八年級數(shù)學(xué)課堂教案范文5篇
在教學(xué)工作者開展教學(xué)活動前,常常需要準(zhǔn)備教案,借助教案可以讓教學(xué)工作更科學(xué)化。那么應(yīng)當(dāng)如何寫教案呢?以下是小編幫大家整理的八年級數(shù)學(xué)課堂教案范文5篇,僅供參考,大家一起來看看吧。
八年級數(shù)學(xué)課堂教案范文5篇1
一、教學(xué)目標(biāo):
1、理解極差的定義,知道極差是用來反映數(shù)據(jù)波動范圍的一個量。
2、會求一組數(shù)據(jù)的極差。
二、重點、難點和難點的突破方法
1、重點:會求一組數(shù)據(jù)的極差。
2、難點:本節(jié)課內(nèi)容較容易接受,不存在難點.
三、課堂引入:
下表顯示的是上海20xx年2月下旬和20xx年同期的每日最高氣溫,如何對這兩段時間的氣溫進(jìn)行比較呢?
從表中你能得到哪些信息?
比較兩段時間氣溫的高低,求平均氣溫是一種常用的方法.
經(jīng)計算可以看出,對于2月下旬的這段時間而言,20xx年和20xx年上海地區(qū)的平均氣溫相等,都是12度.
這是不是說,兩個時段的氣溫情況沒有什么差異呢?
根據(jù)兩段時間的氣溫情況可繪成的折線圖.
觀察一下,它們有區(qū)別嗎?說說你觀察得到的結(jié)果.
用一組數(shù)據(jù)中的最大值減去最小值所得到的差來反映這組數(shù)據(jù)的變化范圍.用這種方法得到的差稱為極差(range).
四、例習(xí)題分析
本節(jié)課在教材中沒有相應(yīng)的例題,教材P152習(xí)題分析
問題1可由極差計算公式直接得出,由于差值較大,結(jié)合本題背景可以說明該村貧富差距較大.問題2涉及前一個學(xué)期統(tǒng)計知識首先應(yīng)回憶復(fù)習(xí)已學(xué)知識.問題3答案并不唯一,合理即可。
八年級數(shù)學(xué)課堂教案范文5篇2
教學(xué)目標(biāo):
1、在現(xiàn)實情境中,了解全等形的概念及全等三角形的概念及其性質(zhì)
2、在具體情境中,會使用全等符號“≌”標(biāo)注兩個全等三角形
3、會找出兩個全等三角形的對應(yīng)邊和對應(yīng)角
教學(xué)重點:全等三角形的概念及性質(zhì)
教學(xué)難點:找全等三角形對應(yīng)邊和對應(yīng)角
教學(xué)用具:幻燈、全等三角形、剪刀、學(xué)具袋
教學(xué)過程:
(一)、教學(xué)導(dǎo)入
1、問題:在平面內(nèi),我們學(xué)過哪幾種圖形的變換?共同的性質(zhì)是什么?今天我們在它的基礎(chǔ)上學(xué)習(xí)新的內(nèi)容。
(二)、新授
1、全等形及全等三角形的概念。
A、(幻燈)引出完全重合。
問題:同學(xué)們,你能舉出生活中完全重合的兩個圖形的例子嗎?
讓學(xué)生討論,交流結(jié)果,充分肯定學(xué)生的思考與發(fā)現(xiàn),教師可列舉一些例子。
B、教師歸納
(1)、全等形:能夠完全重合的圖形。
(2)、全等三角形:能夠完全重合的兩個三角形。
2、會使用全等符號“≌”標(biāo)注兩個全等三角形和找兩全等三角形的對應(yīng)邊和對應(yīng)角。
A、學(xué)生活動:每位同學(xué)用剪刀把準(zhǔn)備好的全等三角形剪下來,意見和建議
進(jìn)一步加深概念的理解。
B、教師活動:將剪好的兩個全等三角形貼在黑板上,標(biāo)上頂點字母。
引出:(1)、△ABC全等于△A′B ′C ′,全等于用“≌”表示,讀作“全等于”,記作:△ABC△≌△A′B ′C ′。
(2)、對應(yīng)頂點:互相重合的頂點。
對應(yīng)邊:互相重合的邊。
對應(yīng)角:互相重合的角。
學(xué)生試結(jié)合圖,在ABC△≌△A′B ′C ′中找出對應(yīng)頂點、對應(yīng)邊和對應(yīng)角。
C、師生活動:將疊合的兩個三角形其中一塊沿任意直線作軸反射,擺出這兩個全等三角形不同位置的組合圖形,并指出對應(yīng)元素。
D、(幻燈2)出示習(xí)題,學(xué)生在練習(xí)本上完成,做完后與同學(xué)交流,教師查巡學(xué)生練習(xí)的情況,最后師生歸納找對應(yīng)角,找對應(yīng)邊的方法。
E、(幻燈3)歸納找對應(yīng)角、找對應(yīng)邊的方法。
3、全等三角形的性質(zhì)
A、在各種不同的變換下得到圖形中,引導(dǎo)學(xué)生發(fā)現(xiàn)兩個全等三角形的位置發(fā)生了變化,但他們的對應(yīng)邊、對應(yīng)角不變,得出下面兩條性質(zhì):
性質(zhì)1:全等三角形對應(yīng)邊相等
性質(zhì)2:全等三角形對應(yīng)角相等
B、(幻燈4)找出全等三角形中相等的邊與相等的角。
三、鞏固練習(xí)
教材第71頁“練習(xí)”
四、總結(jié)歸納
1、全等形及全等三角形的基本概念
2、會找全等三角形的對應(yīng)邊與對應(yīng)角
3、全等三角形的性質(zhì)
八年級數(shù)學(xué)課堂教案范文5篇3
教學(xué)目標(biāo):
知識與技能
1.掌握直角三角形的判別條件,并能進(jìn)行簡單應(yīng)用;
2.進(jìn)一步發(fā)展數(shù)感,增加對勾股數(shù)的直觀體驗,培養(yǎng)從實際問題抽象出數(shù)學(xué)問題的能力,建立數(shù)學(xué)模型.
