數(shù)學(xué)初中教案范文
作為一名教學(xué)工作者,通常需要用到教案來輔助教學(xué),借助教案可以更好地組織教學(xué)活動。那么教案應(yīng)該怎么寫才合適呢?下面是小編整理的數(shù)學(xué)初中教案范文,僅供參考,歡迎大家閱讀。
數(shù)學(xué)初中教案范文1
教學(xué)目標(biāo)
1.了解公式的意義,使學(xué)生能用公式解決簡單的實際問題;
2.初步培養(yǎng)學(xué)生觀察、分析及概括的能力;
3.通過本節(jié)課的教學(xué),使學(xué)生初步了解公式來源于實踐又反作用于實踐。
教學(xué)建議
一、教學(xué)重點、難點
重點:通過具體例子了解公式、應(yīng)用公式。
難點:從實際問題中發(fā)現(xiàn)數(shù)量之間的關(guān)系并抽象為具體的公式,要注意從中反應(yīng)出來的歸納的思想方法。
二、重點、難點分析
人們從一些實際問題中抽象出許多常用的、基本的數(shù)量關(guān)系,往往寫成公式,以便應(yīng)用。如本課中梯形、圓的面積公式。應(yīng)用這些公式時,首先要弄清楚公式中的字母所表示的意義,以及這些字母之間的數(shù)量關(guān)系,然后就可以利用公式由已知數(shù)求出所需的未知數(shù)。具體計算時,就是求代數(shù)式的值了。有的公式,可以借助運算推導(dǎo)出來;有的公式,則可以通過實驗,從得到的反映數(shù)量關(guān)系的一些數(shù)據(jù)(如數(shù)據(jù)表)出發(fā),用數(shù)學(xué)方法歸納出來。用這些抽象出的具有一般性的公式解決一些問題,會給我們認(rèn)識和改造世界帶來很多方便。
三、知識結(jié)構(gòu)
本節(jié)一開始首先概述了一些常見的公式,接著三道例題循序漸進的講解了公式的直接應(yīng)用、公式的先推導(dǎo)后應(yīng)用以及通過觀察歸納推導(dǎo)公式解決一些實際問題。整節(jié)內(nèi)容滲透了由一般到特殊、再由特殊到一般的辨證思想。
四、教法建議
1.對于給定的可以直接應(yīng)用的公式,首先在給出具體例子的前提下,教師創(chuàng)設(shè)情境,引導(dǎo)學(xué)生清晰地認(rèn)識公式中每一個字母、數(shù)字的意義,以及這些數(shù)量之間的對應(yīng)關(guān)系,在具體例子的基礎(chǔ)上,使學(xué)生參與挖倔其中蘊涵的思想,明確公式的應(yīng)用具有普遍性,達到對公式的靈活應(yīng)用。
2.在教學(xué)過程中,應(yīng)使學(xué)生認(rèn)識有時問題的解決并沒有現(xiàn)成的公式可套,這就需要學(xué)生自己嘗試探求數(shù)量之間的關(guān)系,在已有公式的基礎(chǔ)上,通過分析和具體運算推導(dǎo)新公式。
3.在解決實際問題時,學(xué)生應(yīng)觀察哪些量是不變的,哪些量是變化的,明確數(shù)量之間的對應(yīng)變化規(guī)律,依據(jù)規(guī)律列出公式,再根據(jù)公式進一步地解決問題。這種從特殊到一般、再從一般到特殊認(rèn)識過程,有助于提高學(xué)生分析問題、解決問題的能力。
數(shù)學(xué)初中教案范文2
[教學(xué)目標(biāo)]
1、體會并了解反比例函數(shù)的圖象的意義
2、能列表、描點、連線法畫出反比例函數(shù)的圖象
3、通過反比例函數(shù)的圖象的分析,探索并掌握反比例函數(shù)的圖象的性質(zhì)
[教學(xué)重點和難點]
本節(jié)教學(xué)的重點是反比例函數(shù)的圖象及圖象的性質(zhì)
由于反比例函數(shù)的圖象分兩支,給畫圖帶來了復(fù)雜性是本節(jié)教學(xué)的難點
[教學(xué)過程]
1、情境創(chuàng)設(shè)
可以從復(fù)習(xí)一次函數(shù)的圖象開始:你還記得一次函數(shù)的圖象嗎?在回憶與交流中,進一步認(rèn)識函數(shù)圖象的直觀有助于理解函數(shù)的性質(zhì)。轉(zhuǎn)而導(dǎo)人關(guān)注新的函數(shù)——反比例函數(shù)的圖象研究:反比例函數(shù)的圖象又會是什么樣子呢?
