰三角形。 這個(gè)命題正確嗎?下面我們來(lái)探究:
、.導(dǎo)入新課
大膽猜想:
如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對(duì)的邊也相等.(簡(jiǎn)稱(chēng)“等角對(duì)等邊”). 由學(xué)生說(shuō)出已知、求證,使學(xué)生進(jìn)一步熟悉文字轉(zhuǎn)化為數(shù)學(xué)語(yǔ)言的方法.
[例1]已知:在△ABC中,∠B=∠C.
求證:AB=AC. 教師可引導(dǎo)學(xué)生分析:
BA12DC聯(lián)想證有關(guān)線段相等的知識(shí)知道,先需構(gòu)成以AB、AC為對(duì)應(yīng)邊的全等三角形.因?yàn)橐阎螧=∠C,沒(méi)有對(duì)應(yīng)相等邊,所以需添輔助線為兩個(gè)三角形的公共邊,因此輔助線應(yīng)從A點(diǎn)引起.再讓學(xué)生回想等腰三角形中常添的輔助線,學(xué)生可找出作∠BAC的平分線AD或作BC邊上的高AD等證三角形全等的不同方法,從而推出AB=AC. (學(xué)生板演證明過(guò)程)
提問(wèn):你還有不同的證明方法嗎?(由學(xué)生口述證明過(guò)程)
等腰三角形的判定定理:如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對(duì)的邊也相等(簡(jiǎn)寫(xiě)成“等角對(duì)等邊”).
符號(hào)語(yǔ)言:在△ABC中 ∵ ∠B=∠C ∴ AB=AC (等角對(duì)等邊)
3、等腰三角形的性質(zhì)與判定有區(qū)別嗎? 性質(zhì)是:等邊 等角 判定是:等角 等邊
小結(jié):證明三角形是等腰三角形的方法:
、俚妊切味x;
②等腰三角形判定定理.
下面我們通過(guò)幾個(gè)例題來(lái)初步學(xué)習(xí)等腰三角形判定定理的簡(jiǎn)單運(yùn)用.
(演示課件)
[例2]求證:如果三角形一個(gè)外角的平分線平行于三角形的一邊,那么這個(gè)三角形是等腰三角形.
這個(gè)題是文字?jǐn)⑹龅淖C明題,?我們首先得將文字語(yǔ)言轉(zhuǎn)化成相應(yīng)的數(shù)學(xué)語(yǔ)言,再根據(jù)題意畫(huà)出相應(yīng)的幾何圖形.
已知:∠CAE是△ABC的外角,∠1=∠2,AD∥BC.
求證:AB=AC.
同學(xué)們先思考,再分析.(由學(xué)生完成)
要證明AB=AC,可先證明∠B=∠C.
接下來(lái),可以找∠B、∠C與∠
1、∠2的關(guān)系.
(演示課件,括號(hào)內(nèi)部分由學(xué)生來(lái)填)
證明:∵AD∥BC,
∴∠1=∠B(兩直線平行,同位角相等),
∠2=∠C(兩直線平行,內(nèi)錯(cuò)角相等).
又∵∠1=∠2,
∴∠B=∠C,
∴AB=AC(等角對(duì)等邊).
看大屏幕,同學(xué)們?cè)囍瓿蛇@個(gè)題.
(課件演示)
已知:AD∥BC,BD平分∠ABC.
求證:AB=AD.
(投影儀演示學(xué)生證明過(guò)程)
證明:∵AD∥BC,
∴∠ADB=∠DBC(兩直線平行,內(nèi)錯(cuò)角相等).
又∵BD平分∠ABC,
∴∠ABD=∠DBC,
∴∠ABD=∠ADB,
∴AB=AD(等角對(duì)等邊).
下面來(lái)看另一個(gè)例題.
(演示課件)
? 例
2、已知等腰三角形的底邊等于a,底邊上的高等于b,你能用尺規(guī)作圖的方法作出
EA12DBCADBCM A
這個(gè)等腰三角形嗎? a
b
作法:
(1)作線段BC,使BC=a;
(2)作BC的垂直平分線MN,交BC于D;
(3)在MN上截取DA=h,得A點(diǎn);
(4)連結(jié)AB、AC,則△ABC即為所求等腰三角形。
例
3、思考:在△ABC中,已知,BO平分∠ABC,CO平分∠ACB.過(guò)點(diǎn)O作直線EF//BC交AB于E,交AC于F.
(1)請(qǐng)問(wèn)圖中有多少個(gè)等腰三角形?說(shuō)明理由.
(2)線段EF和線段EB,F(xiàn)C之間有沒(méi)有關(guān)系?若有是什么關(guān)系?
、.隨堂練習(xí)
(一)課本P79
1、
2、
3、4.
、.課時(shí)小結(jié)
1、等腰三角形的判定方法有下列幾種:
、俣x
、谂卸ǘɡ。
2、等腰三角形的判定定理與性質(zhì)定理的區(qū)別是:條件和結(jié)論剛好相反。
3、運(yùn)用等腰三角形的判定定理時(shí),應(yīng)注意 在同一個(gè)三角形中。
、.作業(yè)布置:
學(xué)力水平:必做42頁(yè) 1------7題
選做 42頁(yè) 8-----10題
等腰三角形教案設(shè)計(jì) 篇2
教學(xué)目標(biāo)
(一)教學(xué)知識(shí)點(diǎn)
1、等腰三角形的概念。
2、等腰三角形的性質(zhì)。
3、等腰三角形的概念及性質(zhì)的應(yīng)用。
(二)能力訓(xùn)練要求
1、經(jīng)歷作(畫(huà))出等腰三角形的過(guò)程,從軸對(duì)稱(chēng)的角度去體會(huì)等腰三角形的特點(diǎn)。
2、探索并掌握等腰三角形的性質(zhì)。
(三)情感與價(jià)值觀要求
通過(guò)學(xué)生的操作和思考,使學(xué)生掌握等腰三角形的相關(guān)概念,并在探究等腰三角形性質(zhì)的過(guò)程中培養(yǎng)學(xué)生認(rèn)真思考的習(xí)慣。
教學(xué)重點(diǎn)
1、等腰三角形的概念及性質(zhì)。
2、等腰三角形性質(zhì)的應(yīng)用。
教學(xué)難點(diǎn)
等腰三角形三線合一的性質(zhì)的理解及其應(yīng)用。
教學(xué)過(guò)程
Ⅰ、提出問(wèn)題,創(chuàng)設(shè)情境
[師]在前面的學(xué)習(xí)中,我們認(rèn)識(shí)了軸對(duì)稱(chēng)圖形,探究了軸對(duì)稱(chēng)的性質(zhì),并且能夠作出一個(gè)簡(jiǎn)單平面圖形關(guān)于某一直線的軸對(duì)稱(chēng)圖形,還能夠通過(guò)軸對(duì)稱(chēng)變換來(lái)設(shè)計(jì)一些美麗的圖案。這節(jié)課我們就是從軸對(duì)稱(chēng)的角度來(lái)認(rèn)識(shí)一些我們熟悉的幾何圖形。
來(lái)研究:
①三角形是軸對(duì)稱(chēng)圖形嗎?