3.會通過邊長判斷一個三角形是否是直角三角形,并會辨析哪些問題應(yīng)用哪個結(jié)論.
情感態(tài)度與價值觀
敢于面對數(shù)學(xué)學(xué)習(xí)中的困難,并有獨立克服困難和運用知識解決問題的成功經(jīng)驗,進(jìn)一步體會數(shù)學(xué)的應(yīng)用價值,發(fā)展運用數(shù)學(xué)的'信心和能力,初步形成積極參與數(shù)學(xué)活動的意識.
教學(xué)重點
運用身邊熟悉的事物,從多種角度發(fā)展數(shù)感,會通過邊長判斷一個三角形是否是直角三角形,并會辨析哪些問題應(yīng)用哪個結(jié)論.
教學(xué)難點
會辨析哪些問題應(yīng)用哪個結(jié)論.
課前準(zhǔn)備
標(biāo)有單位長度的細(xì)繩、三角板、量角器、題篇
教學(xué)過程:
復(fù)習(xí)引入:
請學(xué)生復(fù)述勾股定理;使用勾股定理的前提條件是什么?
已知△ABC的兩邊AB=5,AC=12,則BC=13對嗎?
創(chuàng)設(shè)問題情景:由課前準(zhǔn)備好的一組學(xué)生以小品的形式演示教材第9頁古埃及造直角的方法.
這樣做得到的是一個直角三角形嗎?
提出課題:能得到直角三角形嗎
講授新課:
⒈如何來判斷?(用直角三角板檢驗)
這個三角形的三邊分別是多少?(一份視為1)它們之間存在著怎樣的關(guān)系?
就是說,如果三角形的三邊為,,,請猜想在什么條件下,以這三邊組成的三角形是直角三角形?(當(dāng)滿足較小兩邊的平方和等于較大邊的平方時)
⒉繼續(xù)嘗試:下面的三組數(shù)分別是一個三角形的三邊長a,b,c:
5,12,13;6,8,10;8,15,17.
(1)這三組數(shù)都滿足a2+b2=c2嗎?
(2)分別以每組數(shù)為三邊長作出三角形,用量角器量一量,它們都是直角三角形嗎?
⒊直角三角形判定定理:如果三角形的三邊長a,b,c滿足a2+b2=c2,那么這個三角形是直角三角形.
滿足a2+b2=c2的三個正整數(shù),稱為勾股數(shù).
、蠢1一個零件的形狀如左圖所示,按規(guī)定這個零件中∠A和∠DBC都應(yīng)為直角.工人師傅量得這個零件各邊尺寸如右圖所示,這個零件符合要求嗎?
隨堂練習(xí):
、毕铝袔捉M數(shù)能否作為直角三角形的三邊長?說說你的理由.
、9,12,15;⑵15,36,39;
、12,35,36;⑷12,18,22.
、惨阎?ABC中BC=41,AC=40,AB=9,則此三角形為XXXXXXX三角形,XXXXXX是角.
、乘倪呅蜛BCD中已知AB=3,BC=4,CD=12,DA=13,且∠ABC=900,求這個四邊形的面積.
、戳(xí)題1.3
課堂小結(jié):
⒈直角三角形判定定理:如果三角形的三邊長a,b,c滿足a2+b2=c2,那么這個三角形是直角三角形.
、矟M足a2+b2=c2的三個正整數(shù),稱為勾股數(shù).勾股數(shù)擴(kuò)大相同倍數(shù)后,仍為勾股數(shù).
八年級數(shù)學(xué)課堂教案范文5篇4
一、課堂導(dǎo)入
回顧平行四邊的性質(zhì)定理及定義
1.什么叫平行四邊形?平行四邊形有什么性質(zhì)?
2.將以上的性質(zhì)定理,分別用命題形式敘述出來。(如果……那么……)
根據(jù)平行四邊形的定義,我們研究了平行四邊形的其它性質(zhì),那么如何來判定一個四邊形是平行四邊形呢?除了定義還有什么方法?平行四邊形性質(zhì)定理的逆命題是否成立?