2、探索活動
探索活動1反比例函數(shù)y?
由于反比例函數(shù)y?
要分幾個層次來探求:
(1)可以先估計——例如:位置(圖象所在象限、圖象與坐標(biāo)軸的交點等)、趨勢(上升、下降等);
(2)方法與步驟——利用描點作圖;
列表:取自變量x的哪些值?——x是不為零的任何實數(shù),所以不能取x的值的為零,但仍可以以零為基準(zhǔn),左右均勻,對稱地取值。
描點:依據(jù)什么(數(shù)據(jù)、方法)找點?
連線:怎樣連線?——可在各個象限內(nèi)按照自變量從小到大的順序用兩條光滑的曲線把所描的點連接起來。
探索活動2反比例函數(shù)y?2的圖象.x2的圖象是曲線型的,且分成兩支.對此,學(xué)生第一次接觸有一定的難度,因此需x2的圖象.x
可以引導(dǎo)學(xué)生采用多種方式進行自主探索活動:
2的圖象的方式與步驟進行自主探索其圖象;x
222(2)可以通過探索函數(shù)y?與y??之間的關(guān)系,畫出y??的圖象.__
22探索活動3反比例函數(shù)y??與y?的圖象有什么共同特征?__(1)可以用畫反比例函數(shù)y?
引導(dǎo)學(xué)生從通過與一次函數(shù)的圖象的對比感受反比例函數(shù)圖象“曲線”及“兩支”的特征。(即雙曲線)反比例函數(shù)y?
k(k≠0)的圖象中兩支曲線都與x軸、y軸不相交;并且當(dāng)k?0時,圖象在第一、第x
數(shù)學(xué)初中教案范文3
把方程兩邊都加上(或減去)同一個數(shù)或同一個整式,就相當(dāng)于把方程中的某些項改變符號后,從方程的一邊移到另一邊,這樣的變形叫做移項。
一、教材內(nèi)容分析
本節(jié)課是數(shù)學(xué)人教版七年級上冊第三章第二節(jié)第二小節(jié)的內(nèi)容。這是一節(jié)“概念加例題型”課,此種課型中的學(xué)習(xí)內(nèi)容一部分是概念,一部分是運用前面的概念解決實際問題的例題。本節(jié)課主要內(nèi)容是利用移項解一元一次方程。是學(xué)生學(xué)習(xí)解一元一次方程的基礎(chǔ),這一部分內(nèi)容在方程中占有很重要的地位,是解方程、解一元一次不等式、解一元二次不等式的重要基礎(chǔ)。這類課一般采用“導(dǎo)學(xué)導(dǎo)教,當(dāng)堂訓(xùn)練”的方式進行,教師指導(dǎo)學(xué)生學(xué)習(xí)的重點一般不放在概念上,要特別留意學(xué)生運用概念解題或做與例題類似的習(xí)題時,對概念的理解是否到位。
二、教學(xué)目標(biāo):
1.知識與技能:
(1)找相等關(guān)系列一元一次方程;
(2)用移項解一元一次方程。
(3)掌握移項變號的基本原則
2.過程與方法:經(jīng)歷運用方程解決實際問題的過程,發(fā)展抽象、概括、分析問題和解決問題的能力,認(rèn)識用方程解決實際問題的關(guān)鍵是建立相等關(guān)系。
3.情感、態(tài)度:通過具體情境引入新問題,在移項法則探究的過程中,培養(yǎng)學(xué)生合作意識,滲透化歸的思想。
三、學(xué)情分析
針對七年級學(xué)生學(xué)習(xí)熱情高,但觀察、分析、概括能力較弱的特點,本節(jié)從實際問題入手,讓學(xué)生通過自己思考、動手,激發(fā)學(xué)生的求知欲,提高學(xué)生學(xué)習(xí)的興趣與積極性。在課堂教學(xué)中,學(xué)生主要采取自學(xué)、討論、思考、合作交流的學(xué)習(xí)方式,使學(xué)生真正成為課堂的主人,逐步培養(yǎng)學(xué)生觀察、概括、歸納的能力。
四、教學(xué)重點:
利用移項解一元一次方程。
