男人天堂日韩,中文字幕18页,天天伊人网,成人性生交大片免费视频

高一數(shù)學(xué)教案

時(shí)間:2022-07-19 19:39:23 教案 我要投稿

高一數(shù)學(xué)教案15篇

  在教學(xué)工作者開(kāi)展教學(xué)活動(dòng)前,就難以避免地要準(zhǔn)備教案,教案有助于學(xué)生理解并掌握系統(tǒng)的知識(shí)。那么大家知道正規(guī)的教案是怎么寫的嗎?以下是小編幫大家整理的高一數(shù)學(xué)教案,歡迎大家分享。

高一數(shù)學(xué)教案15篇

高一數(shù)學(xué)教案1

  教學(xué)目標(biāo)

  1.了解函數(shù)的單調(diào)性和奇偶性的概念,掌握有關(guān)證明和判斷的基本方法.

  (1)了解并區(qū)分增函數(shù),減函數(shù),單調(diào)性,單調(diào)區(qū)間,奇函數(shù),偶函數(shù)等概念.

  (2)能從數(shù)和形兩個(gè)角度認(rèn)識(shí)單調(diào)性和奇偶性.

  (3)能借助圖象判斷一些函數(shù)的單調(diào)性,能利用定義證明某些函數(shù)的單調(diào)性;能用定義判斷某些函數(shù)的奇偶性,并能利用奇偶性簡(jiǎn)化一些函數(shù)圖象的繪制過(guò)程.

  2.通過(guò)函數(shù)單調(diào)性的證明,提高學(xué)生在代數(shù)方面的推理論證能力;通過(guò)函數(shù)奇偶性概念的形成過(guò)程,培養(yǎng)學(xué)生的觀察,歸納,抽象的能力,同時(shí)滲透數(shù)形結(jié)合,從特殊到一般的數(shù)學(xué)思想.

  3.通過(guò)對(duì)函數(shù)單調(diào)性和奇偶性的理論研究,增學(xué)生對(duì)數(shù)學(xué)美的體驗(yàn),培養(yǎng)樂(lè)于求索的精神,形成科學(xué),嚴(yán)謹(jǐn)?shù)难芯繎B(tài)度.

  教學(xué)建議

  一、知識(shí)結(jié)構(gòu)

  (1)函數(shù)單調(diào)性的概念。包括增函數(shù)、減函數(shù)的定義,單調(diào)區(qū)間的概念函數(shù)的單調(diào)性的判定方法,函數(shù)單調(diào)性與函數(shù)圖像的關(guān)系.

  (2)函數(shù)奇偶性的概念。包括奇函數(shù)、偶函數(shù)的定義,函數(shù)奇偶性的判定方法,奇函數(shù)、偶函數(shù)的圖像.

  二、重點(diǎn)難點(diǎn)分析

  (1)本節(jié)教學(xué)的重點(diǎn)是函數(shù)的單調(diào)性,奇偶性概念的形成與認(rèn)識(shí).教學(xué)的難點(diǎn)是領(lǐng)悟函數(shù)單調(diào)性, 奇偶性的本質(zhì),掌握單調(diào)性的證明.

  (2)函數(shù)的單調(diào)性這一性質(zhì)學(xué)生在初中所學(xué)函數(shù)中曾經(jīng)了解過(guò),但只是從圖象上直觀觀察圖象的上升與下降,而現(xiàn)在要求把它上升到理論的高度,用準(zhǔn)確的數(shù)學(xué)語(yǔ)言去刻畫它.這種由形到數(shù)的翻譯,從直觀到抽象的轉(zhuǎn)變對(duì)高一的學(xué)生來(lái)說(shuō)是比較困難的,因此要在概念的形成上重點(diǎn)下功夫.單調(diào)性的證明是學(xué)生在函數(shù)內(nèi)容中首次接觸到的代數(shù)論證內(nèi)容,學(xué)生在代數(shù)論證推理方面的能力是比較弱的,許多學(xué)生甚至還搞不清什么是代數(shù)證明,也沒(méi)有意識(shí)到它的重要性,所以單調(diào)性的證明自然就是教學(xué)中的難點(diǎn).

  三、教法建議

  (1)函數(shù)單調(diào)性概念引入時(shí),可以先從學(xué)生熟悉的一次函數(shù),,二次函數(shù).反比例函數(shù)圖象出發(fā),回憶圖象的增減性,從這點(diǎn)感性認(rèn)識(shí)出發(fā),通過(guò)問(wèn)題逐步向抽象的定義靠攏.如可以設(shè)計(jì)這樣的問(wèn)題:圖象怎么就升上去了?可以從點(diǎn)的坐標(biāo)的角度,也可以從自變量與函數(shù)值的關(guān)系的角度來(lái)解釋,引導(dǎo)學(xué)生發(fā)現(xiàn)自變量與函數(shù)值的的變化規(guī)律,再把這種規(guī)律用數(shù)學(xué)語(yǔ)言表示出來(lái).在這個(gè)過(guò)程中對(duì)一些關(guān)鍵的詞語(yǔ)(某個(gè)區(qū)間,任意,都有)的理解與必要性的認(rèn)識(shí)就可以融入其中,將概念的形成與認(rèn)識(shí)結(jié)合起來(lái).

  (2)函數(shù)單調(diào)性證明的步驟是嚴(yán)格規(guī)定的,要讓學(xué)生按照步驟去做,就必須讓他們明確每一步的必要性,每一步的目的,特別是在第三步變形時(shí),讓學(xué)生明確變換的目標(biāo),到什么程度就可以斷號(hào),在例題的選擇上應(yīng)有不同的變換目標(biāo)為選題的標(biāo)準(zhǔn),以便幫助學(xué)生總結(jié)規(guī)律.

  函數(shù)的奇偶性概念引入時(shí),可設(shè)計(jì)一個(gè)課件,以的圖象為例,讓自變量互為相反數(shù),觀察對(duì)應(yīng)的函數(shù)值的變化規(guī)律,先從具體數(shù)值開(kāi)始,逐漸讓在數(shù)軸上動(dòng)起來(lái),觀察任意性,再讓學(xué)生把看到的用數(shù)學(xué)表達(dá)式寫出來(lái).經(jīng)歷了這樣的過(guò)程,再得到等式時(shí),就比較容易體會(huì)它代表的是無(wú)數(shù)多個(gè)等式,是個(gè)恒等式.關(guān)于定義域關(guān)于原點(diǎn)對(duì)稱的問(wèn)題,也可借助課件將函數(shù)圖象進(jìn)行多次改動(dòng),幫助學(xué)生發(fā)現(xiàn)定義域的對(duì)稱性,同時(shí)還可以借助圖象說(shuō)明定義域關(guān)于原點(diǎn)對(duì)稱只是函數(shù)具備奇偶性的必要條件而不是充分條件.

高一數(shù)學(xué)教案2

  第二十四教時(shí)

  教材:倍角公式,推導(dǎo)和差化積及積化和差公式

  目的:繼續(xù)復(fù)習(xí)鞏固倍角公式,加強(qiáng)對(duì)公式靈活運(yùn)用的訓(xùn)練;同時(shí),讓學(xué)生推導(dǎo)出和差化積和積化和差公式,并對(duì)此有所了解。

  過(guò)程:

  一、 復(fù)習(xí)倍角公式、半角公式和萬(wàn)能公式的推導(dǎo)過(guò)程:

  例一、 已知 , ,tan = ,tan = ,求2 +

  (《教學(xué)與測(cè)試》P115 例三)

  解:

  又∵tan2 0,tan 0 ,

  2 + =

  例二、 已知sin cos = , ,求 和tan的值

  解:∵sin cos =

  化簡(jiǎn)得:

  ∵ 即

  二、 積化和差公式的推導(dǎo)

  sin( + ) + sin( ) = 2sincos sincos = [sin( + ) + sin( )]

  sin( + ) sin( ) = 2cossin cossin = [sin( + ) sin( )]

  cos( + ) + cos( ) = 2coscos coscos = [cos( + ) + cos( )]

  cos( + ) cos( ) = 2sinsin sinsin = [cos( + ) cos( )]

  這套公式稱為三角函數(shù)積化和差公式,熟悉結(jié)構(gòu),不要求記憶,它的優(yōu)點(diǎn)在于將積式化為和差,有利于簡(jiǎn)化計(jì)算。(在告知公式前提下)

  例三、 求證:sin3sin3 + cos3cos3 = cos32

  證:左邊 = (sin3sin)sin2 + (cos3cos)cos2

  = (cos4 cos2)sin2 + (cos4 + cos2)cos2

  = cos4sin2 + cos2sin2 + cos4cos2 + cos2cos2

  = cos4cos2 + cos2 = cos2(cos4 + 1)

  = cos22cos22 = cos32 = 右邊

  原式得證

  三、 和差化積公式的推導(dǎo)

  若令 + = , = ,則 , 代入得:

  這套公式稱為和差化積公式,其特點(diǎn)是同名的正(余)弦才能使用,它與積化和差公式相輔相成,配合使用。

  例四、 已知cos cos = ,sin sin = ,求sin( + )的值

  解:∵cos cos = , ①

  sin sin = , ②

  四、 小結(jié):和差化積,積化和差

  五、 作業(yè):《課課練》P3637 例題推薦 13

  P3839 例題推薦 13

  P40 例題推薦 13

高一數(shù)學(xué)教案3

  一、學(xué)習(xí)目標(biāo):

  知識(shí)與技能:理解直線與平面、平面與平面平行的性質(zhì)定理的含義, 并會(huì)應(yīng)用性質(zhì)解決問(wèn)題

  過(guò)程與方法:能應(yīng)用文字語(yǔ)言、符號(hào)語(yǔ)言、圖形語(yǔ)言準(zhǔn)確地描述直線與平面、平面與平面的性質(zhì)定理

  情感態(tài)度與價(jià)值觀:通過(guò)自主學(xué)習(xí)、主動(dòng)參與、積極探究的學(xué)習(xí)過(guò)程,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的自信心和積極性,培養(yǎng)學(xué)生良好的思維習(xí)慣,滲透化歸與轉(zhuǎn)化的數(shù)學(xué)思想,體會(huì)事物之間相互轉(zhuǎn)化和理論聯(lián)系實(shí)際的辯證唯物主義思想方法

  二、學(xué)習(xí)重、難點(diǎn)

  學(xué)習(xí)重點(diǎn): 直線與平面、平面與平面平行的性質(zhì)及其應(yīng)用

  學(xué)習(xí)難點(diǎn): 將空間問(wèn)題轉(zhuǎn)化為平面問(wèn)題的方法,

  三、學(xué)法指導(dǎo)及要求:

  1、限定45分鐘完成,注意逐字逐句仔細(xì)審題,認(rèn)真思考、獨(dú)立規(guī)范作答,不會(huì)的先繞過(guò),做好記號(hào)。

  2、把學(xué)案中自己易忘、易出錯(cuò)的知識(shí)點(diǎn)和疑難問(wèn)題以及解題方法規(guī)律,及時(shí)整理在解題本,多復(fù)習(xí)記憶。3、A:自主學(xué)習(xí);B:合作探究;C:能力提升4、小班、重點(diǎn)班完成全部,平行班完成A.B類題

  四、知識(shí)鏈接:

  1.空間直線與直線的位置關(guān)系

  2.直線與平面的位置關(guān)系

  3.平面與平面的位置關(guān)系

  4.直線與平面平行的判定定理的符號(hào)表示

  5.平面與平面平行的判定定理的符號(hào)表示

  五、學(xué)習(xí)過(guò)程:

  A問(wèn)題1:

  1)如果一條直線與一個(gè)平面平行,那么這條直線與這個(gè)平面內(nèi)的直線有哪些位置關(guān)系?

  (觀察長(zhǎng)方體)

  2)如果一條直線和一個(gè)平面平行,如何在這個(gè)平面內(nèi)做一條直線與已知直線平行?

  (可觀察教室內(nèi)燈管和地面)

  A問(wèn)題2: 一條直線與平面平行,這條直線和這個(gè)平面內(nèi)直線的位置關(guān)系有幾種可能?

  A問(wèn)題3:如果一條直線 與平面平行,在什么條件下直線 與平面內(nèi)的直線平行呢?

  由于直線 與平面內(nèi)的任何直線無(wú)公共點(diǎn),所以過(guò)直線 的某一平面,若與平面相交,則直線 就平行于這條交線

  B自主探究1:已知: ∥, ,=b。求證: ∥b。

  直線與平面平行的性質(zhì)定理:一條直線與一個(gè)平面平行,則過(guò)這條直線的任一平面與此平面的交線與該直線平行

  符號(hào)語(yǔ)言:

  線面平行性質(zhì)定理作用:證明兩直線平行

  思想:線面平行 線線平行

  例1:有一塊木料如圖,已知棱BC平行于面AC(1)要經(jīng)過(guò)木料表面ABCD 內(nèi)的一點(diǎn)P和棱BC將木料鋸開(kāi),應(yīng)怎樣畫線?(2)所畫的線和面AC有什么關(guān)系?