二、新課講解
平行四邊形的判定:
(定義法):兩組對邊分別平行的四邊形的平邊形。
幾何語言表達(dá)定義法:
∵AB∥CD,AD∥BC,∴四邊形ABCD是平行四邊形
解析:一個四邊形只要其兩組對邊分別互相平行,則可判定這個四邊形是一個平行四邊形。
活動:用做好的紙條拼成一個四邊形,其中強(qiáng)調(diào)兩組對邊分別相等。
(平行四邊形判定定理):
(一)兩組對邊分別相等的四邊形是平行四邊形。
設(shè)問:這個命題的前提和結(jié)論是什么?
已知:四邊形ABCD中,AB=CD,BC=DA。
求證:四邊ABCD是平行四邊形。
分析:判定平行四邊形的依據(jù)目前只有定義,也就是須證明兩組對邊分別平行,當(dāng)然是借助第三條直線證明角等。連結(jié)BD。易證三角形全等。
板書證明過程。
小結(jié):用幾何語言表達(dá)用定義法和剛才證明為正確的方法證明一個四邊形是平行四邊形的方法為:
平行四邊形判定定理1:二組對邊分別相等的四邊形是平行四邊形∵AB=CD,AD=BC,∴四邊形ABCD是平行四邊形
(二)設(shè)問:若一個四邊形有一組對邊平行且相等,能否判定這個四邊形也是平行四邊形呢?
活動:課本探究內(nèi)容,并用事準(zhǔn)備好的紙條(紙條的長度相等),先將紙條放置不平行位置,讓學(xué)生設(shè)想若二紙條的端點為四邊形的頂點,則組成的四邊形是不是平行四邊形?若將紙條擺放為平行的位置,則同樣用二紙條的端點為頂點組成的四邊形是不是平行四邊形?
設(shè)問:我們能否用推理的方法證明這個命題是正確的呢?(讓學(xué)生找出題設(shè)、結(jié)論,然后寫出已知、求證及證明過程。)
八年級數(shù)學(xué)課堂教案范文5篇5
一、學(xué)習(xí)目標(biāo)
1.使學(xué)生了解運用公式法分解因式的意義;
2.使學(xué)生掌握用平方差公式分解因式
二、重點難點
重點:掌握運用平方差公式分解因式。
難點:將單項式化為平方形式,再用平方差公式分解因式。
學(xué)習(xí)方法:歸納、概括、總結(jié)。
三、合作學(xué)習(xí)
創(chuàng)設(shè)問題情境,引入新課
在前兩學(xué)時中我們學(xué)習(xí)了因式分解的定義,即把一個多項式分解成幾個整式的積的形式,還學(xué)習(xí)了提公因式法分解因式,即在一個多項式中,若各項都含有相同的因式,即公因式,就可以把這個公因式提出來,從而將多項式化成幾個因式乘積的形式。
如果一個多項式的各項,不具備相同的因式,是否就不能分解因式了呢?當(dāng)然不是,只要我們記住因式分解是多項式乘法的相反過程,就能利用這種關(guān)系找到新的因式分解的方法,本學(xué)時我們就來學(xué)習(xí)另外的一種因式分解的方法——公式法。
1.請看乘法公式
左邊是整式乘法,右邊是一個多項式,把這個等式反過來就是左邊是一個多項式,右邊是整式的乘積。大家判斷一下,第二個式子從左邊到右邊是否是因式分解?
利用平方差公式進(jìn)行的因式分解,第(2)個等式可以看作是因式分解中的平方差公式。
a2—b2=(a+b)(a—b)
2.公式講解
如X2—16
=(X)2—42
=(X+4)(X—4)。
9m2—4n2
=(3m)2—(2n)2
=(3m+2n)(3m—2n)。
四、精講精練
例1、把下列各式分解因式:
(1)25—16X2;(2)9a2—b2。
例2、把下列各式分解因式:
(1)9(m+n)2—(m—n)2;(2)2X3—8X。
補充例題:判斷下列分解因式是否正確。
(1)(a+b)2—c2=a2+2ab+b2—c2。
(2)a4—1=(a2)2—1=(a2+1)?(a2—1)。
五、課堂練習(xí)
教科書練習(xí)。
六、作業(yè)
1、教科書習(xí)題。
2、分解因式:X4—16X3—4X4X2—(y—z)2。
3、若X2—y2=30,X—y=—5求X+y。
【八年級數(shù)學(xué)課堂教案范文5篇】相關(guān)文章:
《鄉(xiāng)愁》微課堂教案11-25
化石吟的課堂教案10-30
古詩《觀滄!氛n堂教案11-17
小學(xué)精選數(shù)學(xué)教案優(yōu)秀范文03-16
八年級數(shù)學(xué)教案【優(yōu)秀3篇】04-06
《數(shù)學(xué)廣角》教案04-06
化石吟課堂教案設(shè)計09-11
《少年王勃》課堂教案11-11