五、教學(xué)難點:
移項法則的探究過程。
六、教學(xué)過程:
(一)情景引入
引例:請同學(xué)們思考這樣一個有趣的問題,我國民間流傳著許多趣味算題,多以順口溜的形式表達,請看這樣一個數(shù)學(xué)問題:一群老頭去趕集,半路買了一堆梨,一人一個多一個,一人兩個少兩個,老頭和梨分別是( )
A.3個老頭,4個梨B.4個老頭,3個梨C.5個老頭,6個梨D.7個老頭,8個梨
設(shè)計意圖:大部分同學(xué)會用算術(shù)法(答案代入法)來解答的,而這類問題我們?nèi)绾斡梅匠虂斫獯鹉?激起學(xué)生求知的欲望,巧妙過渡,揭示課題。板書課題:解一元一次方程——移項
(二)出示學(xué)習(xí)目標(biāo)
1.理解移項法,明確移項法的依據(jù),會解形如ax+b=cx+d類型的一元一次方程。
2.會建立方程解決簡單的實際問題。
設(shè)計意圖:這兩個目標(biāo)的達成,也驗證了本節(jié)課學(xué)生自學(xué)的效果,這也是本節(jié)課的教學(xué)重難點。
(三)導(dǎo)教導(dǎo)學(xué)
1.出示自學(xué)指導(dǎo)
自學(xué)教材問題2到例3的內(nèi)容,思考以下問題:
(1)問題2中這批書的總數(shù)有哪幾種表示法?它們之間有什么關(guān)系?本題可作為列方程的依據(jù)的等量關(guān)系是什么?
(2)什么是移項?移項的依據(jù)是什么?移項時應(yīng)該注意什么問題?解形如“ax+b=cx+d”類型的方程中移項起了什么作用?自學(xué)例3后請歸納解這類一元一次方程的步驟(8分鐘后,比誰能仿照問題2和例3的格式正確解答問題)
2.學(xué)生自學(xué)
學(xué)生根據(jù)自學(xué)提綱進行獨立學(xué)習(xí),教師巡視,對自學(xué)速度慢的、自學(xué)能力差的'、注意力不夠集中的學(xué)生給以暗示和幫扶,有利于自學(xué)后的成果展示。
3.交流展示(小組合作展示)
(合作交流一)教材問題2中這批書的總數(shù)有哪幾種表示法?它們之間有什么關(guān)系?本題哪個相等關(guān)系可作為列方程的依據(jù)呢?
問題2:把一些圖書分給某班學(xué)生閱讀,如果每人分3本,則剩余20本;如果每人分4本,則還缺25本.這個班有多少學(xué)生?
1)設(shè)未知數(shù):設(shè)這個班有X名學(xué)生,根據(jù)兩種不同分法這批書的總數(shù)就有兩種表示方法,即這批書共有(3 X+20)本或(4X-25)本。
2)找相等關(guān)系:這批書的總數(shù)是一個定值,表示同一個量的兩個不同的式子相等。(板書)
3)根據(jù)等量關(guān)系列方程:3x+20 = 4x-25(板書)
【總結(jié)提升】解決“分配問題”應(yīng)用題的列方程的基本要點:
A.找出能貫穿應(yīng)用題始終的一個不變的量。
B.用兩個不同的式子去表示這個量。
C.由表示這個不變的量的兩個式子相等列出方程。
設(shè)計意圖:因為在自學(xué)提綱的引領(lǐng)下,每個小組自主學(xué)習(xí)的效果不同,反饋的意見不同,所以在展示中首先要展示學(xué)生對課本例題的理解思路。采取主動自愿的方式,一個小組主講,其它小組補充。
(變式訓(xùn)練1)某學(xué)校組織學(xué)生共同種一批樹,如果每人種5棵,則剩下3棵;如果每人種6棵,則缺3棵樹苗,求參與種樹的人數(shù)
(只設(shè)列即可)
(變式訓(xùn)練2)我國民間流傳著許多趣味算題,多以順口溜的形式表達,請看這樣一個數(shù)學(xué)問題:一群老頭去趕集,半路買了一堆梨,一人一個多一個,一人兩個少兩個,老頭和梨各多少?