  例2:已知平面外的兩條平行直線中的一條平行于這個(gè)平面,求證:另一條也平行于這個(gè)平面。

  問(wèn)題5:兩個(gè)平面平行,那么其中一個(gè)平面內(nèi)的直線與另一平面有什么樣的關(guān)系?兩個(gè)平面平行,那么其中一個(gè)平面內(nèi)的直線與另一平面內(nèi)的直線有何關(guān)系?

  自主探究2:如圖,平面,,滿足∥,=a,=b,求證:a∥b

  平面與平面平行的性質(zhì)定理:如果兩個(gè)平行平面同時(shí)和第三個(gè)平面相交,那么它們的交線平行

  符號(hào)語(yǔ)言:

  面面平行性質(zhì)定理作用:證明兩直線平行

  思想:面面平行 線線平行

  例3 求證:夾在兩個(gè)平行平面間的平行線段相等

  六、達(dá)標(biāo)檢測(cè):

  A1.61頁(yè)練習(xí)

  A2.下列判斷正確的是( )

  A. ∥, ,則 ∥b B. =P,b ,則 與b不平行

  C. ,則a∥ D. ∥,b∥,則 ∥b

  B3.直線 ∥平面,P,過(guò)點(diǎn)P平行于 的直線( )

  A.只有一條,不在平面內(nèi) B.有無(wú)數(shù)條,不一定在內(nèi)

  C.只有一條,且在平面內(nèi) D.有無(wú)數(shù)條,一定在內(nèi)

  B4.下列命題錯(cuò)誤的是 ( )

  A. 平行于同一條直線的兩個(gè)平面平行或相交

  B. 平行于同一個(gè)平面的兩個(gè)平面平行

  C. 平行于同一條直線的兩條直線平行

  D. 平行于同一個(gè)平面的兩條直線平行或相交

  B5. 平行四邊形EFGH的四個(gè)頂點(diǎn)E、F、G、H、分別在空間四邊形ABCD的四條邊AB、BC、CD、AD、上,又EF∥BD,則 ( )

  A. EH∥BD,BD不平行與FG

  B. FG∥BD,EH不平行于BD

  C. EH∥BD,F(xiàn)G∥BD

  D. 以上都不對(duì)

  B6.若直線 ∥b, ∥平面,則直線b與平面的位置關(guān)系是

  B7一個(gè)平面上有兩點(diǎn)到另一個(gè)平面的距離相等,則這兩個(gè)平面

  七、小結(jié)與反思:

高一數(shù)學(xué)教案4

  目標(biāo):

  1.讓學(xué)生熟練掌握二次函數(shù)的圖象,并會(huì)判斷一元二次方程根的存在性及根的個(gè)數(shù) ;

  2.讓學(xué)生了解函數(shù)的零點(diǎn)與方程根的聯(lián)系 ;

  3.讓學(xué)生認(rèn)識(shí)到函數(shù)的圖象及基本性質(zhì)(特別是單調(diào)性)在確定函數(shù)零點(diǎn)中的作用 ;

  4。培養(yǎng)學(xué)生動(dòng)手操作的能力 。

  二、教學(xué)重點(diǎn)、難點(diǎn)

  重點(diǎn):零點(diǎn)的概念及存在性的判定;

  難點(diǎn):零點(diǎn)的確定。

  三、復(fù)習(xí)引入

  例1:判斷方程 x2-x-6=0 解的存在。

  分析:考察函數(shù)f(x)= x2-x-6, 其

  圖像為拋物線容易看出,f(0)=-60,

  f(4)0,f(-4)0

  由于函數(shù)f(x)的圖像是連續(xù)曲線,因此,

  點(diǎn)B (0,-6)與點(diǎn)C(4,6)之間的那部分曲線

  必然穿過(guò)x軸,即在區(qū)間(0,4)內(nèi)至少有點(diǎn)

  X1 使f(X1)=0;同樣,在區(qū)間(-4,0) 內(nèi)也至

  少有點(diǎn)X2,使得f( X2)=0,而方程至多有兩

  個(gè)解,所以在(-4,0),(0,4)內(nèi)各有一解

  定義:對(duì)于函數(shù)y=f(x),我們把使f(x)=0的實(shí)數(shù) x叫函數(shù)y=f(x)的零點(diǎn)

  抽象概括

  y=f(x)的圖像與x軸的交點(diǎn)的橫坐標(biāo)叫做該函數(shù)的零點(diǎn),即f(x)=0的解。

  若y=f(x)的圖像在[a,b]上是連續(xù)曲線,且f(a)f(b)0,則在(a,b)內(nèi)至少有一個(gè)零點(diǎn),即f(x)=0在 (a,b)內(nèi)至少有一個(gè)實(shí)數(shù)解。

  f(x)=0有實(shí)根(等價(jià)與y=f(x))與x軸有交點(diǎn)(等價(jià)與)y=f(x)有零點(diǎn)

  所以求方程f(x)=0的根實(shí)際上也是求函數(shù)y=f(x)的零點(diǎn)

  注意:1、這里所說(shuō)若f(a)f(b)0,則在區(qū)間(a,b)內(nèi)方程f(x)=0至少有一個(gè)實(shí)數(shù)解指出了方程f(x)=0的實(shí)數(shù)解的存在性,并不能判斷具體有多少個(gè)解;

  2、若f(a)f(b)0,且y=f(x)在(a,b)內(nèi)是單調(diào)的,那么,方程f(x)=0在(a,b)內(nèi)有唯一實(shí)數(shù)解;

  3、我們所研究的大部分函數(shù),其圖像都是連續(xù)的曲線;

  4、但此結(jié)論反過(guò)來(lái)不成立,如:在[-2,4]中有根,但f(-2)0, f(4) 0,f(-2) f(4)

  5、缺少條件在[a,b]上是連續(xù)曲線則不成立,如:f(x)=1/ x,有f(-1)xf(1)0但沒(méi)有零點(diǎn)。

  四、知識(shí)應(yīng)用

  例2:已知f(x)=3x-x2 ,問(wèn)方程f(x)=0在區(qū)間[-1,0]內(nèi)沒(méi)有實(shí)數(shù)解?為什么?

  解:f(x)=3x-x2的圖像是連續(xù)曲線, 因?yàn)?/p>

  f(-1)=3-1-(-1)2 =-2/30, f(0)=30-(0)2 =-10,

  所以f(-1) f(0) 0,在區(qū)間[-1,0]內(nèi)有零點(diǎn),即f(x)=0在區(qū)間[-1,0]內(nèi)有實(shí)數(shù)解

  練習(xí):求函數(shù)f(x)=lnx+2x-6 有沒(méi)有零點(diǎn)?

  例3 判定(x-2)(x-5)=1有兩個(gè)相異的實(shí)數(shù)解,且有一個(gè)大于5,一個(gè)小于2。

  解:考慮函數(shù)f(x)=(x-2)(x-5)-1,有

  f(5)=(5-2)(5-5)-1=-1

  f(2)=(2-2)(2-5)-1=-1

  又因?yàn)閒(x)的圖像是開(kāi)口向上的拋物線,所以拋物線與橫軸在(5,+)內(nèi)有一個(gè)交點(diǎn),在( -,2)內(nèi)也有一個(gè)交點(diǎn),所以方程式(x-2)(x-5)=1有兩個(gè)相異數(shù)解,且一個(gè)大于5,一個(gè)小于2。

  練習(xí):關(guān)于x的方程2x2-3x+2m=0有兩個(gè)實(shí)根均在[-1,1]內(nèi),求m的取值范圍。

  五、課后作業(yè)

  p133第2,3題

高一數(shù)學(xué)教案5

  學(xué)習(xí)目標(biāo) 1.函數(shù)奇偶性的概念

  2.由函數(shù)圖象研究函數(shù)的奇偶性

  3.函數(shù)奇偶性的判斷

  重點(diǎn):能運(yùn)用函數(shù)奇偶性的定義判斷函數(shù)的奇偶性

  難點(diǎn):理解函數(shù)的奇偶性

  知識(shí)梳理:

  1.軸對(duì)稱圖形:

  2中心對(duì)稱圖形:

  【概念探究】

  1、 畫出函數(shù) ,與 的圖像;并觀察兩個(gè)函數(shù)圖像的對(duì)稱性。

  2、 求出 , 時(shí)的函數(shù)值,寫出 , 。

  結(jié)論: 。

  3、 奇函數(shù):___________________________________________________

  4、 偶函數(shù):______________________________________________________

  【概念深化】

  (1)、強(qiáng)調(diào)定義中任意二字,奇偶性是函數(shù)在定義域上的整體性質(zhì)。

  (2)、奇函數(shù)偶函數(shù)的定義域關(guān)于原點(diǎn)對(duì)稱。

  5、奇函數(shù)與偶函數(shù)圖像的對(duì)稱性:

  如果一個(gè)函數(shù)是奇函數(shù),則這個(gè)函數(shù)的圖像是以坐標(biāo)原點(diǎn)為對(duì)稱中心的__________。反之,如果一個(gè)函數(shù)的圖像是以坐標(biāo)原點(diǎn)為對(duì)稱中心的中心對(duì)稱圖形,則這個(gè)函數(shù)是___________。

  如果一個(gè)函數(shù)是偶函數(shù),則這個(gè)函數(shù)的圖像是以 軸為對(duì)稱軸的__________。反之,如果一個(gè)函數(shù)的圖像是關(guān)于 軸對(duì)稱,則這個(gè)函數(shù)是___________。

  6. 根據(jù)函數(shù)的奇偶性,函數(shù)可以分為_(kāi)___________________________________.

  題型一:判定函數(shù)的奇偶性。

  例1、判斷下列函數(shù)的奇偶性:

  (1) (2) (3)

  (4) (5)

  練習(xí):教材第49頁(yè),練習(xí)A第1題

  總結(jié):根據(jù)例題,你能給出用定義判斷函數(shù)奇偶性的步驟?

  題型二:利用奇偶性求函數(shù)解析式

  例2:若f(x)是定義在R上的奇函數(shù),當(dāng)x0時(shí),f(x)=x(1-x),求當(dāng) 時(shí)f(x)的解析式。

  練習(xí):若f(x)是定義在R上的奇函數(shù),當(dāng)x0時(shí),f(x)=x|x-2|,求當(dāng)x0時(shí)f(x)的解析式。

  已知定義在實(shí)數(shù)集 上的奇函數(shù) 滿足:當(dāng)x0時(shí), ,求 的表達(dá)式

  題型三:利用奇偶性作函數(shù)圖像

  例3 研究函數(shù) 的性質(zhì)并作出它的圖像

  練習(xí):教材第49練習(xí)A第3,4,5題,練習(xí)B第1,2題

  當(dāng)堂檢測(cè)

  1 已知 是定義在R上的奇函數(shù),則( D )

  A. B. C. D.

  2 如果偶函數(shù) 在區(qū)間 上是減函數(shù),且最大值為7,那么 在區(qū)間 上是( B )

  A. 增函數(shù)且最小值為-7 B. 增函數(shù)且最大值為7

  C. 減函數(shù)且最小值為-7 D. 減函數(shù)且最大值為7

  3 函數(shù) 是定義在區(qū)間 上的偶函數(shù),且 ,則下列各式一定成立的是(C )

  A. B. C. D.

  4 已知函數(shù) 為奇函數(shù),若 ,則 -1

  5 若 是偶函數(shù),則 的單調(diào)增區(qū)間是

  6 下列函數(shù)中不是偶函數(shù)的是(D )

  A B C D

  7 設(shè)f(x)是R上的偶函數(shù),切在 上單調(diào)遞減,則f(-2),f(- ),f(3)的大小關(guān)系是( A )

  A B f(- )f(-2) f(3) C f(- )

  8 奇函數(shù) 的圖像必經(jīng)過(guò)點(diǎn)( C )

  A (a,f(-a)) B (-a,f(a)) C (-a,-f(a)) D (a,f( ))

  9 已知函數(shù) 為偶函數(shù),其圖像與x軸有四個(gè)交點(diǎn),則方程f(x)=0的所有實(shí)根之和是( A )

  A 0 B 1 C 2 D 4

  10 設(shè)f(x)是定義在R上的奇函數(shù),且x0時(shí),f(x)= ,則f(-2)=_-5__

  11若f(x)在 上是奇函數(shù),且f(3)_f(-1)

  12.解答題

  用定義判斷函數(shù) 的奇偶性。

  13定義證明函數(shù)的奇偶性

  已知函數(shù) 在區(qū)間D上是奇函數(shù),函數(shù) 在區(qū)間D上是偶函數(shù),求證: 是奇函數(shù)

  14利用函數(shù)的奇偶性求函數(shù)的解析式:

  已知分段函數(shù) 是奇函數(shù),當(dāng) 時(shí)的解析式為 ,求這個(gè)函數(shù)在區(qū)間 上的解析表達(dá)式。

高一數(shù)學(xué)教案6

  案例背景:

  對(duì)數(shù)函數(shù)是函數(shù)中又一類重要的基本初等函數(shù),它是在學(xué)生已經(jīng)學(xué)過(guò)對(duì)數(shù)與常用對(duì)數(shù),反函數(shù)以及指數(shù)函數(shù)的基礎(chǔ)上引入的.故是對(duì)上述知識(shí)的應(yīng)用,也是對(duì)函數(shù)這一重要數(shù)學(xué)思想的進(jìn)一步認(rèn)識(shí)與理解.對(duì)數(shù)函數(shù)的概念,圖象與性質(zhì)的學(xué)習(xí)使學(xué)生的知識(shí)體系更加完整,系統(tǒng),同時(shí)又是對(duì)數(shù)和函數(shù)知識(shí)的拓展與延伸.它是解決有關(guān)自然科學(xué)領(lǐng)域中實(shí)際問(wèn)題的重要工具,是學(xué)生今后學(xué)習(xí)對(duì)數(shù)方程,對(duì)數(shù)不等式的基礎(chǔ).