、谑裁礃拥娜切问禽S對(duì)稱(chēng)圖形?
[生]有的三角形是軸對(duì)稱(chēng)圖形,有的三角形不是。
[師]那什么樣的三角形是軸對(duì)稱(chēng)圖形?
[生]滿足軸對(duì)稱(chēng)的條件的三角形就是軸對(duì)稱(chēng)圖形,也就是將三角形沿某一條直線對(duì)折后兩部分能夠完全重合的就是軸對(duì)稱(chēng)圖形。
[師]很好,我們這節(jié)課就來(lái)認(rèn)識(shí)一種成軸對(duì)稱(chēng)圖形的三角形──等腰三角形。
、、導(dǎo)入新課
在上述過(guò)程中,我們可以得到ABC中AB = AC,這樣就得到了一個(gè)等腰三角形。
[師]按照我們的做法,得到等腰三角形的定義:有兩條邊相等的三角形叫做等腰三角形。相等的兩邊叫做腰,另一邊叫做底邊,兩腰所夾的角叫做頂角,底邊與腰的夾角叫底角。
[師]同學(xué)們通過(guò)自己的思考來(lái)做一個(gè)等腰三角形。并在自己作出的等腰三角形中,注明它的腰、底邊、頂角和底角。
作一條直線L,在L上取點(diǎn)A,在L外取點(diǎn)B,作出點(diǎn)B關(guān)于直線L的對(duì)稱(chēng)點(diǎn)C,連結(jié)AB、BC、CA,則可得到一個(gè)等腰三角形。
[生乙]在甲同學(xué)的做法中,A點(diǎn)可以取直線L上的任意一點(diǎn)。
[師]同學(xué)們來(lái)想一想。
1、等腰三角形是軸對(duì)稱(chēng)圖形嗎?請(qǐng)找出它的對(duì)稱(chēng)軸。
2、等腰三角形的兩底角有什么關(guān)系?
3、頂角的平分線所在的直線是等腰三角形的對(duì)稱(chēng)軸嗎?
4、底邊上的中線所在的直線是等腰三角形的對(duì)稱(chēng)軸嗎?底邊上的高所在的直線呢?
[生甲]等腰三角形是軸對(duì)稱(chēng)圖形。它的對(duì)稱(chēng)軸是頂角的平分線所在的直線。因?yàn)榈妊切蔚膬裳嗟,所以把這兩條腰重合對(duì)折三角形便知:等腰三角形是軸對(duì)稱(chēng)圖形,它的對(duì)稱(chēng)軸是頂角的平分線所在的直線。
[師]同學(xué)們把自己做的等腰三角形進(jìn)行折疊,找出它的對(duì)稱(chēng)軸,并看它的兩個(gè)底角有什么關(guān)系。
[生乙]我把自己做的等腰三角形折疊后,發(fā)現(xiàn)等腰三角形的兩個(gè)底角相等。
[生丙]我把等腰三角形折疊,使兩腰重合,這樣頂角平分線兩旁的部分就可以重合,所以可以驗(yàn)證等腰三角形的對(duì)稱(chēng)軸是頂角的平分線所在的直線。
[生丁]我把等腰三角形沿底邊上的中線對(duì)折,可以看到它兩旁的部分互相重合,說(shuō)明底邊上的中線所在的直線是等腰三角形的對(duì)稱(chēng)軸。
[生戊]老師,我發(fā)現(xiàn)底邊上的高所在的直線也是等腰三角形的對(duì)稱(chēng)軸。
[師]你們說(shuō)的是同一條直線嗎?大家來(lái)動(dòng)手折疊、觀察。
[生齊聲]它們是同一條直線。
[師]很好,F(xiàn)在同學(xué)們來(lái)歸納等腰三角形的性質(zhì)。
等腰三角形的性質(zhì):
1、等腰三角形的兩個(gè)底角相等(簡(jiǎn)寫(xiě)成等邊對(duì)等角)。
2、等腰三角形的頂角平分線,底邊上的中線、底邊上的高互相重合(通常稱(chēng)作三線合一)。
[師]由上面折疊的過(guò)程獲得啟發(fā),我們可以通過(guò)作出等腰三角形的對(duì)稱(chēng)軸,得到兩個(gè)全等的三角形,從而利用三角形的全等來(lái)證明這些性質(zhì)。同學(xué)們現(xiàn)在就動(dòng)手來(lái)寫(xiě)出這些證明過(guò)程)。
[生甲]如右圖,在△ABC中,AB=AC,作底邊BC的中線AD,因?yàn)樗浴鰾AD≌△CAD(SSS)。所以C。
[生乙]如右圖,在△ABC中,AB=AC,作頂角BAC的角平分線AD,因?yàn)樗浴鰾AD≌△CAD。所以BD=CD,BDA=CDA=BDC=90。
[師]很好,甲、乙兩同學(xué)給出了等腰三角形兩個(gè)性質(zhì)的證明,過(guò)程也寫(xiě)得很條理、很規(guī)范。
、蟆⒄n時(shí)小結(jié)
這節(jié)課我們主要探討了等腰三角形的性質(zhì),并對(duì)性質(zhì)作了簡(jiǎn)單的應(yīng)用。等腰三角形是軸對(duì)稱(chēng)圖形,它的兩個(gè)底角相等(等邊對(duì)等角),等腰三角形的對(duì)稱(chēng)軸是它頂角的平分線,并且它的頂角平分線既是底邊上的中線,又是底邊上的高。
我們通過(guò)這節(jié)課的學(xué)習(xí),首先就是要理解并掌握這些性質(zhì),并且能夠靈活應(yīng)用它們。
等腰三角形教案設(shè)計(jì) 篇3
一、教學(xué)目標(biāo)
1.知識(shí)與技能
(1)理解公理,能夠舉一反三,證明等腰三角形的性質(zhì)定理;
(2)能夠通過(guò)全等三角形的判定定理證明等腰三角形的定理,進(jìn)一步感受證明過(guò)程;
(3)熟悉證明的基本步驟和書(shū)寫(xiě)格式.