設(shè)計意圖:檢查提問學(xué)生對“分配問題”應(yīng)用題掌握的情況,學(xué)生回答后教師板書所列方程為后面教學(xué)做好鋪墊。學(xué)生會帶著“如何解這類方程?”的好奇心過渡到下一個環(huán)節(jié)的學(xué)習(xí)。
(合作交流二)什么是移項?移項的依據(jù)是什么?移項時應(yīng)該注意什么問題?解形如“ax+b=cx+d”類型的方程中移項起了什么作用?自學(xué)例3后請歸納解這類一元一次方程的步驟。
(板書)把等式一邊的某項改變符號后,從等式的一邊移到另一邊,這種變形叫做移項。
《解一元一次方程——移項》教學(xué)設(shè)計(魏玉英)
師:為什么等式(方程)可以這樣變形?依據(jù)什么?
(出示)依據(jù)等式的基本性質(zhì)
即:等式兩邊都加上或減去同一個數(shù)或同一個整式,所得結(jié)果仍是等式。
師:解一元一次方程中“移項”起了什么作用?
(出示)通過移項,使等號左邊僅含未知數(shù)的項,等號右邊僅含常數(shù)的項,使方程更接近x=a的形式。(與課題對照滲透轉(zhuǎn)化思想)
(基礎(chǔ)訓(xùn)練)搶答:判斷下列移項是否正確,如有錯誤,請修改
《解一元一次方程——移項》教學(xué)設(shè)計(魏玉英)
設(shè)計理念:讓各個小組憑著勢力去搶答。這五個習(xí)題重點考察學(xué)生對移項的掌握是本節(jié)課的重難點,習(xí)題分層設(shè)計且成梯度分布。
【歸納板書】解“ax+b=cx+d”型的一元一次方程的步驟:
(1)移項,
(2)合并同類項,
(3)系數(shù)化為1
(綜合訓(xùn)練)解下列方程(任選兩題)
設(shè)計理念:第(2)、(3)兩題未知數(shù)系數(shù)是相同類型的,所以讓學(xué)生任選一題即可。通過綜合訓(xùn)練能讓學(xué)生更進一步鞏固用移項和合并同類項去解方程了。
(中考試練)若x=2是關(guān)于x的方程2x+3m-1=0的解,則m的值為
設(shè)計理念:通過本題的訓(xùn)練讓學(xué)生明確中考在本節(jié)的考點,同時激勵學(xué)生在數(shù)學(xué)知識的學(xué)習(xí)中要抓住知識的核心和重點。
(四)我總結(jié)、我提高:
通過本節(jié)課的學(xué)習(xí)我收獲了。
設(shè)計意圖:通過小組之間互相談收獲的方式進行課堂小結(jié),讓學(xué)生相互檢查本節(jié)課的學(xué)習(xí)效果?梢砸龑(dǎo)學(xué)生從本節(jié)課獲得的知識、解題的思想方法、學(xué)習(xí)的技巧等方面交流意見。
(五)當(dāng)堂檢測(50分)
1.下列方程變形正確的是( )
A.由-2x=6,得x=3
B.由-3=x+2,得x=-3-2
C.由-7x+3=x-3,得(-7+1)x=-3-3
D.由5x=2x+3,得x=-1
2.一批游客乘汽車去觀看“上海世博會”。如果每輛汽車乘48人,那么還多4人;如果每輛汽車乘50人,那么還有6個空位,求汽車和游客各有多少?(只設(shè)出未知數(shù)和列出方程即可)
3.(20分)已知x=1是關(guān)于x的方程3m+8x=m+x的解,求m的值。
(師生活動)學(xué)生獨立答題,教師巡回檢查,對先答完的學(xué)生進行及時批改,并把得滿分的學(xué)生作為小老師對后解答完的學(xué)生的檢測進行評定,最后老師進行小結(jié)。
(六)實踐活動
請每一位同學(xué)用自己的年齡編一道“ax+b=cx+d”型的方程應(yīng)用題,并解答。先在組內(nèi)交流,選出組內(nèi)最有創(chuàng)意的一個記在題卡上,自習(xí)在全班進行展示。
設(shè)計意圖:
讓學(xué)生課后完成,讓學(xué)生深深體會到數(shù)學(xué)來源于生活而又服務(wù)于生活,體現(xiàn)了數(shù)學(xué)知識與實際相結(jié)合。
數(shù)學(xué)初中教案范文4
一、教學(xué)目的:
1.理解并掌握菱形的定義及兩個判定方法;會用這些判定方法進行有關(guān)的論證和計算;
2.在菱形的判定方法的探索與綜合應(yīng)用中,培養(yǎng)學(xué)生的觀察能力、動手能力及邏輯思維能力。
二、重點、難點
1.教學(xué)重點:菱形的兩個判定方法。
2.教學(xué)難點:判定方法的證明方法及運用。
三、例題的意圖分析
本節(jié)課安排了兩個例題,其中例1是教材P109的例3,例2是一道補充的題目,這兩個題目都是菱形判定方法的直接的運用,主要目的是能讓學(xué)生掌握菱形的判定方法,并會用這些判定方法進行有關(guān)的論證和計算。這些題目的推理都比較簡單,學(xué)生掌握起來不會有什么困難,可以讓學(xué)生自己去完成。程度好一些的班級,可以選講例3。
四、課堂引入
1.復(fù)習(xí)
(1)菱形的定義:一組鄰邊相等的平行四邊形;
(2)菱形的性質(zhì)1菱形的四條邊都相等;
性質(zhì)2菱形的對角線互相平分,并且每條對角線平分一組對角;
(3)運用菱形的定義進行菱形的判定,應(yīng)具備幾個條件?(判定:2個條件)
2.【問題】要判定一個四邊形是菱形,除根據(jù)定義判定外,還有其它的判定方法嗎?
3.【探究】(教材P109的探究)用一長一短兩根木條,在它們的中點處固定一個小釘,做成一個可轉(zhuǎn)動的十字,四周圍上一根橡皮筋,做成一個四邊形。轉(zhuǎn)動木條,這個四邊形什么時候變成菱形?
通過演示,容易得到:
菱形判定方法1對角線互相垂直的平行四邊形是菱形。
注意此方法包括兩個條件:
(1)是一個平行四邊形;
(2)兩條對角線互相垂直。
通過教材P109下面菱形的作圖,可以得到從一般四邊形直接判定菱形的方法:
菱形判定方法2四邊都相等的四邊形是菱形。
五、例習(xí)題分析
例1 (教材P109的例3)略
例2(補充)已知:如圖ABCD的對角線AC的垂直平分線與邊AD、BC分別交于E、F。
求證:四邊形AFCE是菱形。
證明:∵四邊形ABCD是平行四邊形,
∴ AE∥FC。
∴ ∠1=∠2。
又∠AOE=∠COF,AO=CO,
∴ △AOE≌△COF。
∴ EO=FO。
∴四邊形AFCE是平行四邊形。
又EF⊥AC,
∴ AFCE是菱形(對角線互相垂直的平行四邊形是菱形)。
※例3(選講)已知:如圖,△ABC中,∠ACB=90°,BE平分∠ABC,CD⊥AB與D,EH⊥AB于H,CD交BE于F。
求證:四邊形CEHF為菱形。
略證:易證CF∥EH,CE=EH,在Rt△BCE中,∠CBE+∠CEB=90°,在Rt△BDF中,∠DBF+∠DFB=90°,因為∠CBE=∠DBF,∠CFE=∠DFB,所以∠CEB=∠CFE,所以CE=CF。
所以,CF=CE=EH,CF∥EH,所以四邊形CEHF為菱形。
六、隨堂練習(xí)
1.填空:
(1)對角線互相平分的四邊形是;
(2)對角線互相垂直平分的四邊形是________;
(3)對角線相等且互相平分的四邊形是________;
(4)兩組對邊分別平行,且對角線的四邊形是菱形。
2.畫一個菱形,使它的兩條對角線長分別為6cm、8cm。
3.如圖,O是矩形ABCD的對角線的交點,DE∥AC,CE∥BD,DE和CE相交于E,求證:四邊形OCED是菱形。
七、課后練習(xí)
1.下列條件中,能判定四邊形是菱形的是( )。
(A)兩條對角線相等
(B)兩條對角線互相垂直
(C)兩條對角線相等且互相垂直
(D)兩條對角線互相垂直平分
2.已知:如圖,M是等腰三角形ABC底邊BC上的中點,DM⊥AB,EF⊥AB,ME⊥AC,DG⊥AC。求證:四邊形MEND是菱形.