  案例敘述:

  (一).創(chuàng)設(shè)情境

  (師):前面的幾種函數(shù)都是以形式定義的方式給出的,今天我們將從反函數(shù)的角度介紹新的函數(shù).

  反函數(shù)的實(shí)質(zhì)是研究?jī)蓚(gè)函數(shù)的關(guān)系,所以自然我們應(yīng)從大家熟悉的函數(shù)出發(fā),再研究其反函數(shù).這個(gè)熟悉的函數(shù)就是指數(shù)函數(shù).

  (提問(wèn)):什么是指數(shù)函數(shù)?指數(shù)函數(shù)存在反函數(shù)嗎?

  (學(xué)生): 是指數(shù)函數(shù),它是存在反函數(shù)的.

  (師):求反函數(shù)的步驟

  (由一個(gè)學(xué)生口答求反函數(shù)的過(guò)程):

  由 得 .又 的值域?yàn)?,

  所求反函數(shù)為 .

  (師):那么我們今天就是研究指數(shù)函數(shù)的反函數(shù)-----對(duì)數(shù)函數(shù).

  (二)新課

  1.(板書) 定義:函數(shù) 的反函數(shù) 叫做對(duì)數(shù)函數(shù).

  (師):由于定義就是從反函數(shù)角度給出的,所以下面我們的研究就從這個(gè)角度出發(fā).如從定義中你能了解對(duì)數(shù)函數(shù)的什么性質(zhì)嗎?最初步的認(rèn)識(shí)是什么?

  (教師提示學(xué)生從反函數(shù)的三定與三反去認(rèn)識(shí),學(xué)生自主探究,合作交流)

  (學(xué)生)對(duì)數(shù)函數(shù)的定義域?yàn)?,對(duì)數(shù)函數(shù)的值域?yàn)?,且底數(shù) 就是指數(shù)函數(shù)中的 ,故有著相同的限制條件 .

  (在此基礎(chǔ)上,我們將一起來(lái)研究對(duì)數(shù)函數(shù)的圖像與性質(zhì).)

  2.研究對(duì)數(shù)函數(shù)的圖像與性質(zhì)

  (提問(wèn))用什么方法來(lái)畫函數(shù)圖像?

  (學(xué)生1)利用互為反函數(shù)的兩個(gè)函數(shù)圖像之間的關(guān)系,利用圖像變換法畫圖.

  (學(xué)生2)用列表描點(diǎn)法也是可以的。

  請(qǐng)學(xué)生從中上述方法中選出一種,大家最終確定用圖像變換法畫圖.

  (師)由于指數(shù)函數(shù)的圖像按 和 分成兩種不同的類型,故對(duì)數(shù)函數(shù)的圖像也應(yīng)以1為分界線分成兩種情況 和 ,并分別以 和 為例畫圖.

  具體操作時(shí),要求學(xué)生做到:

  (1) 指數(shù)函數(shù) 和 的圖像要盡量準(zhǔn)確(關(guān)鍵點(diǎn)的位置,圖像的變化趨勢(shì)等).

  (2) 畫出直線 .

  (3) 的圖像在翻折時(shí)先將特殊點(diǎn) 對(duì)稱點(diǎn) 找到,變化趨勢(shì)由靠近 軸對(duì)稱為逐漸靠近 軸,而 的圖像在翻折時(shí)可提示學(xué)生分兩段翻折,在 左側(cè)的先翻,然后再翻在 右側(cè)的部分.

  學(xué)生在筆記本完成具體操作,教師在學(xué)生完成后將關(guān)鍵步驟在黑板上演示一遍,畫出

  和 的圖像.(此時(shí)同底的指數(shù)函數(shù)和對(duì)數(shù)函數(shù)畫在同一坐標(biāo)系內(nèi))如圖:

  教師畫完圖后再利用電腦將 和 的圖像畫在同一坐標(biāo)系內(nèi),如圖:

  然后提出讓學(xué)生根據(jù)圖像說(shuō)出對(duì)數(shù)函數(shù)的性質(zhì)(要求從幾何與代數(shù)兩個(gè)角度說(shuō)明)

  3. 性質(zhì)

  (1) 定義域:

  (2) 值域:

  由以上兩條可說(shuō)明圖像位于 軸的右側(cè).

  (3)圖像恒過(guò)(1,0)

  (4) 奇偶性:既不是奇函數(shù)也不是偶函數(shù),即它不關(guān)于原點(diǎn)對(duì)稱,也不關(guān)于 軸對(duì)稱.

  (5) 單調(diào)性:與 有關(guān).當(dāng) 時(shí),在 上是增函數(shù).即圖像是上升的

  當(dāng) 時(shí),在 上是減函數(shù),即圖像是下降的.

  之后可以追問(wèn)學(xué)生有沒(méi)有最大值和最小值,當(dāng)?shù)玫椒穸ù鸢笗r(shí),可以再問(wèn)能否看待何時(shí)函數(shù)值為正?學(xué)生看著圖可以答出應(yīng)有兩種情況:

  當(dāng) 時(shí),有 ;當(dāng) 時(shí),有 .

  學(xué)生回答后教師可指導(dǎo)學(xué)生巧記這個(gè)結(jié)論的方法:當(dāng)?shù)讛?shù)與真數(shù)在1的同側(cè)時(shí)函數(shù)值為正,當(dāng)?shù)讛?shù)與真數(shù)在1的兩側(cè)時(shí),函數(shù)值為負(fù),并把它當(dāng)作第(6)條性質(zhì)板書記下來(lái).

  最后教師在總結(jié)時(shí),強(qiáng)調(diào)記住性質(zhì)的關(guān)鍵在于要腦中有圖.且應(yīng)將其性質(zhì)與指數(shù)函數(shù)的性質(zhì)對(duì)比記憶.(特別強(qiáng)調(diào)它們單調(diào)性的一致性)

  對(duì)圖像和性質(zhì)有了一定的了解后,一起來(lái)看看它們的應(yīng)用.

  (三).簡(jiǎn)單應(yīng)用

  1. 研究相關(guān)函數(shù)的性質(zhì)

  例1. 求下列函數(shù)的定義域:

  (1) (2) (3)

  先由學(xué)生依次列出相應(yīng)的不等式,其中特別要注意對(duì)數(shù)中真數(shù)和底數(shù)的條件限制.

  2. 利用單調(diào)性比較大小

  例2. 比較下列各組數(shù)的大小

  (1) 與 ; (2) 與 ;

  (3) 與 ; (4) 與 .

  讓學(xué)生先說(shuō)出各組數(shù)的特征即它們的底數(shù)相同,故可以構(gòu)造對(duì)數(shù)函數(shù)利用單調(diào)性來(lái)比大小.最后讓學(xué)生以其中一組為例寫出詳細(xì)的比較過(guò)程.

 三.拓展練習(xí)

  練習(xí):若 ,求 的取值范圍.

四.小結(jié)及作業(yè)

  案例反思:

  本節(jié)的教學(xué)重點(diǎn)是理解對(duì)數(shù)函數(shù)的定義,掌握對(duì)數(shù)函數(shù)的圖象性質(zhì).難點(diǎn)是利用指數(shù)函數(shù)的圖象和性質(zhì)得到對(duì)數(shù)函數(shù)的圖象和性質(zhì).由于對(duì)數(shù)函數(shù)的概念是一個(gè)抽象的形式,學(xué)生不易理解,而且又是建立在指數(shù)與對(duì)數(shù)關(guān)系和反函數(shù)概念的基礎(chǔ)上,通過(guò)互為反函數(shù)的兩個(gè)函數(shù)的關(guān)系由已知函數(shù)研究未知函數(shù)的性質(zhì),這種方法是第一次使用,學(xué)生不適應(yīng),把握不住關(guān)鍵,因而在教學(xué)上采取教師逐步引導(dǎo),學(xué)生自主合作的方式,從學(xué)生熟悉的指數(shù)問(wèn)題出發(fā),通過(guò)對(duì)指數(shù)函數(shù)的認(rèn)識(shí)逐步轉(zhuǎn)化為對(duì)對(duì)數(shù)函數(shù)的認(rèn)識(shí),而且畫對(duì)數(shù)函數(shù)圖象時(shí),既要考慮到對(duì)底數(shù)的分類討論而且對(duì)每一類問(wèn)題也可以多選幾個(gè)不同的底,畫在同一個(gè)坐標(biāo)系內(nèi),便于觀察圖象的特征,找出共性,歸納性質(zhì).

  在教學(xué)中一定要讓學(xué)生動(dòng)手做,動(dòng)腦想,大膽猜,要以學(xué)生的研究為主,教師只是不斷地以反函數(shù)這條主線引導(dǎo)學(xué)生思考的方向.這樣既增強(qiáng)了學(xué)生的參與意識(shí)又教給他們思考問(wèn)題的方法,獲取知識(shí)的途徑,使學(xué)生學(xué)有所思,思有所得,練有所獲,,從而提高學(xué)習(xí)興趣.

高一數(shù)學(xué)教案7

  教材分析:函數(shù)是描述客觀世界變化規(guī)律的重要數(shù)學(xué)模型.高中階段不僅把函數(shù)看成變量之間的依賴關(guān)系,同時(shí)還用集合與對(duì)應(yīng)的語(yǔ)言刻畫函數(shù),高中階段更注重函數(shù)模型化的思想.

  教學(xué)目的:

 。1)通過(guò)豐富實(shí)例,進(jìn)一步體會(huì)函數(shù)是描述變量之間的依賴關(guān)系的重要數(shù)學(xué)模型,在此基礎(chǔ)上學(xué)習(xí)用集合與對(duì)應(yīng)的語(yǔ)言來(lái)刻畫函數(shù),體會(huì)對(duì)應(yīng)關(guān)系在刻畫函數(shù)概念中的作用;

 。2)了解構(gòu)成函數(shù)的要素;

 。3)會(huì)求一些簡(jiǎn)單函數(shù)的定義域和值域;

 。4)能夠正確使用“區(qū)間”的符號(hào)表示某些函數(shù)的定義域;

  教學(xué)重點(diǎn):理解函數(shù)的模型化思想,用合與對(duì)應(yīng)的語(yǔ)言來(lái)刻畫函數(shù);

  教學(xué)難點(diǎn):符號(hào)“y=f(x)”的含義,函數(shù)定義域和值域的區(qū)間表示;

  教學(xué)過(guò)程:

  一、引入課題

  1.復(fù)習(xí)初中所學(xué)函數(shù)的概念,強(qiáng)調(diào)函數(shù)的模型化思想;

  2.閱讀課本引例,體會(huì)函數(shù)是描述客觀事物變化規(guī)律的數(shù)學(xué)模型的思想:

 。1)炮彈的射高與時(shí)間的變化關(guān)系問(wèn)題;

 。2)南極臭氧空洞面積與時(shí)間的變化關(guān)系問(wèn)題;

 。3)“八五”計(jì)劃以來(lái)我國(guó)城鎮(zhèn)居民的恩格爾系數(shù)與時(shí)間的變化關(guān)系問(wèn)題

  備用實(shí)例:

  我國(guó)xxxx年4月份非典疫情統(tǒng)計(jì):

  日期222324252627282930

  新增確診病例數(shù)1061058910311312698152101

  3.引導(dǎo)學(xué)生應(yīng)用集合與對(duì)應(yīng)的語(yǔ)言描述各個(gè)實(shí)例中兩個(gè)變量間的依賴關(guān)系;

  4.根據(jù)初中所學(xué)函數(shù)的概念,判斷各個(gè)實(shí)例中的兩個(gè)變量間的關(guān)系是否是函數(shù)關(guān)系.