2.通過(guò)誘導(dǎo)、啟發(fā)學(xué)生利用全等三角形證明等腰三角形的定理.發(fā)展學(xué)生的初步演繹邏輯推理的能力,鼓勵(lì)學(xué)生在交流探索中發(fā)現(xiàn)證明的多樣性,提高邏輯思維水平.
3.情感態(tài)度及價(jià)值觀
使學(xué)生滲透數(shù)學(xué)思想,培養(yǎng)學(xué)生合作交流的意識(shí),同時(shí)使學(xué)生通過(guò)獨(dú)立思考去考慮問(wèn)題的能力加強(qiáng),培養(yǎng)良好的學(xué)習(xí)習(xí)慣.
二、教學(xué)重點(diǎn)、難點(diǎn)
重點(diǎn):探索證明等腰三角形的性質(zhì)定理的思路與方法,掌握證明的基本要求和方法.
難點(diǎn):通過(guò)探索利用全等三角形的判定與定義證明等腰三角形的性質(zhì)定理,明確推理證明的基本要求.
三、教具準(zhǔn)備
(兩個(gè)等腰三角形、彩色粉筆、尺子)
四、教學(xué)過(guò)程
1.復(fù)習(xí)舊知,引入新知
(1)請(qǐng)同學(xué)們回憶判定三角形全等的公理有哪些? 公理:三邊對(duì)應(yīng)相等的兩個(gè)三角形全等(SSS)公理:兩邊及其夾角對(duì)應(yīng)相等的兩個(gè)三角形全等(SAS).公理:兩角及其夾邊對(duì)應(yīng)相等的兩個(gè)三角形全等(ASA)
(2)推論呢?
兩角分別相等且其中一組等角的對(duì)邊相等的兩個(gè)三角形全等(AAS).
(3)根據(jù)全等三角形的定義,我們可以得到 定理:全等三角形的對(duì)應(yīng)邊相等、對(duì)應(yīng)角相等.
學(xué)生討論:等腰三角形有哪些性質(zhì)嗎? 根據(jù)等腰三角形的性質(zhì)給予證明.
設(shè)計(jì)意圖:為學(xué)生對(duì)本節(jié)課證明等腰三角形的定理作鋪墊.
2.新授課
猜想:如果一個(gè)三角形是等腰三角形,那么這個(gè)三角形的兩個(gè)底角有什么關(guān)系呢?如何證明呢?
(1) 畫(huà)出圖形;
(2) 根據(jù)圖形寫(xiě)出已知求證;
(3) 寫(xiě)出推理過(guò)程.
已知:在△ABC中,AB=AC. 求證:∠B=∠C.
分析:(折疊法)要證明兩底角相等,將等腰三角形對(duì)折,折痕將等腰三角形分成了兩個(gè)全等三角形,可作一條輔助線(注意輔助線要畫(huà)成虛線).
設(shè)計(jì)意圖:鍛煉學(xué)生的動(dòng)手操作能力.
你還有其他證明方法嗎?與同伴交流.
作出底邊上的高或作出頂角的平分線,大家可以自己證明.
3.鞏固練習(xí)
在 △ ABC中,AB=AC.
。1)若∠ A=40°, 則∠ C 等于多少度?
(2)若∠B= 72°,則∠ A 等于多少度?
設(shè)計(jì)意圖:加強(qiáng)學(xué)生對(duì)等腰三角形定理的認(rèn)識(shí).
4.引出推論
在圖1-2 中,觀察AD還具有怎樣的性質(zhì)?為什么?由此能得到什么結(jié)論? 我們作出了底邊上的中線,已證明△BAD ≌ △CAD.
所以∠BAD=∠CAD(全等三角形對(duì)應(yīng)角相等),即AD也是頂角的平分線,∠ADB=∠ADC(全等三角形對(duì)應(yīng)角相等).因?yàn)椤螧DC=180°(平角的定義),所以∠ADB=90°,即AD也是底邊上的高線.
由此我們得到以下推論:等腰三角形頂角的角平分線、底邊上的中線及底邊上的高線互相重合.(簡(jiǎn)稱(chēng)“三線合一”)
5.隨堂練習(xí)
(1)在△ABC中,AB=AC,且AD⊥BC,已知BD=2 cm,則DC=___cm, BC=___cm.
。2)在△ABD中,AC⊥BD,垂足為C,AC=BC=BD.
、偾笞C:△ABD是等腰三角形.
②求∠BAD的度數(shù).
圖1-4
6.課堂小結(jié)
等腰三角形的性質(zhì)定理:
等腰三角形的兩個(gè)底角相等(簡(jiǎn)寫(xiě)成“等邊對(duì)等角”). 等腰三角形頂角的平分線平分底邊并且垂直于底邊.
等腰三角形的頂角平分線、底邊上的中線、底邊上的高互相重合.簡(jiǎn)稱(chēng)“三線合一”.
