【精選】分數(shù)的基本性質(zhì)教案四篇
作為一名優(yōu)秀的教育工作者,時常需要用到教案,教案是實施教學的主要依據(jù),有著至關(guān)重要的作用。那么什么樣的教案才是好的呢?以下是小編為大家收集的分數(shù)的基本性質(zhì)教案4篇,歡迎閱讀,希望大家能夠喜歡。
分數(shù)的基本性質(zhì)教案 篇1
教學內(nèi)容:教科書第60~61頁,例1、例2、
練一練,練習十一第1~3題。
教學目標:
1、使學生經(jīng)歷探索分數(shù)基本性質(zhì)的過程,初步理解分數(shù)的基本性質(zhì)。
2、使學生能運用分數(shù)的基本性質(zhì),把一個分數(shù)化成指定分母或分子而大小不變的分數(shù)。
3、使學生在觀察、操作、思考和交流等活動中,培養(yǎng)分析、綜合和抽象,概括的能力,體現(xiàn)數(shù)學學習的樂趣。
教學重點:讓學生在探索中理解分數(shù)的基本性質(zhì)。
教學過程:
一、導入新課
1、我們已經(jīng)學習了分數(shù)的有關(guān)知識,這節(jié)課在已經(jīng)掌握的知識基礎(chǔ)上繼續(xù)學習。
2、出示例1圖。
你能看圖寫出哪些分數(shù)?你是怎樣想的?說出自己的想法。
二、教學新課
1、教學例1。
。1)這四個分數(shù),為什么分母不同呢?前兩個分數(shù)的分子為什么都是1?
。2)你其中哪幾個分數(shù)是相等的嗎?你是怎么知道這三個分數(shù)相等的?
(3)演示驗證。
2、教學例2。
。1)取出正方形紙,先對折,用涂色部分表示它的1/2。學生操作活動。
。2)你能通過繼續(xù)對折,找出和1/2相等的其它分數(shù)嗎?學生操作活動。交流匯報。對折后,正方形被平均分成了多少份?涂色部分有多少份,可以用什么分數(shù)表示?(板書)
。3)得到的這些分數(shù)與1/2相等嗎?能不能再寫一些與1/2相等的數(shù)?
。4)觀察每個等式中的兩個分數(shù),它們的分子、分母是怎樣變化的?觀察、思考,試著完成填空。在小組中說說你有什么發(fā)現(xiàn)?
。5)小結(jié)。分數(shù)的分子和分母同時乘或除以相同的數(shù)(0除外),分數(shù)的大小不變,這是分數(shù)的基本性質(zhì)。板書課題:分數(shù)的基本性質(zhì)。
。6)為什么要“0”除外呢?
。7)你能根據(jù)分數(shù)的基本性質(zhì),寫出一組相等的分數(shù)嗎?學生嘗試完成。
。8)根據(jù)分數(shù)和除法的關(guān)系,你能用整數(shù)除法中商不變的規(guī)律來說明分數(shù)的基本性質(zhì)嗎?在小組中說一說。
3、完成練一練。
。1)完成第1題。涂色表示已知分數(shù),再在右圖中涂出相等部分。說說怎么想的?
。2)完成第1題。獨立完成,匯報想法。5到15乘了幾?1怎么辦?先看哪個數(shù)?(分子9)9到1除以幾?分母18怎么辦?
三、鞏固練習
1、完成練習十一第1題。平均分成了多少份?表示多少份?涂色表示。涂色部分還表示幾分之幾?
2、完成第2題。獨立完成,交流想法。
四、課題總結(jié)
今天有了什么收獲?你認為學習了分數(shù)的基本性質(zhì)有什么作用?在什么時候可能會用到它?
分數(shù)的基本性質(zhì)教案 篇2
教學目標
1、進一步理解分數(shù)基本性質(zhì)的意義,掌握約分的方法。
2、促進學生初步形成約分的一般技能技巧,約分(約成最簡分數(shù))的正確率90%。
教學重難點約成最簡分數(shù)
教學準備:分數(shù)卡片口算卡片
教學過程
一、自主回顧
回顧一下對約分的理解情況
突出三點:用分子分母的公因數(shù)同時去除;約分的形式;約成最簡分數(shù)。
師:什么是最簡分數(shù)?
說一說。
二、鞏固練習
師分數(shù)卡片判斷
1、找朋友:找出和相等的分數(shù)。(七個小矮人身上的分數(shù)分別是下列分數(shù))
你是怎樣尋到的?說說自己的理由好么?
2、能用不同的分數(shù)表示下面各題的商嗎?