  二、新課教學(xué)

 。ㄒ唬┖瘮(shù)的有關(guān)概念

  1.函數(shù)的概念:

  設(shè)A、B是非空的數(shù)集,如果按照某個(gè)確定的對(duì)應(yīng)關(guān)系f,使對(duì)于集合A中的任意一個(gè)數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對(duì)應(yīng),那么就稱f:A→B為從集合A到集合B的一個(gè)函數(shù)(function).

  記作:y=f(x),x∈A.

  其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域(domain);與x的值相對(duì)應(yīng)的y值叫做函數(shù)值,函數(shù)值的集合{f(x)|x∈A}叫做函數(shù)的值域(range).

  注意:

  ○1“y=f(x)”是函數(shù)符號(hào),可以用任意的字母表示,如“y=g(x)”;

  ○2函數(shù)符號(hào)“y=f(x)”中的f(x)表示與x對(duì)應(yīng)的函數(shù)值,一個(gè)數(shù),而不是f乘x.

  2.構(gòu)成函數(shù)的三要素:

  定義域、對(duì)應(yīng)關(guān)系和值域

  3.區(qū)間的概念

 。1)區(qū)間的分類:開(kāi)區(qū)間、閉區(qū)間、半開(kāi)半閉區(qū)間;

  (2)無(wú)窮區(qū)間;

 。3)區(qū)間的數(shù)軸表示.

  4.一次函數(shù)、二次函數(shù)、反比例函數(shù)的定義域和值域討論

 。ㄓ蓪W(xué)生完成,師生共同分析講評(píng))

 。ǘ┑湫屠}

  1.求函數(shù)定義域

  課本P20例1

  解:(略)

  說(shuō)明:

  ○1函數(shù)的定義域通常由問(wèn)題的實(shí)際背景確定,如果課前三個(gè)實(shí)例;

  ○2如果只給出解析式y(tǒng)=f(x),而沒(méi)有指明它的定義域,則函數(shù)的定義域即是指能使這個(gè)式子有意義的實(shí)數(shù)的集合;

  ○3函數(shù)的定義域、值域要寫成集合或區(qū)間的形式.

  鞏固練習(xí):課本P22第1題

  2.判斷兩個(gè)函數(shù)是否為同一函數(shù)

  課本P21例2

  解:(略)

  說(shuō)明:

  ○1構(gòu)成函數(shù)三個(gè)要素是定義域、對(duì)應(yīng)關(guān)系和值域.由于值域是由定義域和對(duì)應(yīng)關(guān)系決定的,所以,如果兩個(gè)函數(shù)的定義域和對(duì)應(yīng)關(guān)系完全一致,即稱這兩個(gè)函數(shù)相等(或?yàn)橥缓瘮?shù))

  ○2兩個(gè)函數(shù)相等當(dāng)且僅當(dāng)它們的定義域和對(duì)應(yīng)關(guān)系完全一致,而與表示自變量和函數(shù)值的字母無(wú)關(guān)。

  鞏固練習(xí):

  ○1課本P22第2題

  ○2判斷下列函數(shù)f(x)與g(x)是否表示同一個(gè)函數(shù),說(shuō)明理由?

 。1)f(x)=(x-1)0;g(x)=1

 。2)f(x)=x;g(x)=

  (3)f(x)=x2;f(x)=(x+1)2

 。4)f(x)=|x|;g(x)=

  (三)課堂練習(xí)

  求下列函數(shù)的定義域

 。1)

 。2)

 。3)

 。4)

 。5)

 。6)

  三、歸納小結(jié),強(qiáng)化思想

  從具體實(shí)例引入了函數(shù)的的概念,用集合與對(duì)應(yīng)的語(yǔ)言描述了函數(shù)的定義及其相關(guān)概念,介紹了求函數(shù)定義域和判斷同一函數(shù)的典型題目,引入了區(qū)間的概念來(lái)表示集合。

  四、作業(yè)布置

  課本P28習(xí)題1.2(A組)第1—7題(B組)第1題

高一數(shù)學(xué)教案8

  教學(xué)目標(biāo)

  1.理解等比數(shù)列的概念,掌握等比數(shù)列的通項(xiàng)公式,并能運(yùn)用公式解決簡(jiǎn)單的問(wèn)題.

 。1)正確理解等比數(shù)列的定義,了解公比的概念,明確一個(gè)數(shù)列是等比數(shù)列的限定條件,能根據(jù)定義判斷一個(gè)數(shù)列是等比數(shù)列,了解等比中項(xiàng)的概念;

 。2)正確認(rèn)識(shí)使用等比數(shù)列的表示法,能靈活運(yùn)用通項(xiàng)公式求等比數(shù)列的首項(xiàng)、公比、項(xiàng)數(shù)及指定的項(xiàng);

  (3)通過(guò)通項(xiàng)公式認(rèn)識(shí)等比數(shù)列的性質(zhì),能解決某些實(shí)際問(wèn)題.

  2.通過(guò)對(duì)等比數(shù)列的研究,逐步培養(yǎng)學(xué)生觀察、類比、歸納、猜想等思維品質(zhì).

  3.通過(guò)對(duì)等比數(shù)列概念的歸納,進(jìn)一步培養(yǎng)學(xué)生嚴(yán)密的思維習(xí)慣,以及實(shí)事求是的科學(xué)態(tài)度.

  教學(xué)建議

  教材分析

 。1)知識(shí)結(jié)構(gòu)

  等比數(shù)列是另一個(gè)簡(jiǎn)單常見(jiàn)的數(shù)列,研究?jī)?nèi)容可與等差數(shù)列類比,首先歸納出等比數(shù)列的定義,導(dǎo)出通項(xiàng)公式,進(jìn)而研究圖像,又給出等比中項(xiàng)的概念,最后是通項(xiàng)公式的應(yīng)用.

 。2)重點(diǎn)、難點(diǎn)分析

  教學(xué)重點(diǎn)是等比數(shù)列的定義和對(duì)通項(xiàng)公式的認(rèn)識(shí)與應(yīng)用,教學(xué)難點(diǎn)在于等比數(shù)列通項(xiàng)公式的推導(dǎo)和運(yùn)用.

 、倥c等差數(shù)列一樣,等比數(shù)列也是特殊的數(shù)列,二者有許多相同的性質(zhì),但也有明顯的區(qū)別,可根據(jù)定義與通項(xiàng)公式得出等比數(shù)列的特性,這些是教學(xué)的重點(diǎn).

 、陔m然在等差數(shù)列的學(xué)習(xí)中曾接觸過(guò)不完全歸納法,但對(duì)學(xué)生來(lái)說(shuō)仍然不熟悉;在推導(dǎo)過(guò)程中,需要學(xué)生有一定的觀察分析猜想能力;第一項(xiàng)是否成立又須補(bǔ)充說(shuō)明,所以通項(xiàng)公式的推導(dǎo)是難點(diǎn).

 、蹖(duì)等差數(shù)列、等比數(shù)列的綜合研究離不開(kāi)通項(xiàng)公式,因而通項(xiàng)公式的靈活運(yùn)用既是重點(diǎn)又是難點(diǎn).

  教學(xué)建議

 。1)建議本節(jié)課分兩課時(shí),一節(jié)課為等比數(shù)列的概念,一節(jié)課為等比數(shù)列通項(xiàng)公式的應(yīng)用.

 。2)等比數(shù)列概念的引入,可給出幾個(gè)具體的例子,由學(xué)生概括這些數(shù)列的相同特征,從而得到等比數(shù)列的定義.也可將幾個(gè)等差數(shù)列和幾個(gè)等比數(shù)列混在一起給出,由學(xué)生將這些數(shù)列進(jìn)行分類,有一種是按等差、等比來(lái)分的,由此對(duì)比地概括等比數(shù)列的定義.

  (3)根據(jù)定義讓學(xué)生分析等比數(shù)列的公比不為0,以及每一項(xiàng)均不為0的特性,加深對(duì)概念的理解.

 。4)對(duì)比等差數(shù)列的表示法,由學(xué)生歸納等比數(shù)列的各種表示法. 啟發(fā)學(xué)生用函數(shù)觀點(diǎn)認(rèn)識(shí)通項(xiàng)公式,由通項(xiàng)公式的結(jié)構(gòu)特征畫數(shù)列的圖象.

  (5)由于有了等差數(shù)列的研究經(jīng)驗(yàn),等比數(shù)列的研究完全可以放手讓學(xué)生自己解決,教師只需把握課堂的節(jié)奏,作為一節(jié)課的組織者出現(xiàn).

 。6)可讓學(xué)生相互出題,解題,講題,充分發(fā)揮學(xué)生的主體作用.

  教學(xué)設(shè)計(jì)示例

  課題:等比數(shù)列的概念

  教學(xué)目標(biāo)

  1.通過(guò)教學(xué)使學(xué)生理解等比數(shù)列的概念,推導(dǎo)并掌握通項(xiàng)公式.

  2.使學(xué)生進(jìn)一步體會(huì)類比、歸納的思想,培養(yǎng)學(xué)生的觀察、概括能力.

  3.培養(yǎng)學(xué)生勤于思考,實(shí)事求是的精神,及嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度.

  教學(xué)重點(diǎn),難點(diǎn)

  重點(diǎn)、難點(diǎn)是等比數(shù)列的定義的歸納及通項(xiàng)公式的推導(dǎo).

  教學(xué)用具

  投影儀,多媒體軟件,電腦.

  教學(xué)方法

  討論、談話法.

  教學(xué)過(guò)程

  一、提出問(wèn)題

  給出以下幾組數(shù)列,將它們分類,說(shuō)出分類標(biāo)準(zhǔn).(幻燈片)

 、伲2,1,4,7,10,13,16,19,…

 、8,16,32,64,128,256,…

 、1,1,1,1,1,1,1,…

  ④243,81,27,9,3,1, , ,…

 、31,29,27,25,23,21,19,…

  ⑥1,-1,1,-1,1,-1,1,-1,…

  ⑦1,-10,100,-1000,10000,-100000,…

 、0,0,0,0,0,0,0,…

  由學(xué)生發(fā)表意見(jiàn)(可能按項(xiàng)與項(xiàng)之間的關(guān)系分為遞增數(shù)列、遞減數(shù)列、常數(shù)數(shù)列、擺動(dòng)數(shù)列,也可能分為等差、等比兩類),統(tǒng)一一種分法,其中②③④⑥⑦為有共同性質(zhì)的一類數(shù)列(學(xué)生看不出③的情況也無(wú)妨,得出定義后再考察③是否為等比數(shù)列).

  二、講解新課

  請(qǐng)學(xué)生說(shuō)出數(shù)列②③④⑥⑦的共同特性,教師指出實(shí)際生活中也有許多類似的例子,如變形蟲(chóng)分裂問(wèn)題.假設(shè)每經(jīng)過(guò)一個(gè)單位時(shí)間每個(gè)變形蟲(chóng)都分裂為兩個(gè)變形蟲(chóng),再假設(shè)開(kāi)始有一個(gè)變形蟲(chóng),經(jīng)過(guò)一個(gè)單位時(shí)間它分裂為兩個(gè)變形蟲(chóng),經(jīng)過(guò)兩個(gè)單位時(shí)間就有了四個(gè)變形蟲(chóng),…,一直進(jìn)行下去,記錄下每個(gè)單位時(shí)間的變形蟲(chóng)個(gè)數(shù)得到了一列數(shù) 這個(gè)數(shù)列也具有前面的幾個(gè)數(shù)列的共同特性,這是我們將要研究的另一類數(shù)列——等比數(shù)列. (這里播放變形蟲(chóng)分裂的多媒體軟件的第一步)

  等比數(shù)列(板書)

  1.等比數(shù)列的定義(板書)

  根據(jù)等比數(shù)列與等差數(shù)列的名字的區(qū)別與聯(lián)系,嘗試給等比數(shù)列下定義.學(xué)生一般回答可能不夠完美,多數(shù)情況下,有了等差數(shù)列的基礎(chǔ)是可以由學(xué)生概括出來(lái)的.教師寫出等比數(shù)列的定義,標(biāo)注出重點(diǎn)詞語(yǔ).

  請(qǐng)學(xué)生指出等比數(shù)列②③④⑥⑦各自的公比,并思考有無(wú)數(shù)列既是等差數(shù)列又是等比數(shù)列.學(xué)生通過(guò)觀察可以發(fā)現(xiàn)③是這樣的數(shù)列,教師再追問(wèn),還有沒(méi)有其他的例子,讓學(xué)生再舉兩例.而后請(qǐng)學(xué)生概括這類數(shù)列的一般形式,學(xué)生可能說(shuō)形如 的數(shù)列都滿足既是等差又是等比數(shù)列,讓學(xué)生討論后得出結(jié)論:當(dāng) 時(shí),數(shù)列 既是等差又是等比數(shù)列,當(dāng) 時(shí),它只是等差數(shù)列,而不是等比數(shù)列.教師追問(wèn)理由,引出對(duì)等比數(shù)列的認(rèn)識(shí):

  2.對(duì)定義的認(rèn)識(shí)(板書)

  (1)等比數(shù)列的首項(xiàng)不為0;

 。2)等比數(shù)列的每一項(xiàng)都不為0,即 ;

  問(wèn)題:一個(gè)數(shù)列各項(xiàng)均不為0是這個(gè)數(shù)列為等比數(shù)列的什么條件?