7.教學(xué)反思
等腰三角形教案設(shè)計(jì) 篇4
一、教材分析
v 《等腰三角形》是冀教版八年級(jí)數(shù)學(xué)第十五章第五節(jié)的教學(xué)內(nèi)容,等腰三角形這節(jié)課在教學(xué)中起著比較重要的作用,它是對(duì)三角形的性質(zhì)的呈現(xiàn)。利用軸對(duì)稱(chēng)變換,探索等腰三角形的性質(zhì)是本節(jié)課的主要內(nèi)容。在以往的教科書(shū)中,等腰三角形的有關(guān)內(nèi)容一般安排于介紹三角形的內(nèi)容之中,利用三角形的全等研究等腰三角形的性質(zhì),而本書(shū)中,等腰三角形的有關(guān)內(nèi)容安排在軸對(duì)稱(chēng)變換之后,在掌握了軸對(duì)稱(chēng)的相關(guān)性質(zhì)之后,通過(guò)實(shí)驗(yàn)、觀察,發(fā)現(xiàn)等腰三角形的性質(zhì),再利用三角形的全等的知識(shí)給以證明
二、教學(xué)目標(biāo)
1.知識(shí)與技能:了解等腰三角形的概念,探索并掌握等腰三角形的性質(zhì);
2.數(shù)學(xué)思考:使學(xué)生經(jīng)歷通過(guò)觀察、實(shí)驗(yàn)、探究、歸納、推理、證明的認(rèn)識(shí)圖形的全過(guò)程,上實(shí)驗(yàn)幾何與論證幾何有機(jī)結(jié)合;
3.情感態(tài)度與價(jià)值觀:通過(guò)剪紙等活動(dòng),培養(yǎng)學(xué)生的實(shí)驗(yàn)意識(shí)和探索精神,使學(xué)生進(jìn)一步認(rèn)識(shí)到數(shù)學(xué)與現(xiàn)實(shí)生活的密切聯(lián)系,感受數(shù)學(xué)的嚴(yán)謹(jǐn)性以及結(jié)果的確定性。
三、教學(xué)重、難點(diǎn)
1.重點(diǎn):等腰三角形的性質(zhì)
2.難點(diǎn):“等邊對(duì)等角”的證明
四、教學(xué)方法
動(dòng)手體驗(yàn)、小組、討論、合作、交流、探究驗(yàn)證師生互動(dòng)
五、教、學(xué)具
1.教具:長(zhǎng)方形紙,剪刀,幻燈片。
2.學(xué)具:長(zhǎng)方形紙,剪刀。
六、教學(xué)媒體:
投影儀
七、教與學(xué)互動(dòng)設(shè)計(jì):
一、聯(lián)系生活實(shí)際,創(chuàng)設(shè)問(wèn)題情境。激發(fā)學(xué)生興趣,導(dǎo)入新課
師:同學(xué)們:我們?cè)诩艏堉行蕾p了軸對(duì)稱(chēng)圖形帶給我們的享受,中外建筑中也洋溢著軸對(duì)稱(chēng)圖形的藝術(shù)氣息,國(guó)旗及各種標(biāo)志中軸對(duì)稱(chēng)圖形又向我們展示著它獨(dú)特的社會(huì)含義,而我們親自動(dòng)手實(shí)踐中又體會(huì)了軸對(duì)稱(chēng)圖形帶給我們的二次驚喜!今天老師給大家?guī)?lái)了這個(gè)(展示折紙-----飛機(jī)),你們喜歡折紙嗎?一頁(yè)普普通通的紙經(jīng)過(guò)我們靈巧的雙手就可以變成飛機(jī)、小船和各種有趣的動(dòng)物建筑特等,其實(shí)通過(guò)折紙我們還可以發(fā)現(xiàn)很多數(shù)學(xué)知識(shí)!下面就讓我們折一折,剪一剪,看看會(huì)有什么發(fā)現(xiàn)?
學(xué)生活動(dòng):要求:
(1)拿出事先準(zhǔn)備好的長(zhǎng)方形紙片,對(duì)折,使兩部分重合。
(2)對(duì)折出一角,沿折痕撕開(kāi)或剪開(kāi),你得到了什么圖形?
師:板書(shū): 15.5 等腰三角形
師:為了更好的掌握這節(jié)課的知識(shí),老師把咱們班分了六組,設(shè)計(jì)了幾個(gè)環(huán)節(jié)來(lái)完成,希望同學(xué)們踴躍的參與各個(gè)環(huán)節(jié)中來(lái),好不好?
第一環(huán)節(jié):精彩回放《投影1》
要求:全班分六組,各組在最短的時(shí)間各顯其能,展示自己的才華回答方式為搶答
問(wèn)題:
1、在等腰三角形ABC中,請(qǐng)你介紹
一下哪個(gè)是等腰三角形的腰、底邊、頂角和底角?
2、你知道等腰三角形的哪些知識(shí)?
給同學(xué)們介紹一下?
1、三角形的兩邊之和大于第三邊
2、內(nèi)角和為180度等
師:各組同學(xué)在這個(gè)環(huán)節(jié)中表現(xiàn)的非常出色,連老師也為你們的成功感到驕傲,希望下一個(gè)環(huán)節(jié)再接再勵(lì)。(教師給予鼓勵(lì)性的評(píng)價(jià))
在初中研究一個(gè)圖形的性質(zhì),一般都從對(duì)稱(chēng)性、角、邊、角平分線來(lái)探究,為了使同學(xué)們都成為探究者,請(qǐng)進(jìn)入第二環(huán)節(jié)(投影)
第二環(huán)節(jié):探究等腰三角形的邊、角
師:拿出剪好的等腰三角形觀察說(shuō)出邊和角的特點(diǎn)?你是怎樣得到的?各小組談見(jiàn)解
生:
1、等腰三角形兩腰相等
2、等腰三角形兩底角相等
幾何格式:∵ AB=AC ∴∠B=∠C
學(xué)生活動(dòng):為了培養(yǎng)學(xué)生的思維,啟發(fā)他們從
1、度量法
2折疊法、
3證全等法、三個(gè)方面來(lái)驗(yàn)證等腰三角形兩底角相等這一性質(zhì)
師:利用等腰三角形的邊和角的性質(zhì)可以幫助我們解決一些簡(jiǎn)單的計(jì)算題和證命題《投影2》
要求:各組出一名同學(xué)回答,答對(duì)給各組加1分
1、如果等腰三角形的一個(gè)底角75°那么它的頂角等于( )度?
2、如果等腰三角形的一個(gè)角為90°那么其余兩角( )度?
3、如果等腰三角形的一個(gè)角為100°那么其余兩角( )度?
4、兩邊長(zhǎng)為10和8,則第三邊長(zhǎng)是( )?