練習十一第8題
師:我們在剛剛學習分數(shù)和除法的關(guān)系時,只會用表示2÷8,現(xiàn)在我們還可以用來表示?,我們的進步啊,這就是學習的魅力。
師:你能寫出不同的除法算式嗎?
=()÷()=()÷()
你能說出幾個除法的算式?
這些算式之間有什么聯(lián)系?
3、快樂學習超市
超市畫面快樂套餐1快樂套餐2
快樂套餐1:比一比○○0.4
計算并化簡+=-=
在()填上最簡分數(shù)20分=()時
快樂套餐2、3同上。
。ǚ纸M練習小組代表匯報整合了練習十一10至14題)
4、集中練習
把0.5化成分數(shù)問問自己這個分數(shù)是最簡分數(shù)嗎?你會把它化成最簡分數(shù)嗎?
分母是10的最簡分數(shù)有幾個?
請你提出一個類似的問題。
課堂作業(yè)
練習十一第9題,12、13、14題各自選2個
課后練習:完成練習冊上的相應(yīng)練習。
分數(shù)的基本性質(zhì)教案 篇3
教學目的
1.使學生理解和掌握分數(shù)的基本性質(zhì),能應(yīng)用“性質(zhì)”解決一些簡單問題.
2.培養(yǎng)學生觀察、分析、思考和抽象、概括的能力.
3.滲透“形式與實質(zhì)”的辯證唯物主義觀點,使學生受到思想教育.
教學過程
一、談話.
我們已經(jīng)學習了分數(shù)的意義,認識了真分數(shù)、假分數(shù)和帶分數(shù),掌握了假分數(shù)與帶分數(shù)、
整數(shù)的互化方法.今天我們繼續(xù)學習分數(shù)的有關(guān)知識.
二、導入新課.
(一)教學例1.
出示例1:用分數(shù)表示下面各圖中的陰影部分,并比較它們的大。
1.分別出示每一個圓,讓學生說出表示陰影部分的分數(shù).
。1)把這個圓看做單位1,陰影部分占圓的幾分之幾?
。2)同樣大的圓,陰影部分占圓的幾分之幾?
。3)同樣大的圓,陰影部分用分數(shù)表示是多少?
2.觀察比較陰影部分的大小:
。1)從4 幅圖上看,陰影部分的大小怎么樣?(陰影部分的大小相等.)
(2)陰影部分的大小相等,可以用等號連接起來.(把圖上陰影部分畫上等號)
3.分析、推導出表示陰影部分的分數(shù)的大小也相等:
(1)4幅圖中陰影部分的大小相等.那么,表示這4 幅圖的4個分數(shù)的大小怎么樣呢?
。ㄟ@4個分數(shù)的大小也相等)
(2)它們的大小相等,也可以用等號連接起來(把4個分數(shù)用等號連起來).
4.觀察、分析相等的分數(shù)之間有什么關(guān)系?
。1)觀察 轉(zhuǎn)化成 , 的分子、分母發(fā)生了什么變化?
。 的分子、分母都乘上了2或 的分子、分母都擴大了 2倍.)
。2)觀察
(二)教學例2.
出示例2:比較 的大。
1.出示圖:我們在三條同樣的數(shù)軸上分別表示這三個分數(shù).
2.觀察數(shù)軸上三個點的位置,比較三個分數(shù)的大。
從數(shù)軸上可以看出:
3.觀察、分析形式不同而大小相等的三個分數(shù)之間有什么聯(lián)系和變化規(guī)律.
。1)這三個分數(shù)從形式上看不同,但是它們實質(zhì)上又都相等.
。ń處煱鍟 )
(2)你們分析一下, 、 各用什么樣的方法就都可以轉(zhuǎn)化成 了呢?
三、抽象概括出分數(shù)的基本性質(zhì).
1.觀察前面兩道例題,你們從中發(fā)現(xiàn)了什么變化規(guī)律?
“分數(shù)的分子分母都乘上或都除以相同的數(shù)(零除外),分數(shù)的大小不變.”(板書)
2.為什么要“零除外”?
3.教師小結(jié):這就是今天這節(jié)課我們學習的內(nèi)容:“分數(shù)的基本性質(zhì)”
(板書:“基本性質(zhì)”)
4.誰再說一遍什么叫分數(shù)的基本性質(zhì)?
教師板書字母公式:
四、應(yīng)用分數(shù)基本性質(zhì)解決實際問題.
1.請同學們回憶,分數(shù)的基本性質(zhì)和我們以前學過的哪一個知識相類似?
(和除法中商不變的性質(zhì)相類似.)
。1)商不變的性質(zhì)是什么?