  (3)公比不為0.

  用數(shù)學(xué)式子表示等比數(shù)列的定義.

  是等比數(shù)列 ①.在這個(gè)式子的寫法上可能會(huì)有一些爭(zhēng)議,如寫成 ,可讓學(xué)生研究行不行,好不好;接下來(lái)再問(wèn),能否改寫為 是等比數(shù)列 ?為什么不能?

  式子 給出了數(shù)列第 項(xiàng)與第 項(xiàng)的數(shù)量關(guān)系,但能否確定一個(gè)等比數(shù)列?(不能)確定一個(gè)等比數(shù)列需要幾個(gè)條件?當(dāng)給定了首項(xiàng)及公比后,如何求任意一項(xiàng)的值?所以要研究通項(xiàng)公式.

  3.等比數(shù)列的通項(xiàng)公式(板書)

  問(wèn)題:用 和 表示第 項(xiàng) .

 、俨煌耆珰w納法

 、诏B乘法

  ,… , ,這 個(gè)式子相乘得 ,所以 .

 。ò鍟1)等比數(shù)列的通項(xiàng)公式

  得出通項(xiàng)公式后,讓學(xué)生思考如何認(rèn)識(shí)通項(xiàng)公式.

 。ò鍟2)對(duì)公式的認(rèn)識(shí)

  由學(xué)生來(lái)說(shuō),最后歸結(jié):

 、俸瘮(shù)觀點(diǎn);

 、诜匠趟枷耄ㄒ蛟诘炔顢(shù)列中已有認(rèn)識(shí),此處再?gòu)?fù)習(xí)鞏固而已).

  這里強(qiáng)調(diào)方程思想解決問(wèn)題.方程中有四個(gè)量,知三求一,這是公式最簡(jiǎn)單的應(yīng)用,請(qǐng)學(xué)生舉例(應(yīng)能編出四類問(wèn)題).解題格式是什么?(不僅要會(huì)解題,還要注意規(guī)范表述的訓(xùn)練)

  如果增加一個(gè)條件,就多知道了一個(gè)量,這是公式的更高層次的應(yīng)用,下節(jié)課再研究.同學(xué)可以試著編幾道題.

  三、小結(jié)

  1.本節(jié)課研究了等比數(shù)列的概念,得到了通項(xiàng)公式;

  2.注意在研究?jī)?nèi)容與方法上要與等差數(shù)列相類比;

  3.用方程的思想認(rèn)識(shí)通項(xiàng)公式,并加以應(yīng)用.

高一數(shù)學(xué)教案9

  學(xué)習(xí)是一個(gè)潛移默化、厚積薄發(fā)的過(guò)程。編輯老師編輯了高一數(shù)學(xué)教案:數(shù)列,希望對(duì)您有所幫助!

  教學(xué)目標(biāo)

  1.使學(xué)生理解數(shù)列的概念,了解數(shù)列通項(xiàng)公式的意義,了解遞推公式是給出數(shù)列的一種方法,并能根據(jù)遞推公式寫出數(shù)列的前幾項(xiàng).

  (1)理解數(shù)列是按一定順序排成的一列數(shù),其每一項(xiàng)是由其項(xiàng)數(shù)唯一確定的.

  (2)了解數(shù)列的各種表示方法,理解通項(xiàng)公式是數(shù)列第項(xiàng)與項(xiàng)數(shù)的關(guān)系式,能根據(jù)通項(xiàng)公式寫出數(shù)列的前幾項(xiàng),并能根據(jù)給出的一個(gè)數(shù)列的前幾項(xiàng)寫出該數(shù)列的一個(gè)通項(xiàng)公式.

  (3)已知一個(gè)數(shù)列的遞推公式及前若干項(xiàng),便確定了數(shù)列,能用代入法寫出數(shù)列的前幾項(xiàng).

  2.通過(guò)對(duì)一列數(shù)的觀察、歸納,寫出符合條件的一個(gè)通項(xiàng)公式,培養(yǎng)學(xué)生的觀察能力和抽象概括能力.

  3.通過(guò)由求的過(guò)程,培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度及良好的思維習(xí)慣.

  教學(xué)建議

  (1)為激發(fā)學(xué)生學(xué)習(xí)數(shù)列的興趣,體會(huì)數(shù)列知識(shí)在實(shí)際生活中的作用,可由實(shí)際問(wèn)題引入,從中抽象出數(shù)列要研究的問(wèn)題,使學(xué)生對(duì)所要研究的內(nèi)容心中有數(shù),如書中所給的例子,還有物品堆放個(gè)數(shù)的計(jì)算等.

  (2)數(shù)列中蘊(yùn)含的函數(shù)思想是研究數(shù)列的指導(dǎo)思想,應(yīng)及早引導(dǎo)學(xué)生發(fā)現(xiàn)數(shù)列與函數(shù)的關(guān)系.在教學(xué)中強(qiáng)調(diào)數(shù)列的項(xiàng)是按一定順序排列的,“次序”便是函數(shù)的自變量,相同的數(shù)組成的數(shù)列,次序不同則就是不同的數(shù)列.函數(shù)表示法有列表法、圖象法、解析式法,類似地,數(shù)列就有列舉法、圖示法、通項(xiàng)公式法.由于數(shù)列的自變量為正整數(shù),于是就有可能相鄰的兩項(xiàng)(或幾項(xiàng))有關(guān)系,從而數(shù)列就有其特殊的表示法——遞推公式法.

  (3)由數(shù)列的通項(xiàng)公式寫出數(shù)列的前幾項(xiàng)是簡(jiǎn)單的代入法,教師應(yīng)精心設(shè)計(jì)例題,使這一例題為寫通項(xiàng)公式作一些準(zhǔn)備,尤其是對(duì)程度差的學(xué)生,應(yīng)多舉幾個(gè)例子,讓學(xué)生觀察歸納通項(xiàng)公式與各項(xiàng)的結(jié)構(gòu)關(guān)系,盡量為寫通項(xiàng)公式提供幫助.

  (4)由數(shù)列的前幾項(xiàng)寫出數(shù)列的一個(gè)通項(xiàng)公式使學(xué)生學(xué)習(xí)中的一個(gè)難點(diǎn),要幫助學(xué)生分析各項(xiàng)中的結(jié)構(gòu)特征(整式,分式,遞增,遞減,擺動(dòng)等),由學(xué)生歸納一些規(guī)律性的結(jié)論,如正負(fù)相間用來(lái)調(diào)整等.如果學(xué)生一時(shí)不能寫出通項(xiàng)公式,可讓學(xué)生依據(jù)前幾項(xiàng)的規(guī)律,猜想該數(shù)列的下一項(xiàng)或下幾項(xiàng)的值,以便尋求項(xiàng)與項(xiàng)數(shù)的關(guān)系.

  (5)對(duì)每個(gè)數(shù)列都有求和問(wèn)題,所以在本節(jié)課應(yīng)補(bǔ)充數(shù)列前項(xiàng)和的概念,用表示的問(wèn)題是重點(diǎn)問(wèn)題,可先提出一個(gè)具體問(wèn)題讓學(xué)生分析與的關(guān)系,再由特殊到一般,研究其一般規(guī)律,并給出嚴(yán)格的推理證明(強(qiáng)調(diào)的表達(dá)式是分段的);之后再到特殊問(wèn)題的解決,舉例時(shí)要兼顧結(jié)果可合并及不可合并的情況.

  (6)給出一些簡(jiǎn)單數(shù)列的通項(xiàng)公式,可以求其最大項(xiàng)或最小項(xiàng),又是函數(shù)思想與方法的體現(xiàn),對(duì)程度好的學(xué)生應(yīng)提出這一問(wèn)題,學(xué)生運(yùn)用函數(shù)知識(shí)是可以解決的.

  上述提供的高一數(shù)學(xué)教案:數(shù)列希望能夠符合大家的實(shí)際需要!

高一數(shù)學(xué)教案10

  一:【課前預(yù)習(xí)】

  (一):【知識(shí)梳理】

  1.直角三角形的.邊角關(guān)系(如圖)

  (1)邊的關(guān)系(勾股定理):AC2+BC2=AB2;

  (2)角的關(guān)系:B=

  (3)邊角關(guān)系:

 、伲

  ②:銳角三角函數(shù):

  A的正弦= ;

  A的余弦= ,

  A的正切=

  注:三角函數(shù)值是一個(gè)比值.

  2.特殊角的三角函數(shù)值.

  3.三角函數(shù)的關(guān)系

  (1) 互為余角的三角函數(shù)關(guān)系.

  sin(90○-A)=cosA, cos(90○-A)=sin A tan(90○-A)= cotA

  (2) 同角的三角函數(shù)關(guān)系.

  平方關(guān)系:sin2 A+cos2A=l

  4.三角函數(shù)的大小比較

  ①正弦、正切是增函數(shù).三角函數(shù)值隨角的增大而增大,隨角的減小而減小.

 、谟嘞沂菧p函數(shù).三角函數(shù)值隨角的增大而減小,隨角的減小而增大。

  (二):【課前練習(xí)】

  1.等腰直角三角形一個(gè)銳角的余弦為( )

  A. D.l

  2.點(diǎn)M(tan60,-cos60)關(guān)于x軸的對(duì)稱點(diǎn)M的坐標(biāo)是( )

  3.在 △ABC中,已知C=90,sinB=0.6,則cosA的值是( )

  4.已知A為銳角,且cosA0.5,那么( )

  A.060 B.6090 C.030 D.3090

  二:【經(jīng)典考題剖析】

  1.如圖,在Rt△ABC中,C=90,A=45,點(diǎn)D在AC上,BDC=60,AD=l,求BD、DC的長(zhǎng).

  2.先化簡(jiǎn),再求其值, 其中x=tan45-cos30

  3. 計(jì)算:①sin248○+ sin242○-tan44○tan45○tan 46○ ②cos 255○+ cos235○

  4.比較大小(在空格處填寫或或=)

  若=45○,則sin________cos

  若45○,則sin cos

  若45,則 sin cos.

  5.⑴如圖①、②銳角的正弦值和余弦值都隨著銳角的確定而確定,變化而變化,試探索隨著銳角度數(shù)的增大,它的正弦值和余弦值變化的規(guī)律;

 、聘鶕(jù)你探索到的規(guī)律,試比較18○、34○、50○、61○、88○這些銳角的正弦值的大小和余弦值的大小.

  三:【課后訓(xùn)練】

  1. 2sin60-cos30tan45的結(jié)果為( )

  A. D.0

  2.在△ABC中,A為銳角,已知 cos(90-A)= ,sin(90-B)= ,則△ABC一定是( )

  A.銳角三角形;B.直角三角形;C.鈍角三角形;D.等腰三角形

  3.如圖,在平面直角坐標(biāo)系中,已知A(3,0)點(diǎn)B(0,-4),則cosOAB等于__________

  4.cos2+sin242○ =1,則銳角=______.

  5.在下列不等式中,錯(cuò)誤的是( )

  A.sin45○sin30○;B.cos60○tan30○;D.cot30○

  6.如圖,在△ABC中,AC=3,BC=4,AB=5,則tanB的值是()

  7.如圖所示,在菱形ABCD中,AEBC于 E點(diǎn),EC=1,B=30,求菱形ABCD的周長(zhǎng).