學(xué)生總結(jié)解題方法:要求:搶答并加分
(1)等腰三角形中頂角與底角的關(guān)系:頂角十 2 x底角=180°
(2)推論:等邊三角形三個(gè)內(nèi)角相等,每一個(gè)內(nèi)角都等于60°(板書(shū))
結(jié)論:在等腰三角形中
1、當(dāng)一內(nèi)角是銳角時(shí)兩種情況。
2、直角或鈍角時(shí)一種情況
師:各組同學(xué)表現(xiàn)的非常出色,解題的技巧總結(jié)的很好,讓我們帶著勝利的喜悅竟如第三個(gè)環(huán)節(jié)
等腰三角形教案設(shè)計(jì) 篇5
【學(xué)習(xí)目標(biāo)】
1.掌握等腰三角形的有關(guān)概念和性質(zhì),運(yùn)用等腰三角形的性質(zhì)解決問(wèn)題。
2. 通過(guò)學(xué)生之間的交流活動(dòng),培養(yǎng)學(xué)生主動(dòng)與他人合作 交流的意識(shí)和良好的學(xué)習(xí)習(xí)慣。
【學(xué)習(xí)重點(diǎn)】
探索和掌握等腰三角形的性質(zhì)及其應(yīng)用。
【學(xué)習(xí)難點(diǎn)】
等腰三角形的性質(zhì)的應(yīng)用。
【學(xué)習(xí) 過(guò)程】
等腰三角形的有關(guān)概念
《等腰三角形應(yīng)用》講義
課前預(yù)習(xí)
1.SAS,SSS,ASA,AAS,HL
2.這條線段的兩個(gè)端點(diǎn)的距離相等
3.這個(gè)角的兩邊的距離相等
4.這樣的點(diǎn)有4個(gè)
知識(shí)點(diǎn)睛
1.線段垂直平分線上的點(diǎn)到這條線段的兩個(gè)端點(diǎn)的距離相等
2.角平分線上的點(diǎn)到這個(gè)角的兩邊距離相等
3.頂角的平分線 底邊上的中線 底邊上的高 三線合一
《13.3等腰三角形》專(zhuān)項(xiàng)練習(xí)
1、填空題
2、以等腰直角三角形AOB的斜邊為直角邊向外作第2個(gè)等腰直角三角形ABA1,再以等腰直角三角形ABA1的斜邊為直角邊向外作第3個(gè)等腰直角三角形A1BB1,如此作下去。若OA=OB=1,則第 個(gè)等腰直角三角形的面積 。
等腰三角形教案設(shè)計(jì) 篇6
教學(xué)目標(biāo)
1、掌握證明的基本步驟和書(shū)寫(xiě)格式。
2、經(jīng)歷“探索-發(fā)現(xiàn)-猜想-證明”的過(guò)程。能夠用綜合法證明等腰三角形的關(guān)性質(zhì)定理和判定定理。
3、結(jié)合實(shí)例體會(huì)反證法的含義。
教學(xué)重點(diǎn)
等腰三角形的關(guān)性質(zhì)定理和判定定理。
教學(xué)難點(diǎn)
能夠用綜合法證明等腰三角形的關(guān)性質(zhì)定理和判定定理。
教學(xué)方法
教學(xué)后記
教學(xué)內(nèi)容及過(guò)程
等腰三角形性質(zhì)的探究
1.讓學(xué)生回憶上節(jié)課的教學(xué)內(nèi)容,引導(dǎo)學(xué)生思考從等腰三角形中能找到哪些相等的線段。
2.播放課件,結(jié)合剛才的問(wèn)題講解例1的命題,并為后面將此性質(zhì)拓展埋下伏筆。
3.分別演示:
∠ABC,∠ACE=∠ACB,k=,時(shí),BD是否與CE相等。引導(dǎo)學(xué)生探究、猜測(cè)當(dāng)k為其他整數(shù)時(shí),BD與CE的關(guān)系。
4.引導(dǎo)學(xué)生探究,對(duì)于上述例題,當(dāng)AD=AC,AE=AB,k=,時(shí),通過(guò)對(duì)例題的引申,培養(yǎng)學(xué)生的發(fā)散思維,經(jīng)歷探究—猜測(cè)—證明的學(xué)習(xí)過(guò)程。
5.引導(dǎo)學(xué)生進(jìn)一步推廣,把上面3、4中的k取一般的自然數(shù)后,原結(jié)論是否仍然成立?要求學(xué)生說(shuō)明理由或給出證明。
6.對(duì)學(xué)生探究的結(jié)果予以匯總、點(diǎn)評(píng),鼓勵(lì)學(xué)生在自己做題目的時(shí)候也要多思多想,并要求學(xué)生對(duì)猜測(cè)的結(jié)果給出證明。
7.提出新的問(wèn)題,引導(dǎo)學(xué)生從“等角對(duì)等邊”這個(gè)命題的反面思考問(wèn)題,即思考它的逆命題是否成立。適時(shí)地引導(dǎo)學(xué)生思考可以用哪些方法證明?培養(yǎng)學(xué)生的推理能力。
8.歸納學(xué)生提出的各種證法,清楚的分析證明的思路,培養(yǎng)學(xué)生演繹證明的初步的推理能力。
9.啟發(fā)學(xué)生思考:在一個(gè)三角形中,如果兩個(gè)角不相等,那么這兩個(gè)角所對(duì)的邊也不相等,這個(gè)結(jié)論是否成立?如果成立,能否證明。這實(shí)際上是“等邊對(duì)等角”的逆否命題,通過(guò)這樣的表述可以提高學(xué)生的思維能力。
10.總結(jié)這一證明方法,敘述并闡釋反證法的含義,讓學(xué)生了解。
11.小結(jié)這兩個(gè)課時(shí)的內(nèi)容。
作業(yè):
同步練習(xí)
板書(shū)設(shè)計(jì):
1.積極思考,回憶以前所學(xué)知識(shí),聯(lián)想新問(wèn)題。
2.認(rèn)真觀看例1圖形中線段的關(guān)系,積極思考,認(rèn)真聽(tīng)講。
3.對(duì)于課件的演示很感興趣,憑直觀感覺(jué)可以猜測(cè),不管k為何值,BD=CE總成立。基于前面例題的啟發(fā),想要給出證明。一部分學(xué)生可以自己給出證明,一部分學(xué)生需要老師的幫助。
4.在已經(jīng)探究了角的大小的改變對(duì)于BD,CE的等長(zhǎng)性沒(méi)有影響,有了一些成就感之后,又面臨新的任務(wù):BD=CE嗎?因此學(xué)生會(huì)滿懷熱情地進(jìn)行這部分探究活動(dòng),而且有了前面的體驗(yàn),探究也會(huì)比較順利。
5.興致高漲,憑直覺(jué)猜測(cè)結(jié)論仍然成立。但有些學(xué)生給出全部證明可能會(huì)有困難。
6.認(rèn)真聽(tīng)講,在掌握結(jié)論的同時(shí)受到老師的鼓勵(lì),有很高的熱情進(jìn)行后續(xù)學(xué)習(xí)。