。ǔㄖ校怀龜(shù)和除數(shù)都乘上或都除以相同的數(shù)(零除外),商的大小不變.)
。2)應(yīng)用商不變的性質(zhì)可以進行除法簡便運算,可以解決小數(shù)除法的運算.
2.分數(shù)基本性質(zhì)的應(yīng)用:
我們學習分數(shù)的基本性質(zhì)目的是加深對分數(shù)的認識,更主要的是應(yīng)用這一知識去解
決一些有關(guān)分數(shù)的問題.
3.教學例3.
例3 把 和 化成分母是12而大小不變的分數(shù).
板書:
教師提問:
(1) ?為什么?依據(jù)什么道理?
( ,因為分母2乘上6等于12,要使分數(shù)的大小不變,分子1也要乘上6.所以, )
(2)這個“6”是怎么想出來的?
。ㄟ@樣想:2×?=12,2ד6”=12,也可以看12是2的幾倍:12÷2=6,那么分子1也擴大6倍)
(3) ?為什么?依據(jù)的什么道理?
。 ,因為分母24除以2等于12,要使分數(shù)的大小不變,分子10也得除以2,所以, )
。4)這個“2”是怎么想出來的?
(這樣想:24÷?=12,24÷“2”=12.也可以想24是12的2倍,那么分子10也應(yīng)是新分子的2倍,所以新的分子應(yīng)是10÷2=5)
五、課堂練習.
1.把下面各分數(shù)化成分母是60,而大小不變的分數(shù).
2.把下面的分數(shù)化成分子是1,而大小不變的分數(shù).
3.在( )里填上適當?shù)臄?shù).
4. 的分子增加2,要使分數(shù)的大小不變,分母應(yīng)該增加幾?你是怎樣想的?
5.請同學們想出與 相等的分數(shù).
規(guī)律:這個分數(shù)的值是 ,然后只要按自然數(shù)的順序說出分子是1、2、3、4、……分母是分子的4倍為:4、8、12、16……無數(shù)個.
六、課堂總結(jié).
今天這節(jié)課我們學習了什么知識?懂得了一個什么道理?分數(shù)的基本性質(zhì)是什么?這是學習分數(shù)四則運算的基礎(chǔ),一定要掌握好.
七、課后作業(yè).
1.指出下面每組中的兩個分數(shù)是相等的還是不相等的.
2.在下面的括號里填上適當?shù)臄?shù).
分數(shù)的基本性質(zhì)教案 篇4
教學內(nèi)容:
人教版《義務(wù)教育課程標準實驗教科書數(shù)學》五年級(下冊)75—78頁。
設(shè)計思路:
《分數(shù)的基本性質(zhì)》是人教版《義務(wù)教育課程標準實驗教科書數(shù)學》五年級(下冊)第四單元《分數(shù)的意義和性質(zhì)》的第三節(jié)內(nèi)容。它是在學生已掌握了商不變的性質(zhì)之后,并在已有應(yīng)用經(jīng)驗的基礎(chǔ)上進行學習的。這節(jié)課的教學重點是理解和掌握分數(shù)的`基本性質(zhì),并能運用分數(shù)的基本性質(zhì)解決實際問題。教材共安排了兩道例題、“做一做1、2題”等。教學中創(chuàng)設(shè)學生熟悉的情景,組織學生自主活動,進行主動探究,體會知識的形成過程,體驗學習的快樂。通過鼓勵學生大膽猜想,讓學生動手操作、觀察、分析、比較、討論、合作交流等探究活動,圍繞牽動教學主線的“猜想”,開展自主、探究式學習,以驗證自己的猜想,發(fā)現(xiàn)、總結(jié)、概括出“分數(shù)的基本性質(zhì)” ,并應(yīng)用于實踐解決簡單的實際問題,做到學以致用,發(fā)展學生思維,提高學生學習數(shù)學的興趣,感受學習數(shù)學的樂趣,培養(yǎng)學生樂于探究的人生態(tài)度。
教學目標:
1.通過教學理解和掌握分數(shù)的基本性質(zhì),能運用分數(shù)的基本性質(zhì),把一個分數(shù)化成指定分母(或分子)而大小不變的分數(shù),再應(yīng)用這一規(guī)律解決簡單的實際問題。
2.引導學生在參與觀察、比較、猜想、驗證等學習活動過程中,有條件、有根據(jù)的思考、探究問題,培養(yǎng)學生的抽象概括能力。
3.滲透初步的辯證唯物主義思想教育,使學生收到數(shù)學思想方法的熏陶,培養(yǎng)探究的學習態(tài)度。
教學重點:
理解和掌握分數(shù)的基本性質(zhì)。
教學難點:
應(yīng)用分數(shù)的基本性質(zhì)解決實際問題。
教學方法:
直觀演示法、討論法等。
學法:
合作交流、自主探究。
教學準備:
每位學生準備三張同樣大小的正方形(或長方形)的紙片;教師:長方形(或正方形)的紙片、PPT課件等。
教學過程:
一.創(chuàng)設(shè)情景,激發(fā)興趣
。ㄕn件出示)1.120÷30的商是多少?被除數(shù)和除數(shù)都擴大3倍,商是多少?被除數(shù)和除數(shù)都縮小10倍呢?