  8.如圖所示,在△ABC中,ACB=90,BC=6,AC=8 ,CDAB,求:①sinACD 的值;②tanBCD的值

  9.如圖 ,某風(fēng)景區(qū)的湖心島有一涼亭A,其正東方向有一棵大樹(shù)B,小明想測(cè)量A/B之間的距離,他從湖邊的C處測(cè)得A在北偏西45方向上,測(cè)得B在北偏東32方向上,且量得B、C之間的距離為100米,根據(jù)上述測(cè)量結(jié)果,請(qǐng)你幫小明計(jì)算A山之間的距離是多少?(結(jié)果精確至1米.參考數(shù)據(jù):sin32○0.5299,cos32○0.8480)

  10.某住宅小區(qū)修了一個(gè)塔形建筑物AB,如圖所示,在與建筑物底部同一水平線的C處,測(cè)得點(diǎn)A的仰角為45,然后向塔方向前進(jìn)8米到達(dá)D處,在D處測(cè)得點(diǎn)A的仰角為60,求建筑物的高度.(精確0.1米)

高一數(shù)學(xué)教案11

  本文題目:高一數(shù)學(xué)教案:函數(shù)的奇偶性

  課題:1.3.2函數(shù)的奇偶性

  一、三維目標(biāo):

  知識(shí)與技能:使學(xué)生理解奇函數(shù)、偶函數(shù)的概念,學(xué)會(huì)運(yùn)用定義判斷函數(shù)的奇偶性。

  過(guò)程與方法:通過(guò)設(shè)置問(wèn)題情境培養(yǎng)學(xué)生判斷、推斷的能力。

  情感態(tài)度與價(jià)值觀:通過(guò)繪制和展示優(yōu)美的函數(shù)圖象來(lái)陶冶學(xué)生的情操. 通過(guò)組織學(xué)生分組討論,培養(yǎng)學(xué)生主動(dòng)交流的合作精神,使學(xué)生學(xué)會(huì)認(rèn)識(shí)事物的特殊性和一般性之間的關(guān)系,培養(yǎng)學(xué)生善于探索的思維品質(zhì)。

  二、學(xué)習(xí)重、難點(diǎn):

  重點(diǎn):函數(shù)的奇偶性的概念。

  難點(diǎn):函數(shù)奇偶性的判斷。

  三、學(xué)法指導(dǎo):

  學(xué)生在獨(dú)立思考的基礎(chǔ)上進(jìn)行合作交流,在思考、探索和交流的過(guò)程中獲得對(duì)函數(shù)奇偶性的全面的體驗(yàn)和理解。對(duì)于奇偶性的應(yīng)用采取講練結(jié)合的方式進(jìn)行處理,使學(xué)生邊學(xué)邊練,及時(shí)鞏固。

  四、知識(shí)鏈接:

  1.復(fù)習(xí)在初中學(xué)習(xí)的軸對(duì)稱圖形和中心對(duì)稱圖形的定義:

  2.分別畫出函數(shù)f (x) =x3與g (x) = x2的圖象,并說(shuō)出圖象的對(duì)稱性。

  五、學(xué)習(xí)過(guò)程:

  函數(shù)的奇偶性:

  (1)對(duì)于函數(shù) ,其定義域關(guān)于原點(diǎn)對(duì)稱:

  如果______________________________________,那么函數(shù) 為奇函數(shù);

  如果______________________________________,那么函數(shù) 為偶函數(shù)。

  (2)奇函數(shù)的圖象關(guān)于__________對(duì)稱,偶函數(shù)的圖象關(guān)于_________對(duì)稱。

  (3)奇函數(shù)在對(duì)稱區(qū)間的增減性 ;偶函數(shù)在對(duì)稱區(qū)間的增減性 。

  六、達(dá)標(biāo)訓(xùn)練:

  A1、判斷下列函數(shù)的奇偶性。

  (1)f(x)=x4;(2)f(x)=x5;

  (3)f(x)=x+ (4)f(x)=

  A2、二次函數(shù) ( )是偶函數(shù),則b=___________ .

  B3、已知 ,其中 為常數(shù),若 ,則

  _______ .

  B4、若函數(shù) 是定義在R上的奇函數(shù),則函數(shù) 的圖象關(guān)于 ( )

  (A) 軸對(duì)稱 (B) 軸對(duì)稱 (C)原點(diǎn)對(duì)稱 (D)以上均不對(duì)

  B5、如果定義在區(qū)間 上的函數(shù) 為奇函數(shù),則 =_____ .

  C6、若函數(shù) 是定義在R上的奇函數(shù),且當(dāng) 時(shí), ,那么當(dāng)

  時(shí), =_______ .

  D7、設(shè) 是 上的奇函數(shù), ,當(dāng) 時(shí), ,則 等于 ( )

  (A)0.5 (B) (C)1.5 (D)

  D8、定義在 上的奇函數(shù) ,則常數(shù) ____ , _____ .

  七、學(xué)習(xí)小結(jié):

  本節(jié)主要學(xué)習(xí)了函數(shù)的奇偶性,判斷函數(shù)的奇偶性通常有兩種方法,即定義法和圖象法,用定義法判斷函數(shù)的奇偶性時(shí),必須注意首先判斷函數(shù)的定義域是否關(guān)于原點(diǎn)對(duì)稱。單調(diào)性與奇偶性的綜合應(yīng)用是本節(jié)的一個(gè)難點(diǎn),需要學(xué)生結(jié)合函數(shù)的圖象充分理解好單調(diào)性和奇偶性這兩個(gè)性質(zhì)。

  八、課后反思:

高一數(shù)學(xué)教案12

  一、本課數(shù)學(xué)內(nèi)容的本質(zhì)、地位、作用分析

  普通高中課標(biāo)教材必修1共安排了三章內(nèi)容,第一章是《集合與函數(shù)的概念》,第二章是《基本初等函數(shù)(Ⅰ)》,第三章是《函數(shù)的應(yīng)用》。第三章編排了兩塊內(nèi)容,第一部分是函數(shù)與方程,第二部分是函數(shù)模型及其應(yīng)用。本節(jié)課方程的根與函數(shù)的零點(diǎn),正是在這種建立和運(yùn)用函數(shù)模型的大背景下展開(kāi)的。本節(jié)課的主要教學(xué)內(nèi)容是函數(shù)零點(diǎn)的定義和函數(shù)零點(diǎn)存在的判定依據(jù),這兩者顯然是為下節(jié)“用二分法求方程近似解”這一“函數(shù)的應(yīng)用”服務(wù)的,同時(shí)也為后續(xù)學(xué)習(xí)的算法埋下伏筆。由此可見(jiàn),它起著承上啟下的作用,與整章、整冊(cè)綜合成一個(gè)整體,學(xué)好本節(jié)意義重大。

  函數(shù)在數(shù)學(xué)中占據(jù)著不可替代的核心地位,根本原因之一在于函數(shù)與其他知識(shí)具有廣泛的聯(lián)系,而函數(shù)的零點(diǎn)就是其中的一個(gè)鏈結(jié)點(diǎn),它從不同的角度,將數(shù)與形,函數(shù)與方程有機(jī)地聯(lián)系在一起。方程本身就是函數(shù)的一部分,用函數(shù)的觀點(diǎn)來(lái)研究方程,就是將局部放入整體中研究,進(jìn)而對(duì)整體和局部都有一個(gè)更深層次的理解,并學(xué)會(huì)用聯(lián)系的觀點(diǎn)解決問(wèn)題,為后面函數(shù)與不等式和數(shù)列等其他知識(shí)的聯(lián)系奠定基礎(chǔ)。

  二、教學(xué)目標(biāo)分析

  本節(jié)內(nèi)容包含三大知識(shí)點(diǎn):

  一、函數(shù)零點(diǎn)的定義;

  二、方程的根與函數(shù)零點(diǎn)的等價(jià)關(guān)系;

  三、零點(diǎn)存在性定理。

  結(jié)合本節(jié)課引入三大知識(shí)點(diǎn)的方法,設(shè)定本節(jié)課的知識(shí)與技能目標(biāo)如下:

  1.結(jié)合方程根的幾何意義,理解函數(shù)零點(diǎn)的定義;

  2.結(jié)合零點(diǎn)定義的探究,掌握方程的實(shí)根與其相應(yīng)函數(shù)零點(diǎn)之間的等價(jià)關(guān)系;

  3.結(jié)合幾類基本初等函數(shù)的圖象特征,掌握判斷函數(shù)的零點(diǎn)個(gè)數(shù)和所在區(qū)間的方法.

  本節(jié)課是學(xué)生在學(xué)習(xí)了函數(shù)的性質(zhì),具備了初步的數(shù)形結(jié)合知識(shí)的基礎(chǔ)上,通過(guò)對(duì)特殊函數(shù)圖象的分析進(jìn)行展開(kāi)的,是培養(yǎng)學(xué)生“化歸與轉(zhuǎn)化思想”,“數(shù)形結(jié)合思想”,“函數(shù)與方程思想”的優(yōu)質(zhì)載體。

  結(jié)合本節(jié)課教學(xué)主線的設(shè)計(jì),設(shè)定本節(jié)課的過(guò)程與方法目標(biāo)如下:

  1.通過(guò)化歸與轉(zhuǎn)化思想的引導(dǎo),培養(yǎng)學(xué)生從已有認(rèn)知結(jié)構(gòu)出發(fā),尋求解決棘手問(wèn)題方法的習(xí)慣;

  2.通過(guò)數(shù)形結(jié)合思想的滲透,培養(yǎng)學(xué)生主動(dòng)應(yīng)用數(shù)學(xué)思想的意識(shí);

  3.通過(guò)習(xí)題與探究知識(shí)的相關(guān)性設(shè)置,引導(dǎo)學(xué)生深入探究得出判斷函數(shù)的零點(diǎn)個(gè)數(shù)和所在區(qū)間的方法;

  4.通過(guò)對(duì)函數(shù)與方程思想的不斷剖析,促進(jìn)學(xué)生對(duì)知識(shí)靈活應(yīng)用的能力。

  由于本節(jié)課將以教師引導(dǎo),學(xué)生探究為主體形式,故設(shè)定本節(jié)課的情感、態(tài)度與價(jià)值觀目標(biāo)如下:

  1.讓學(xué)生體驗(yàn)化歸與轉(zhuǎn)化、數(shù)形結(jié)合、函數(shù)與方程這三大數(shù)學(xué)思想在解決數(shù)學(xué)問(wèn)題時(shí)的意義與價(jià)值;

  2.培養(yǎng)學(xué)生鍥而不舍的探索精神和嚴(yán)密思考的良好學(xué)習(xí)習(xí)慣。

  3.使學(xué)生感受學(xué)習(xí)、探索發(fā)現(xiàn)的樂(lè)趣與成功感。

  三、教學(xué)問(wèn)題診斷

  學(xué)生具備的認(rèn)知基礎(chǔ):

  1.基本初等函數(shù)的圖象和性質(zhì);

  2.一元二次方程的根和相應(yīng)函數(shù)圖象與x軸的聯(lián)系;

  3.將數(shù)與形相結(jié)合轉(zhuǎn)化的意識(shí)。

  學(xué)生欠缺的實(shí)際能力:

  1.主動(dòng)應(yīng)用數(shù)形結(jié)合思想解決問(wèn)題的意識(shí)還不強(qiáng);

  2.將未知問(wèn)題已知化,將復(fù)雜問(wèn)題簡(jiǎn)單化的化歸意識(shí)淡薄;

  3.從直觀到抽象的概括總結(jié)能力還不夠;

  4.概念的內(nèi)涵與外延的探究意識(shí)有待提高。

  對(duì)本節(jié)課的教學(xué),教材是利用一組一元二次方程和二次函數(shù)的關(guān)系來(lái)引入函數(shù)零點(diǎn)的。這樣處理,主要是想讓學(xué)生在原有二次函數(shù)的認(rèn)知基礎(chǔ)上,使其知識(shí)得到自然的發(fā)生發(fā)展。理解了像二次函數(shù)這樣簡(jiǎn)單的函數(shù)零點(diǎn),再來(lái)理解其他復(fù)雜的函數(shù)零點(diǎn)就會(huì)容易一些。但學(xué)生對(duì)如何解一元二次方程以及二次函數(shù)的圖象早就熟練了,這樣的引入過(guò)程使學(xué)生感到平淡,激發(fā)不起他們的興趣,他們對(duì)零點(diǎn)的理解也只會(huì)浮于表面,也無(wú)法使其體會(huì)引入函數(shù)零點(diǎn)的必要性,理解不了方程根存在的本質(zhì)原因是零點(diǎn)的存在。

  教材是通過(guò)由直觀到抽象的過(guò)程,才得到判斷函數(shù)y=f(x)在(a,b)內(nèi)有零點(diǎn)的一種條件的,如果不能有效地對(duì)該過(guò)程進(jìn)行引導(dǎo),容易出現(xiàn)學(xué)生被動(dòng)接受,盲目記憶的結(jié)果,而喪失了對(duì)學(xué)生應(yīng)用數(shù)學(xué)思想方法的意識(shí)進(jìn)行培養(yǎng)的機(jī)會(huì)。

  教材中零點(diǎn)存在性定理只表述了存在零點(diǎn)的條件,但對(duì)存在零點(diǎn)的個(gè)數(shù)并未多做說(shuō)明,這就要求教師對(duì)該定理的內(nèi)涵和外延要有清晰的把握,引導(dǎo)學(xué)生探究出只存在一個(gè)零點(diǎn)的條件,否則學(xué)生對(duì)定理的內(nèi)容很容易心存疑慮。

  四、本節(jié)課的教法特點(diǎn)以及預(yù)期效果分析

  本節(jié)課教法的幾大特點(diǎn)總結(jié)如下:

  1.以問(wèn)題為主線貫穿始終;

  2.精心設(shè)置引導(dǎo)性的語(yǔ)言放手讓學(xué)生探究;

  3.注重在引導(dǎo)學(xué)生探究問(wèn)題解法的過(guò)程中滲透數(shù)學(xué)思想;

  4.在探究過(guò)程中引入新知識(shí)點(diǎn),在引入新知識(shí)點(diǎn)后適時(shí)歸納總結(jié),進(jìn)行探究階段性成果的應(yīng)用。