7.較少接觸這樣的命題,因此會(huì)感到新鮮,有用已知公理和定理對(duì)命題的真假性進(jìn)行判斷的欲望。在老師指導(dǎo)下完成證明。
8,積極動(dòng)腦思考,認(rèn)真聽(tīng)講,獲得對(duì)演繹證明的初步體會(huì)。
9.可以從直觀上得出結(jié)論,但是此處要求證明,體會(huì)到證明的必要性。遇到認(rèn)知上的沖突,激起學(xué)習(xí)欲望。
10.懷有強(qiáng)烈的求知欲聽(tīng)講,對(duì)反證法有了感性認(rèn)識(shí)和一定的理解。
11.體會(huì)老師的講解,并根據(jù)小結(jié)記憶掌握知識(shí)。
。▽W(xué)生小結(jié):掌握證明的基本步驟和書(shū)寫(xiě)格式。經(jīng)歷“探索-發(fā)現(xiàn)-猜想-證明”的過(guò)程。能夠用綜合法證明等腰三角形的兩條腰上的中線(高)、兩底角的平分線相等,并由特殊結(jié)論歸納出一般結(jié)論。等腰三角形的判定定理。了解反證法的推理方法。)
等腰三角形教案設(shè)計(jì) 篇7
教學(xué)內(nèi)容:
p.30~32
教材簡(jiǎn)析:
本課認(rèn)識(shí)等腰三角形和等邊三角形已經(jīng)它們的特征。教材先給出有兩條邊相等的銳角三角形、直角三角形和鈍角三角形各一個(gè),讓學(xué)生量一量每個(gè)三角形各條邊的長(zhǎng),發(fā)現(xiàn)它們的共同特點(diǎn)是有兩條邊相等,然后概括等腰三角形的'概念。接著通過(guò)用紙對(duì)折簡(jiǎn)出等腰三角形,使學(xué)生進(jìn)一步體會(huì)等腰三角形的特征。最后認(rèn)識(shí)等腰三角形各部分的名稱(chēng),明確等腰三角形的兩個(gè)底角也相等。認(rèn)識(shí)等邊深刻系的編排與等腰三角形類(lèi)似,其中等邊三角形的3個(gè)角都相等的特征是讓學(xué)生在對(duì)折中發(fā)現(xiàn)的。
教學(xué)重點(diǎn):
認(rèn)識(shí)等腰三角形和等邊三角形以及它們的特征
教學(xué)目標(biāo):
1、讓學(xué)生在實(shí)際操作中認(rèn)識(shí)等腰三角形和等邊三角形,知道等腰三角形邊和角的名稱(chēng),知道等腰三角形兩個(gè)底角相等,等邊三角形3個(gè)內(nèi)角相等。
2、讓學(xué)生在探索圖形特征以及相關(guān)結(jié)論的活動(dòng)中,進(jìn)一步發(fā)展空間觀念,鍛煉思維能力。
3、讓學(xué)生在學(xué)習(xí)活動(dòng)中,進(jìn)一步產(chǎn)生對(duì)數(shù)學(xué)的好奇心,增強(qiáng)動(dòng)手能力和創(chuàng)新意識(shí)。
教學(xué)準(zhǔn)備:
長(zhǎng)方形、正方形紙,剪刀、尺等
教學(xué)過(guò)程:
一、復(fù)習(xí):關(guān)于三角形,你有那些知識(shí)?
1、按角分成三種角
2、三個(gè)內(nèi)角和是180度
算第三個(gè)角的度數(shù),如果是一般三角形,那就用180去減;如果是直角三角形,那就是90去減
二、認(rèn)識(shí)等腰三角形
1、比較老師手邊的兩塊三角板,他們有什么相同?(都是直角三角形)
有什么不同?(其中有一塊三角板的兩條邊相等,兩個(gè)角相等;而另一塊三角板的角和邊都不相同。)
指出:像這種兩條邊相等的三角形,我們叫它等腰三角形
2、折一折、剪一剪
取一張長(zhǎng)方形紙,對(duì)折;畫(huà)出它的對(duì)角線,沿對(duì)角線剪開(kāi);展開(kāi)
觀察:這樣剪出來(lái)的三角形就是我們今天要認(rèn)識(shí)的等腰三角形。想一想:為什么要對(duì)折后再剪呢?(這樣剪出來(lái)的兩條邊肯定是相等的。)
除了兩條邊是相等的,還有什么也是相等的?你是怎么知道的?
等腰三角形教案設(shè)計(jì) 篇8
教學(xué)目標(biāo)
1、掌握證明的基本步驟和書(shū)寫(xiě)格式。
2、經(jīng)歷“探索-發(fā)現(xiàn)-猜想-證明”的過(guò)程。能夠用綜合法證明直角三角形的有關(guān)性質(zhì)定理和等邊三角形的判定定理。
教學(xué)重點(diǎn)
等邊三角形的判定定理和直角三角形的性質(zhì)定理。
教學(xué)難點(diǎn)
能夠用綜合法證明等邊三角形的判定定理和直角三角形的性質(zhì)定理。
教學(xué)方法
教學(xué)后記
教學(xué)內(nèi)容及過(guò)程
教師活動(dòng)學(xué)生活動(dòng)
一、定理:一個(gè)角等于60°的等腰三角形是等邊三角形
1.引導(dǎo)學(xué)生回憶上節(jié)課的內(nèi)容,讓學(xué)生思考:等腰三角形滿足什么條件時(shí)便成為等邊三角形?讓學(xué)生對(duì)普遍聯(lián)系和相互轉(zhuǎn)化有一個(gè)感性的認(rèn)識(shí)。
2.肯定學(xué)生的回答,并讓學(xué)生進(jìn)一步思考:有一個(gè)角是60°的等腰三家形是等邊三角形嗎?組織學(xué)生交流自己的想法。滲透分類(lèi)討論的思維方法。
3.關(guān)注學(xué)生得出證明思路的過(guò)程,講評(píng)。講解定理:有一個(gè)角是60°的等腰三角形是等邊三角形。
二、一種特殊直角三角形的性質(zhì)
1.讓學(xué)生拼擺事先準(zhǔn)備好的三角尺,提問(wèn):能拼成一個(gè)怎樣的三角形?能否拼出一個(gè)等邊三角形?并說(shuō)明理由。
2.肯定學(xué)生的發(fā)現(xiàn)和解釋?zhuān)诖嘶A(chǔ)上進(jìn)一步深入提問(wèn):在直角三角形中,30°所對(duì)的直角邊與斜邊有怎樣的大小關(guān)系?
3.演示規(guī)范的證明步驟,同時(shí)引導(dǎo)學(xué)生意識(shí)到:通過(guò)實(shí)際操作探索出的結(jié)論還需要給予理論證明。
4.讓學(xué)生準(zhǔn)備一張正方形紙片,,按要求動(dòng)手折疊。
5.講解例題,應(yīng)用定理。
6.布置學(xué)生做練習(xí)。
練習(xí):課本隨堂練習(xí)1
三、課堂小結(jié):
通過(guò)這節(jié)課的學(xué)習(xí)你學(xué)到了什么知識(shí)?了解了什么證明方法?