2.說一說:(1)商不變的性質(zhì)是什么?(2)分數(shù)與除法的關(guān)系是什么?
( )( )( )3.填空:1÷2= ( ) (1×2)÷(2×2)=( )( )
二.大膽猜想,揭示課題
學生大膽猜想:在除法里有商不變的性質(zhì),在分數(shù)里會不會有類似的性質(zhì)存在呢?(生答:有。┻@個性質(zhì)是什么呢?
隨著學生的回答,教師板書課題:分數(shù)的基本性質(zhì)。
三 .探索研究,驗證猜想
1. 動手操作,驗證性質(zhì)。
(1)學生拿出三張同樣大小的正方形(或長方形)紙片,分別平均分成4份、8份、12
份,并分別給其中的1份、2份、3份涂上色,把涂色部分用分數(shù)表示出來。 圖(略)????引導學生觀察、思考:你發(fā)現(xiàn)了什么?
(2)小組合作:①觀察、分析、比較在組內(nèi)交流你的發(fā)現(xiàn)。
、诤献鹘涣,各抒己見。
123③選代表全班匯報、交流,師相機板書:4812
123(3)合作討論: 為什么相等? 4812
①以小組為單位思考討論:(引導)它們的分子、分母各是按照什么規(guī)律變化的? ②觀察它們的分子、分母的變化規(guī)律,在組內(nèi)用自己的話說一說。
2.分組匯報,歸納性質(zhì)。
a.從左往右看,分子、分母的變化規(guī)律怎樣?選擇一組學生根據(jù)探究報告,到黑板上邊說邊用箭頭表示出分子、分母的變化過程。
。ǜ鶕(jù)學生回答
b.從右往左看,分數(shù)的分子和分母又是按照什么規(guī)律變化的?
(根據(jù)學生的回答)
c.有與這一組探究的分數(shù)不一樣的嗎?你們得出的規(guī)律是什么?
d.綜合剛才的探究,你發(fā)現(xiàn)什么規(guī)律?
。4)引導學生概括出分數(shù)的基本性質(zhì),回應(yīng)猜想。
對這句話你還有什么要補充的?(補充“零除外”)
討論:為什么性質(zhì)中要規(guī)定“零除外”?
。5)齊讀分數(shù)的基本性質(zhì)。在分數(shù)的基本性質(zhì)中,你認為要提醒大家注意些什么?(同時、相同的數(shù)、0除外)。為什么?你能舉例說明嗎?教師則根據(jù)學生回答,在相應(yīng)的字下面點上著重號。
師生共同讀出黑板上板書的分數(shù)基本性質(zhì)(要求關(guān)鍵的字詞要重讀)。
3.慧眼掃描(下列的式子是否正確?為什么?)(課件出示)
33×263(1) ==(生: 的分子與分母沒有同時乘以2,分數(shù)的大小改變。) 555555÷515(2) = = (生: 的分子除以5,分母除以6,除數(shù)的大小不同,分數(shù)1212÷6212
的大小改變。) 11×331==(生:的分子乘以3,而分母除以3,沒有同時乘或除以,1212÷3412(3)
分數(shù)的大小改變。) 22×x2x(4)==(生:x在這里代表任意數(shù),當x=0時,分數(shù)無意義。) 55×x5x
四.回歸書本,探源獲知
1.瀏覽課本第75—78頁的內(nèi)容。
2.看了書,你又有什么收獲?還有什么疑問嗎?(指名匯報、交流)
3.分數(shù)的基本性質(zhì)與商不變性質(zhì)的比較。
(1)小組合作:討論分數(shù)的基本性質(zhì)與商不變性質(zhì)的異同。
(2)小組內(nèi)交流。
(3)選代表全班交流、匯報。
(4)小結(jié)歸納:分數(shù)的基本性質(zhì)與商不變性質(zhì)內(nèi)容相同,只是名稱不同罷了!
4.自主學習并完成例2,請二名學生說出思路。
五.鞏固深化,拓展思維(PPT演示文稿出示下列題目)
1.想一想,填一填。
33×( )988÷( )() 55×( )( )2424÷( )3
學生口答后,要求說出是怎樣想的?