  由于所設(shè)置的主線問(wèn)題具有很高的探究?jī)r(jià)值,所以預(yù)期學(xué)生熱情會(huì)很高,積極性調(diào)動(dòng)起來(lái),那整節(jié)課才能活起來(lái);

  由于為了更好地組織學(xué)生探究所設(shè)置的引導(dǎo)性語(yǔ)言,重在去挖掘?qū)W生內(nèi)心真實(shí)的想法和他們最真實(shí)體會(huì)到的困難,所以通過(guò)學(xué)生活動(dòng)會(huì)更多地暴露他們?cè)诨A(chǔ)知識(shí)掌握方面的缺憾,免不了要隨時(shí)糾正對(duì)過(guò)往知識(shí)的錯(cuò)誤理解;

  因?yàn)樵谔骄窟^(guò)程中不斷滲透數(shù)學(xué)思想,學(xué)生對(duì)親身經(jīng)歷的解題方法就會(huì)有更深的體會(huì),主動(dòng)應(yīng)用數(shù)學(xué)思想的意識(shí)在上升,對(duì)于主線問(wèn)題也應(yīng)該可以迎刃而解;

  因?yàn)樵谔骄窟^(guò)程中引入新知識(shí)點(diǎn),學(xué)生對(duì)新知識(shí)產(chǎn)生的必要性會(huì)有更深刻的體會(huì)和認(rèn)識(shí),同時(shí)在新知識(shí)產(chǎn)生后,又適時(shí)地加以應(yīng)用,學(xué)生對(duì)新知識(shí)的應(yīng)用能力不斷提高。

高一數(shù)學(xué)教案13

  一、教學(xué)目標(biāo)

  1.知識(shí)與技能

 。1)解二分法求解方程的近似解的思想方法,會(huì)用二分法求解具體方程的近似解;

  (2)體會(huì)程序化解決問(wèn)題的思想,為算法的學(xué)習(xí)作準(zhǔn)備。

  2.過(guò)程與方法

 。1)讓學(xué)生在求解方程近似解的實(shí)例中感知二分發(fā)思想;

 。2)讓學(xué)生歸納整理本節(jié)所學(xué)的知識(shí)。

  3.情感、態(tài)度與價(jià)值觀

 、袤w會(huì)二分法的程序化解決問(wèn)題的思想,認(rèn)識(shí)二分法的價(jià)值所在,使學(xué)生更加熱愛(ài)數(shù)學(xué);

  ②培養(yǎng)學(xué)生認(rèn)真、耐心、嚴(yán)謹(jǐn)?shù)臄?shù)學(xué)品質(zhì)。

  二、 教學(xué)重點(diǎn)、難點(diǎn)

  重點(diǎn):用二分法求解函數(shù)f(x)的零點(diǎn)近似值的步驟。

  難點(diǎn):為何由︱a - b ︳< 便可判斷零點(diǎn)的近似值為a(或b)?

  三、 學(xué)法與教學(xué)用具

  1.想-想。

  2.教學(xué)用具:計(jì)算器。

  四、教學(xué)設(shè)想

  (一)、創(chuàng)設(shè)情景,揭示課題

  提出問(wèn)題:

 。1)一元二次方程可以用公式求根,但是沒(méi)有公式可以用來(lái)求解放程 ㏑x+2x-6=0的根;聯(lián)系函數(shù)的零點(diǎn)與相應(yīng)方程根的關(guān)系,能否利用函數(shù)的有關(guān)知識(shí)來(lái)求她的根呢?

 。2)通過(guò)前面一節(jié)課的學(xué)習(xí),函數(shù)f(x)=㏑x+2x-6在區(qū)間內(nèi)有零點(diǎn);進(jìn)一步的問(wèn)題是,如何找到這個(gè)零點(diǎn)呢?

 。ǘ⒀杏懶轮

  一個(gè)直觀的想法是:如果能夠?qū)⒘泓c(diǎn)所在的范圍盡量的縮小,那么在一定的精確度的要求下,我們可以得到零點(diǎn)的近似值;為了方便,我們通過(guò)“取中點(diǎn)”的方法逐步縮小零點(diǎn)所在的范圍。

  取區(qū)間(2,3)的中點(diǎn)2.5,用計(jì)算器算得f(2.5)≈-0.084,因?yàn)閒(2.5)xf(3)<0,所以零點(diǎn)在區(qū)間(2.5,3)內(nèi);

  再取區(qū)間(2.5,3)的中點(diǎn)2.75,用計(jì)算器算得f(2.75)≈0.512,因?yàn)閒(2.75)xf(2.5)<0,所以零點(diǎn)在(2.5,2.75)內(nèi);

  由于(2,3),(2.5,3),(2.5,2.75)越來(lái)越小,所以零點(diǎn)所在范圍確實(shí)越來(lái)越小了;重復(fù)上述步驟,那么零點(diǎn)所在范圍會(huì)越來(lái)越小,這樣在有限次重復(fù)相同的步驟后,在一定的精確度下,將所得到的零點(diǎn)所在區(qū)間上任意的一點(diǎn)作為零點(diǎn)的近似值,特別地可以將區(qū)間的端點(diǎn)作為零點(diǎn)的近似值。例如,當(dāng)精確度為0.01時(shí),由于∣2.5390625-2.53125∣=0.0078125<0.01,所以我們可以將x=2.54作為函數(shù)f(x)=㏑x+2x-6零點(diǎn)的近似值,也就是方程㏑x+2x-6=0近似值。

  這種求零點(diǎn)近似值的方法叫做二分法。

  1.師:引導(dǎo)學(xué)生仔細(xì)體會(huì)上邊的這段文字,結(jié)合課本上的相關(guān)部分,感悟其中的思想方法.

  生:認(rèn)真理解二分法的函數(shù)思想,并根據(jù)課本上二分法的一般步驟,探索其求法。

  2.為什么由︱a - b ︳<便可判斷零點(diǎn)的近似值為a(或b)?

  先由學(xué)生思考幾分鐘,然后作如下說(shuō)明:

  設(shè)函數(shù)零點(diǎn)為x0,則a<x0<b,則:

  0<x0-a<b-a,a-b<x0-b<0;

  由于︱a - b ︳<,所以

  ︱x0 - a ︳<b-a<,︱x0 - b ︳<∣ a-b∣<,

  即a或b 作為零點(diǎn)x0的近似值都達(dá)到了給定的精確度。

 (三)、鞏固深化,發(fā)展思維

  1.學(xué)生在老師引導(dǎo)啟發(fā)下完成下面的例題

  例2.借助計(jì)算器用二分法求方程2x+3x=7的近似解(精確到0.01)

  問(wèn)題:原方程的近似解和哪個(gè)函數(shù)的零點(diǎn)是等價(jià)的?

  師:引導(dǎo)學(xué)生在方程右邊的常數(shù)移到左邊,把左邊的式子令為f(x),則原方程的解就是f(x)的零點(diǎn)。

  生:借助計(jì)算機(jī)或計(jì)算器畫出函數(shù)的圖象,結(jié)合圖象確定零點(diǎn)所在的區(qū)間,然后利用二分法求解.

  (四)、歸納整理,整體認(rèn)識(shí)

  在師生的互動(dòng)中,讓學(xué)生了解或體會(huì)下列問(wèn)題:

  (1)本節(jié)我們學(xué)過(guò)哪些知識(shí)內(nèi)容?

 。2)你認(rèn)為學(xué)習(xí)“二分法”有什么意義?

 。3)在本節(jié)課的學(xué)習(xí)過(guò)程中,還有哪些不明白的地方?

 。ㄎ澹、布置作業(yè)

  P92習(xí)題3.1A組第四題,第五題。

高一數(shù)學(xué)教案14

  一、教材分析

  1、 教材的地位和作用:

  函數(shù)是數(shù)學(xué)中最主要的概念之一,而函數(shù)概念貫穿在中學(xué)數(shù)學(xué)的始終,概念是數(shù)學(xué)的基礎(chǔ),概念性強(qiáng)是函數(shù)理論的一個(gè)顯著特點(diǎn),只有對(duì)概念作到深刻理解,才能正確靈活地加以應(yīng)用。本課中對(duì)函數(shù)概念理解的程度會(huì)直接影響其它知識(shí)的學(xué)習(xí),所以函數(shù)的第一課時(shí)非常的重要。

  2、 教學(xué)目標(biāo)及確立的依據(jù):

  教學(xué)目標(biāo):

  (1) 教學(xué)知識(shí)目標(biāo):了解對(duì)應(yīng)和映射概念、理解函數(shù)的近代定義、函數(shù)三要素,以及對(duì)函數(shù)抽象符號(hào)的理解。

  (2) 能力訓(xùn)練目標(biāo):通過(guò)教學(xué)培養(yǎng)的抽象概括能力、邏輯思維能力。

  (3) 德育滲透目標(biāo):使懂得一切事物都是在不斷變化、相互聯(lián)系和相互制約的辯證唯物主義觀點(diǎn)。

  教學(xué)目標(biāo)確立的依據(jù):

  函數(shù)是數(shù)學(xué)中最主要的概念之一,而函數(shù)概念貫穿整個(gè)中學(xué)數(shù)學(xué),如:數(shù)、式、方程、函數(shù)、排列組合、數(shù)列極限等都是以函數(shù)為中心的代數(shù)。加強(qiáng)函數(shù)教學(xué)可幫助學(xué)好其他的內(nèi)容。而掌握好函數(shù)的概念是學(xué)好函數(shù)的基石。

  3、教學(xué)重點(diǎn)難點(diǎn)及確立的依據(jù):

  教學(xué)重點(diǎn):映射的概念,函數(shù)的近代概念、函數(shù)的三要素及函數(shù)符號(hào)的理解。

  教學(xué)難點(diǎn):映射的概念,函數(shù)近代概念,及函數(shù)符號(hào)的理解。

  重點(diǎn)難點(diǎn)確立的依據(jù):

  映射的概念和函數(shù)的近代定義抽象性都比較強(qiáng),要求學(xué)生的理性認(rèn)識(shí)的能力也比較高,對(duì)于剛剛升入高中不久的來(lái)說(shuō)不易理解。而且由于函數(shù)在高考中可以以低、中、高擋題出現(xiàn),所以近年來(lái)有一種“函數(shù)熱”的趨勢(shì),所以本節(jié)的重點(diǎn)難點(diǎn)必然落在映射的概念和函數(shù)的近代定義及函數(shù)符號(hào)的理解與運(yùn)用上。

  二、教材的處理:

  將映射的定義及類比手法的運(yùn)用作為本課突破難點(diǎn)的關(guān)鍵。 函數(shù)的定義,是以集合、映射的觀點(diǎn)給出,這與初中教材變量值與對(duì)應(yīng)觀點(diǎn)給出不一樣了,從而給本身就很抽象的函數(shù)概念的理解帶來(lái)更大的困難。為解決這難點(diǎn),主要是從實(shí)際出發(fā)調(diào)動(dòng)學(xué)生的學(xué)習(xí)熱情與參與意識(shí),運(yùn)用引導(dǎo)對(duì)比的手法,啟發(fā)引導(dǎo)學(xué)生進(jìn)行有目的的反復(fù)比較幾個(gè)概念的異同,使真正對(duì)函數(shù)的概念有很準(zhǔn)確的認(rèn)識(shí)。

  三、教學(xué)方法和學(xué)法

  教學(xué)方法:講授為主,自主預(yù)習(xí)為輔。

  依據(jù)是:因?yàn)橐孕碌挠^點(diǎn)認(rèn)識(shí)函數(shù)概念及函數(shù)符號(hào)與運(yùn)用時(shí),更重要的是必須給學(xué)生講清楚概念及注意事項(xiàng),并通過(guò)師生的共同討論來(lái)幫助學(xué)生深刻理解,這樣才能使函數(shù)的概念及符號(hào)的運(yùn)用在學(xué)生的思想和知識(shí)結(jié)構(gòu)中打上深刻的烙印,為能學(xué)好后面的知識(shí)打下堅(jiān)實(shí)的基礎(chǔ)。

  學(xué)法:四、教學(xué)程序

  一、課程導(dǎo)入

  通過(guò)舉以下一個(gè)通俗的例子引出通過(guò)某個(gè)對(duì)應(yīng)法則可以將兩個(gè)非空集合聯(lián)系在一起。

  例1:把高一(12)班和高一(11)全體同學(xué)分別看成是兩個(gè)集合,問(wèn),通過(guò)“找好朋友”這個(gè)對(duì)應(yīng)法則是否能將這兩個(gè)集合的某些元素聯(lián)系在一起?