四、作業(yè):同步練習(xí)
板書(shū)設(shè)計(jì):
1.積極地自主探索、思考等腰三角形成為等邊三角形的條件?赡軙(huì)從邊和角兩個(gè)角度給出答案。
2.積極思考,通過(guò)老師的點(diǎn)撥,分類(lèi)討論當(dāng)這個(gè)角分別是底角和頂角的情況。
3.認(rèn)真聽(tīng)講,體會(huì)分類(lèi)討論的數(shù)學(xué)思維方法,理解定理。
1.積極動(dòng)手操作,并很快得到結(jié)果:可以拼出等邊三角形。
2.在拼擺的基礎(chǔ)上繼續(xù)探索,得出結(jié)論。并在探索的過(guò)程中得到證明的思路。
3.認(rèn)真聽(tīng)講,體會(huì)從探索和嘗試中得到結(jié)論的過(guò)程和證明方法的步驟,掌握定理。
4.很有興趣地折疊紙片,體會(huì)定理的應(yīng)用。
5.聽(tīng)講,體會(huì)定理的應(yīng)用。
6.認(rèn)真做練習(xí)。
。▽W(xué)生小結(jié):掌握證明與等邊三角形、直角三角形有關(guān)的性質(zhì)定理和判定定理)
等腰三角形教案設(shè)計(jì) 篇9
教學(xué)目標(biāo)
1、了解作為證明基礎(chǔ)的幾條公理的內(nèi)容,掌握證明的基本步驟和書(shū)寫(xiě)格式。
2、經(jīng)歷“探索-發(fā)現(xiàn)-猜想-證明”的過(guò)程。能夠用綜合法證明等腰三角形的關(guān)性質(zhì)定理和判定定理。
教學(xué)重點(diǎn)
了解作為證明基礎(chǔ)的幾條公理的內(nèi)容,掌握證明的基本步驟和書(shū)寫(xiě)格式。
教學(xué)難點(diǎn)
能夠用綜合法證明等腰三角形的關(guān)性質(zhì)定理和判定定理。
教學(xué)方法
觀察法
教學(xué)后記
教學(xué)內(nèi)容及過(guò)程學(xué)生活動(dòng)
一、復(fù)習(xí):
1、什么是等腰三角形?
2、你會(huì)畫(huà)一個(gè)等腰三角形嗎?并把你畫(huà)的等腰三角形栽剪下來(lái)。
3、試用折紙的辦法回憶等腰三角形有哪些性質(zhì)?
二、新課講解:
之前,我們已經(jīng)證明了有關(guān)平行線的一些結(jié)論,運(yùn)用下面的公理和已經(jīng)證明的定理,我們還可以證明有關(guān)三角形的一些結(jié)論。
同學(xué)們和我一起來(lái)回憶上學(xué)期學(xué)過(guò)的公理:
1、兩直線被第三條直線所截,如果同位角相等,那么這兩條直線平行;
2、兩條平行線被第三條直線所截,同位角相等;
3、兩邊夾角對(duì)應(yīng)相等的兩個(gè)三角形全等;(SAS)
4、兩角及其夾邊對(duì)應(yīng)相等的兩個(gè)三角形全等;(ASA)
5、三邊對(duì)應(yīng)相等的兩個(gè)三角形全等;(SSS)
6、全等三角形的對(duì)應(yīng)邊相等,對(duì)應(yīng)角相等。
由公理5、3、4、6可容易證明下面的推論:
推論兩角及其中一角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)三角形全等。(AAS)
證明過(guò)程:
已知:∠A=∠D,∠B=∠E,BC=EF
求證:△ABC≌△DEF
證明:∵∠A=∠D,∠B=∠E(已知)
∵∠A+∠B+∠C=180°,∠D+∠E+∠F=180°(三角形內(nèi)角和等于180°)
∠C=180°—(∠A+∠B)
∠F=180°—(∠D+∠E)
∠C=∠F(等量代換)
BC=EF(已知)
△ABC≌△DEF(ASA)
這個(gè)推論雖然簡(jiǎn)單,但也應(yīng)讓學(xué)生進(jìn)行證明,以熟悉的基本要求和步驟,為下面的推理證明做準(zhǔn)備。
三、議一議:
。1)還記得我們探索過(guò)的等腰三角形的性質(zhì)嗎?
。2)你能利用已有的公理和定理證明這些結(jié)論嗎?
等腰三角形(包括等邊三角形)的性質(zhì)學(xué)生已經(jīng)探索過(guò),這里先讓學(xué)生盡可能回憶出來(lái),然后再考慮哪些能夠立即證明。
定理:等腰三角形的兩個(gè)底角相等。
這一定理可以簡(jiǎn)單敘述為:等邊對(duì)等角。
已知:在ABC中,AB=AC。
求證:∠B=∠C
證明:取BC的中點(diǎn)D,連接AD。
∵AB=AC,BD=CD,AD=AD,
∴△ABC△≌△ACD(SSS)
∴∠B=∠C(全等三角形的對(duì)應(yīng)邊角相等)
四、想一想:
在上圖中,線段AD還具有怎樣的性質(zhì)?為什么?由此你能得到什么結(jié)論?
應(yīng)讓學(xué)生回顧前面的證明過(guò)程,思考線段AD具有的性質(zhì)和特征,從而得到結(jié)論,這一結(jié)合通常簡(jiǎn)述為“三線合一”。
推論等腰三角形的頂角的平分線、底邊上的中線、底邊上的高互相重合。
五、隨堂練習(xí):
做教科書(shū)習(xí)題第1,2題。
六、課堂小結(jié):
通過(guò)本課的學(xué)習(xí)我們了解了作為基礎(chǔ)的幾條公理的內(nèi)容,掌握證明的基本步驟和書(shū)寫(xiě)格式。經(jīng)歷“探索-發(fā)現(xiàn)-猜想-證明”的過(guò)程。能夠用綜合法證明等腰三角形的關(guān)性質(zhì)定理和判定定理。探體會(huì)了反證法的含義。
七、課外作業(yè):
同步練習(xí)
板書(shū)設(shè)計(jì):
這個(gè)推論雖然簡(jiǎn)單,但也應(yīng)讓學(xué)生進(jìn)行證明,以熟悉的基本要求和步驟,為下面的推理證明做準(zhǔn)備。
學(xué)生充分討論問(wèn)題1,借助等腰三角形紙片回憶有關(guān)性質(zhì)
讓學(xué)生盡可能回憶出來(lái),然后再考慮哪些能夠立即證明
讓同學(xué)們通過(guò)探索、合作交流找出其他的證明方法
學(xué)生回顧前面的證明過(guò)程,思考線段AD具有的性質(zhì)和特征,討論圖中存在的相等的線段和相等的角,發(fā)現(xiàn)等腰三角形性質(zhì)定理的推論,從而得到結(jié)論,這一結(jié)合通常簡(jiǎn)述為“三線合一”。
等腰三角形教案設(shè)計(jì) 篇10
教學(xué)目標(biāo)
1.掌握等腰三角形的判定定理.