2.在下面( )內(nèi)填上合適的數(shù)。
要求:后二題采取師生對出數(shù)的游戲形式進行,如先由教師出分子,再讓學生對出分母,也可以先由學生出分母,再讓教師對出分子。
3.思維訓練(選擇你喜愛的一道題完成)
3(1)的分子加上6,要使分數(shù)的大小不變,分母應(yīng)加上多少? 5
。2)1/a=7/b(a、b是自然數(shù),且不為0),當a=1,2,3,4??時,b分別等于幾?
討論:a與b之間的關(guān)系是怎樣的?為什么會存在這樣的關(guān)系?依據(jù)是什么?
(3)把6/20、70/100、45/50、1/2和4/5化成分母相同而大小不變的分數(shù)。
思考:分數(shù)的分母相同了,有什么作用?揭示學習分數(shù)的基本性質(zhì)的重要性,鼓勵學生學好、用好。
六.全課小結(jié)
本節(jié)課你收獲了什么?同桌交流分享你獲取知識的快樂!(匯報全班交流)
七.布置作業(yè)
P77—78練習十四第1、5、8題。
教學反思
“分數(shù)的基本性質(zhì)”是在學生已掌握了商不變的性質(zhì)之后,并在已有應(yīng)用經(jīng)驗的基礎(chǔ)上進行學習的。這節(jié)課用“猜想——驗證——反思”的方式學習分數(shù)的基本性質(zhì),是學生在大問題背景下的一種研究性學習。這不僅對學生提出了挑戰(zhàn),而且對教師也提出了挑戰(zhàn)。教學中創(chuàng)設(shè)學生熟悉的情景,組織學生自主活動,進行主動探究,體會知識的形成過程,體驗學習的快樂。通過鼓勵學生大膽猜想,讓學生動手操作、觀察、分析、比較、討論、合作交流等探究活動,圍繞牽動教學主線的“猜想”,開展自主、探究式學習,以驗證自己的猜想,發(fā)現(xiàn)、總結(jié)、概括出“分數(shù)的基本性質(zhì)” ,并應(yīng)用于實踐解決簡單的實際問題,做到學以致用,發(fā)展學生思維,提高學生學習數(shù)學的興趣,感受學習數(shù)學的樂趣,培養(yǎng)學生樂于探究的人生態(tài)度。
本節(jié)課教學設(shè)計突出的特點是學法的設(shè)計。從“創(chuàng)設(shè)情境、激發(fā)興趣;大膽猜想、揭示課題;探索研究、驗證猜想;回歸書本、探源獲知;鞏固深化、拓展思維”到“全課小結(jié)”每一個環(huán)節(jié)完全是為學生自主探究、合作交流學習而設(shè)計的。通過教學總結(jié)了自己的得與失如下:
1. 創(chuàng)設(shè)情境,可以更好地激發(fā)學生的學習興趣,學生有了這樣的學習興趣,我想這節(jié)課已經(jīng)成功了一半。因為興趣是最好的老師!
2.學生在操作中大膽猜想。
新課標積極倡導學生 “主動參與、樂于探究、勤于思考”,以培養(yǎng)學生獲取知識、分析和解決問題的能力。因此我由學生的猜想入手,可以最大限度的調(diào)動學生“驗證自己猜想”的積極性和主動性,接下來通過學生:動手操作、觀察、比較、分析、討論、合作交流、探究等活動都是為了驗證學生自己的猜想,這些環(huán)節(jié)充分發(fā)揮了學生的主動性、積極性,從而凸顯學生在學習中的主體地位。教師在教學過程成為學生學習的引導者、支持者、服務(wù)者。同時創(chuàng)設(shè)猜想的情境,學生通過動手操作、觀察、比較、分析、討論、合作交流的探究方式來經(jīng)歷數(shù)學,獲得感性經(jīng)驗,進而理解所學知識,完成知識創(chuàng)造過程。并且也為學生多彩的思維、創(chuàng)設(shè)良好的平臺,由于學生的經(jīng)歷不同,認識問題的角度不同,促使他們解決問題的策略多樣化,使生生、師生評價在價值觀上都得到了發(fā)展。
3.學生在自主探索中科學驗證。
【分數(shù)的基本性質(zhì)教案】相關(guān)文章:
分數(shù)的基本性質(zhì)教案04-20
分數(shù)的基本性質(zhì)的教案07-18
分數(shù)的基本性質(zhì)10-10
《分數(shù)的基本性質(zhì)》的教案設(shè)計09-15