  二. 新課講授:

  (1) 接著再通過(guò)幻燈片給出六組學(xué)生熟悉的數(shù)集的對(duì)應(yīng)關(guān)系引導(dǎo)學(xué)生歸納它們的共同性質(zhì)(一對(duì)一,多對(duì)一),進(jìn)而給出映射的概念,表示符號(hào)f:a→b,及原像和像的定義。強(qiáng)調(diào)指出非空集合a到非空集合b的映射包括三部分即非空集合a、b和a到b的對(duì)應(yīng)法則 f。進(jìn)一步引導(dǎo)判斷一個(gè)從a到b的對(duì)應(yīng)是否為映射的關(guān)鍵是看a中的任意一個(gè)元素通過(guò)對(duì)應(yīng)法則f在b中是否有唯一確定的元素與之對(duì)應(yīng)。

  (2)鞏固練習(xí)課本52頁(yè)第八題。

  此練習(xí)能讓更深刻的認(rèn)識(shí)到映射可以“一對(duì)多,多對(duì)一”但不能是“一對(duì)多”。

  例1. 給出學(xué)生初中學(xué)過(guò)的函數(shù)的傳統(tǒng)定義和幾個(gè)簡(jiǎn)單的一次、二次函數(shù),通過(guò)畫圖表示這些函數(shù)的對(duì)應(yīng)關(guān)系,引導(dǎo)發(fā)現(xiàn)它們是特殊的映射進(jìn)而給出函數(shù)的近代定義(設(shè)a、b是兩個(gè)非空集合,如果按照某種對(duì)應(yīng)法則f,使得a中的任何一個(gè)元素在集合b中都有唯一的元素與之對(duì)應(yīng)則這樣的對(duì)應(yīng)叫做集合a到集合b的映射,它包括非空集合a和b以及從a到b的對(duì)應(yīng)法則f),并說(shuō)明把函f:a→b記為y=f(x),其中自變量x的取值范圍a叫做函數(shù)的定義域,與x的值相對(duì)應(yīng)的y(或f(x))值叫做函數(shù)值,函數(shù)值的集合{ f(x):x∈a}叫做函數(shù)的值域。

  并把函數(shù)的近代定義與映射定義比較使認(rèn)識(shí)到函數(shù)與映射的區(qū)別與聯(lián)系。(函數(shù)是非空數(shù)集到非空數(shù)集的映射)。

  再以讓判斷的方式給出以下關(guān)于函數(shù)近代定義的注意事項(xiàng):2. 函數(shù)是非空數(shù)集到非空數(shù)集的映射。

  3. f表示對(duì)應(yīng)關(guān)系,在不同的函數(shù)中f的具體含義不一樣。

  4. f(x)是一個(gè)符號(hào),不表示f與x的乘積,而表示x經(jīng)過(guò)f作用后的結(jié)果。

  5. 集合a中的數(shù)的任意性,集合b中數(shù)的唯一性。

  66. “f:a→b”表示一個(gè)函數(shù)有三要素:法則f(是核心),定義域a(要優(yōu)先),值域c(上函數(shù)值的集合且c∈b)。

  三.講解例題

  例1.問(wèn)y=1(x∈a)是不是函數(shù)?

  解:y=1可以化為y=0*x+1

  畫圖可以知道從x的取值范圍到y(tǒng)的取值范圍的對(duì)應(yīng)是“多對(duì)一”是從非空數(shù)集到非空數(shù)集的映射,所以它是函數(shù)。

  [注]:引導(dǎo)從集合,映射的觀點(diǎn)認(rèn)識(shí)函數(shù)的定義。

  四.課時(shí)小結(jié):

  1. 映射的定義。

  2. 函數(shù)的近代定義。

  3. 函數(shù)的三要素及符號(hào)的正確理解和應(yīng)用。

  4. 函數(shù)近代定義的五大注意點(diǎn)。

  五.課后作業(yè)及板書設(shè)計(jì)

  書本p51 習(xí)題2.1的1、2寫在書上3、4、5上交。

  預(yù)習(xí)函數(shù)三要素的定義域,并能求簡(jiǎn)單函數(shù)的定義域。

  函數(shù)(一)

  一、映射:

  2.函數(shù)近代定義: 例題練習(xí)

  二、函數(shù)的定義 [注]1—5

  1.函數(shù)傳統(tǒng)定義

  三、作業(yè):

高一數(shù)學(xué)教案15

  教學(xué)目的:

 。1)使學(xué)生初步理解集合的概念,知道常用數(shù)集的概念及記法

  (2)使學(xué)生初步了解“屬于”關(guān)系的意義

  (3)使學(xué)生初步了解有限集、無(wú)限集、空集的意義

  教學(xué)重點(diǎn):集合的基本概念及表示方法

  教學(xué)難點(diǎn):運(yùn)用集合的兩種常用表示方法——列舉法與描述法,正確表示一些簡(jiǎn)單的集合

  授課類型:新授課

  課時(shí)安排:1課時(shí)

  教 具:多媒體、實(shí)物投影儀

  內(nèi)容分析:

  集合是中學(xué)數(shù)學(xué)的一個(gè)重要的基本概念 在小學(xué)數(shù)學(xué)中,就滲透了集合的初步概念,到了初中,更進(jìn)一步應(yīng)用集合的語(yǔ)言表述一些問(wèn)題 例如,在代數(shù)中用到的有數(shù)集、解集等;在幾何中用到的有點(diǎn)集 至于邏輯,可以說(shuō),從開(kāi)始學(xué)習(xí)數(shù)學(xué)就離不開(kāi)對(duì)邏輯知識(shí)的掌握和運(yùn)用,基本的邏輯知識(shí)在日常生活、學(xué)習(xí)、工作中,也是認(rèn)識(shí)問(wèn)題、研究問(wèn)題不可缺少的工具 這些可以幫助學(xué)生認(rèn)識(shí)學(xué)習(xí)本章的意義,也是本章學(xué)習(xí)的基礎(chǔ)把集合的初步知識(shí)與簡(jiǎn)易邏輯知識(shí)安排在高中數(shù)學(xué)的最開(kāi)始,是因?yàn)樵诟咧袛?shù)學(xué)中,這些知識(shí)與其他內(nèi)容有著密切聯(lián)系,它們是學(xué)習(xí)、掌握和使用數(shù)學(xué)語(yǔ)言的基礎(chǔ) 例如,下一章講函數(shù)的概念與性質(zhì),就離不開(kāi)集合與邏輯。

  本節(jié)首先從初中代數(shù)與幾何涉及的集合實(shí)例入手,引出集合與集合的元素的概念,并且結(jié)合實(shí)例對(duì)集合的概念作了說(shuō)明 然后,介紹了集合的常用表示方法,包括列舉法、描述法,還給出了畫圖表示集合的例子。

  這節(jié)課主要學(xué)習(xí)全章的引言和集合的基本概念 學(xué)習(xí)引言是引發(fā)學(xué)生的學(xué)習(xí)興趣,使學(xué)生認(rèn)識(shí)學(xué)習(xí)本章的意義 本節(jié)課的教學(xué)重點(diǎn)是集合的基本概念集合是集合論中的原始的、不定義的概念 在開(kāi)始接觸集合的概念時(shí),主要還是通過(guò)實(shí)例,對(duì)概念有一個(gè)初步認(rèn)識(shí) 教科書給出的“一般地,某些指定的對(duì)象集在一起就成為一個(gè)集合,也簡(jiǎn)稱集 ”這句話,只是對(duì)集合概念的描述性說(shuō)明。

  教學(xué)過(guò)程:

  一、復(fù)習(xí)引入:

  1、簡(jiǎn)介數(shù)集的發(fā)展,復(fù)習(xí)最大公約數(shù)和最小公倍數(shù),質(zhì)數(shù)與和數(shù);

  2、教材中的章頭引言;

  3、集合論的創(chuàng)始人——康托爾(德國(guó)數(shù)學(xué)家)(見(jiàn)附錄);

  4.“物以類聚”,“人以群分”;

  5.教材中例子(P4)

  二、講解新課:

  閱讀教材第一部分,問(wèn)題如下:

 。1)有那些概念?是如何定義的?

 。2)有那些符號(hào)?是如何表示的?

 。3)集合中元素的特性是什么?

 。ㄒ唬┘系挠嘘P(guān)概念:

  由一些數(shù)、一些點(diǎn)、一些圖形、一些整式、一些物體、一些人組成的。我們說(shuō),每一組對(duì)象的全體形成一個(gè)集合,或者說(shuō),某些指定的對(duì)象集在一起就成為一個(gè)集合,也簡(jiǎn)稱集。集合中的每個(gè)對(duì)象叫做這個(gè)集合的元素。

  定義:一般地,某些指定的對(duì)象集在一起就成為一個(gè)集合.

  1、集合的概念

 。1)集合:某些指定的對(duì)象集在一起就形成一個(gè)集合(簡(jiǎn)稱集)

  (2)元素:集合中每個(gè)對(duì)象叫做這個(gè)集合的元素

  2、常用數(shù)集及記法

 。1)非負(fù)整數(shù)集(自然數(shù)集):全體非負(fù)整數(shù)的集合 記作N,

 。2)正整數(shù)集:非負(fù)整數(shù)集內(nèi)排除0的集 記作N*或N+

 。3)整數(shù)集:全體整數(shù)的集合 記作Z ,

 。4)有理數(shù)集:全體有理數(shù)的集合 記作Q ,

 。5)實(shí)數(shù)集:全體實(shí)數(shù)的集合 記作R

  注:(1)自然數(shù)集與非負(fù)整數(shù)集是相同的,也就是說(shuō),自然數(shù)集包括數(shù)0

 。2)非負(fù)整數(shù)集內(nèi)排除0的集 記作N*或N+ Q、Z、R等其它數(shù)集內(nèi)排除0的集,也是這樣表示,例如,整數(shù)集內(nèi)排除0的集,表示成Z*

  3、元素對(duì)于集合的隸屬關(guān)系

 。1)屬于:如果a是集合A的元素,就說(shuō)a屬于A,記作a∈A

 。2)不屬于:如果a不是集合A的元素,就說(shuō)a不屬于A,記作

  4、集合中元素的特性

 。1)確定性:按照明確的判斷標(biāo)準(zhǔn)給定一個(gè)元素或者在這個(gè)集合里,或者不在,不能模棱兩可

 。2)互異性:集合中的元素沒(méi)有重復(fù)

  (3)無(wú)序性:集合中的元素沒(méi)有一定的順序(通常用正常的順序?qū)懗觯?/p>

  5、⑴集合通常用大寫的拉丁字母表示,如A、B、C、P、Q……元素通常用小寫的拉丁字母表示,如a、b、c、p、q……

  ⑵“∈”的開(kāi)口方向,不能把a(bǔ)∈A顛倒過(guò)來(lái)寫

  三、練習(xí)題:

  1、教材P5練習(xí)1、2

  2、下列各組對(duì)象能確定一個(gè)集合嗎?

 。1)所有很大的實(shí)數(shù) (不確定)

 。2)好心的人 (不確定)

 。3)1,2,2,3,4,5.(有重復(fù))

  3、設(shè)a,b是非零實(shí)數(shù),那么 可能取的值組成集合的元素是_—2,0,2__

  4、由實(shí)數(shù)x,-x,|x|, 所組成的集合,最多含( A )

 。ˋ)2個(gè)元素 (B)3個(gè)元素 (C)4個(gè)元素 (D)5個(gè)元素

  5、設(shè)集合G中的元素是所有形如a+b (a∈Z, b∈Z)的數(shù),求證:

 。1) 當(dāng)x∈N時(shí), x∈G;

 。2) 若x∈G,y∈G,則x+y∈G,而 不一定屬于集合G

  證明(1):在a+b (a∈Z, b∈Z)中,令a=x∈N,b=0,則x= x+0* = a+b ∈G,即x∈G

  證明(2):∵x∈G,y∈G,

  ∴x= a+b (a∈Z, b∈Z),y= c+d (c∈Z, d∈Z)

  ∴x+y=( a+b )+( c+d )=(a+c)+(b+d)

  ∵a∈Z, b∈Z,c∈Z, d∈Z

  ∴(a+c) ∈Z, (b+d) ∈Z

  ∴x+y =(a+c)+(b+d) ∈G,

  又∵ =且 不一定都是整數(shù),

  ∴ = 不一定屬于集合G

  四、小結(jié):本節(jié)課學(xué)習(xí)了以下內(nèi)容:

  1、集合的有關(guān)概念:(集合、元素、屬于、不屬于)

  2、集合元素的性質(zhì):確定性,互異性,無(wú)序性

  3、常用數(shù)集的定義及記法

【高一數(shù)學(xué)教案】相關(guān)文章:

高一數(shù)學(xué)教案06-20

高一必修四數(shù)學(xué)教案04-13

高一必修五數(shù)學(xué)教案04-10

人教版高一數(shù)學(xué)教案07-30

上海高一數(shù)學(xué)教案07-30

高一數(shù)學(xué)教案設(shè)計(jì)04-10

高一數(shù)學(xué)教案:函數(shù)單調(diào)性04-08

高一數(shù)學(xué)教案:對(duì)數(shù)函數(shù)04-08

高一數(shù)學(xué)教案:變量與函數(shù)的概念04-08

《集合含義與表示》高一數(shù)學(xué)教案07-30