2.知道等邊三角形的性質(zhì)以及等邊三角形的判定定理.
3.經(jīng)歷折紙、畫(huà)圖、觀察、推理等操作活動(dòng)的合理性進(jìn)行證明的過(guò)程,不斷感受合情推理和演繹推理都是人們正確認(rèn)識(shí)事物的重要途徑.
4.會(huì)用“因?yàn)椤浴碛墒恰被颉案鶕?jù)……因?yàn)椤浴钡确绞絹?lái)進(jìn)行說(shuō)理,進(jìn)一步發(fā)展有條理地思考和表達(dá),提高演繹推理的能力.
教學(xué)重點(diǎn)
熟練地掌握等腰三角形的判定定理.
教學(xué)難點(diǎn)
正確熟練地運(yùn)用定理解決問(wèn)題及簡(jiǎn)潔地邏輯推理.
教學(xué)過(guò)程(教師活動(dòng))
學(xué)生活動(dòng)
設(shè)計(jì)思路
前面我們學(xué)習(xí)了等腰三角形的軸對(duì)稱(chēng)性,說(shuō)說(shuō)你對(duì)等腰三角形的認(rèn)識(shí).
本節(jié)課我們將繼續(xù)學(xué)習(xí)等腰三角形的軸對(duì)稱(chēng)性.
一、創(chuàng)設(shè)情境
△abc是等腰三角形,ab=ac,它的一部分被墨水涂沒(méi)了,只留下一條底邊bc和一個(gè)底角∠c.請(qǐng)同學(xué)們想一想,有沒(méi)有辦法把原來(lái)的等腰三角形abc重新畫(huà)出來(lái)?大家試試看.
1.學(xué)生觀察思考,提出猜想.
2.小組交流討論.
一方面回憶等邊對(duì)等角及其研究方法,為學(xué)生研究等角對(duì)等邊提供研究的方法,另一方面通過(guò)創(chuàng)設(shè)情境,自然地引入課題.
二、探索發(fā)現(xiàn)一
請(qǐng)同學(xué)們分別拿出一張半透明紙,做一個(gè)實(shí)驗(yàn),按以下方法進(jìn)行操作:
(1)在半透明紙上畫(huà)一條長(zhǎng)為6cm的線段bc.
。2)以bc為始邊,分別以點(diǎn)b和點(diǎn)c為頂點(diǎn),在bc的同側(cè)用量角器畫(huà)兩個(gè)相等的銳角,兩角終邊的交點(diǎn)為a.
(3)用刻度尺找出bc的中點(diǎn)d,連接ad,然后沿ad對(duì)折.
問(wèn)題1:ab與ac有什么數(shù)量關(guān)系?
問(wèn)題2:請(qǐng)用語(yǔ)言敘述你的發(fā)現(xiàn).
1.根據(jù)實(shí)驗(yàn)要求進(jìn)行操作.
2.畫(huà)出圖形、觀察猜想.
3.小組合作交流、展示學(xué)習(xí)成果.
演示折疊過(guò)程為進(jìn)一步的說(shuō)理和推理提供思路.
通過(guò)動(dòng)手操作、演示、觀察、猜想、體驗(yàn)、感悟等學(xué)習(xí)活動(dòng),獲得知識(shí)為今后學(xué)生進(jìn)行探索活動(dòng)積累數(shù)學(xué)活動(dòng)經(jīng)驗(yàn).
三、分析證明
思考:我們利用了折疊、度量得到了上述結(jié)論,那么如何證明這些結(jié)論呢?
問(wèn)題3:已知,在△abc中,
∠b=∠c.求證:ab=ac.
引導(dǎo)學(xué)分析問(wèn)題,綜合證明.
思考:你還有不同的證明方法嗎?
問(wèn)題4:“等邊對(duì)等角”與“等角對(duì)等邊”, 它們有什么區(qū)別和聯(lián)系?
思考——討論——展示.
1.學(xué)生獨(dú)立完成證明過(guò)程的基礎(chǔ)上進(jìn)行小組交流.
2.班級(jí)展示:小組代表展示學(xué)習(xí)成果.
在實(shí)驗(yàn)的基礎(chǔ)上獲得問(wèn)題解決的思路,在合情推理的基礎(chǔ)上讓學(xué)生經(jīng)歷演繹推理的過(guò)程,培養(yǎng)學(xué)生的邏輯思維能力.
通過(guò)“你有不同的證明方法嗎”的問(wèn)題,讓學(xué)生學(xué)會(huì)質(zhì)疑,學(xué)會(huì)從不同的角度思考問(wèn)題,培養(yǎng)學(xué)生的發(fā)散性思維,激發(fā)探究問(wèn)題的欲望和興趣,通過(guò)對(duì)問(wèn)題4的思考讓學(xué)生加深對(duì)性質(zhì)與判定的理解.
四、探索發(fā)現(xiàn)二
問(wèn)題5:什么是等邊三角形?等邊三角形與等腰三角形有什么區(qū)別和聯(lián)系?
問(wèn)題6:等邊三角形有什么性質(zhì)?
問(wèn)題7:一個(gè)三角形滿足什么條件就是等邊三角形了?為什么?
1.學(xué)生閱讀教材,進(jìn)行自主學(xué)習(xí).
2.小組討論交流.
3.展示學(xué)習(xí)成果:等邊三角形的概念、等邊三角形的性質(zhì)、
【等腰三角形教案設(shè)計(jì)】相關(guān)文章:
等腰三角形教學(xué)教案設(shè)計(jì)04-11
《等腰三角形性質(zhì)》教案設(shè)計(jì)07-04
等腰三角形課件03-19
等腰三角形的判定10-01
《等腰三角形》說(shuō)課稿08-05
分割等腰三角形的說(shuō)課稿06-23
《等腰三角形》教學(xué)設(shè)計(jì)02-14
《分割等腰三角形》說(shuō)課稿07-06
等腰三角形教學(xué)課件03-29