3.做一做:
設(shè)計一個由菱形組成的花邊圖案,花邊的長為15 cm,寬為4 cm,由有一條對角線在同一條直線上的四個菱形組成,前一個菱形對角線的交點,是后一個菱形的一個頂點,畫出花邊圖形。
數(shù)學(xué)初中教案范文5
教學(xué)目標(biāo):
1、理解切線的判定定理,并學(xué)會運用。
2、知道判定切線常用的方法有兩種,初步掌握方法的選擇。
教學(xué)重點:
切線的判定定理和切線判定的方法。
教學(xué)難點:
切線判定定理中所闡述的圓的切線的兩大要素:一是經(jīng)過半徑外端;二是直線垂直于這條半徑;學(xué)生開始時掌握不好并極容易忽視一。
教學(xué)過程:
一、復(fù)習(xí)提問
【教師】
問題1.怎樣過直線l上一點P作已知直線的垂線?
問題2.直線和圓有幾種位置關(guān)系?
問題3.如何判定直線l是⊙O的切線?
啟發(fā):
(1)直線l和⊙O的公共點有幾個?
(2)圓心O到直線L的距離與半徑的數(shù)量關(guān)系如何?
學(xué)生答完后,教師強調(diào)(2)是判定直線l是⊙O的切線的常用方法,即:定理:圓心O到直線l的距離OA等于圓的半(如圖1,投影顯示)
再啟發(fā):若把距離OA理解為OA⊥l,OA=r;把點A理解為半徑在圓上的端點,請同學(xué)們試將上面定理用新的理解改寫成新的命題,此命題就是這節(jié)課要學(xué)的“切線的判定定理”(板書課題)
二、引入新課內(nèi)容
【學(xué)生】命題:經(jīng)過半徑的在圓上的端點且垂直于半徑的直線是圓的切線。
證明定理:啟發(fā)學(xué)生分清命題的題設(shè)和結(jié)論,寫出已知、求證,分析證明思路,閱讀課本P60。
定理:經(jīng)過半徑外端并且垂直于這條半徑的直線是圓的切線。
定理的證明:已知:直線l經(jīng)過半徑OA的外端點A,直線l⊥OA,
求證:直線l是⊙O的切線
證明:略
定理的符號語言:∵直線l⊥OA,直線l經(jīng)過半徑OA的外端A
∴直線l為⊙O的切線。
是非題:
(1)垂直于圓的半徑的直線一定是這個圓的切線。 ( )
(2)過圓的半徑的外端的直線一定是這個圓的切線。 ( )
三、例題講解
例1、已知:直線AB經(jīng)過⊙O上的點C,并且OA=OB,CA=CB。
求證:直線AB是⊙O的切線。
引導(dǎo)學(xué)生分析:由于AB過⊙O上的點C,所以連結(jié)OC,只要證明AB⊥OC即可。
證明:連結(jié)OC.
∵OA=OB,CA=CB,
∴AB⊥OC
又∵直線AB經(jīng)過半徑OC的外端C
∴直線AB是⊙O的切線。
練習(xí)1、如圖,已知⊙O的半徑為R,直線AB經(jīng)過⊙O上的點A,并且AB=R,∠OBA=45°。求證:直線AB是⊙O的切線。
練習(xí)2、如圖,已知AB為⊙O的直徑,C為⊙O上一點,AD⊥CD于點D,AC平分∠BAD。
求證:CD是⊙O的切線。
例2、如圖,已知AB是⊙O的直徑,點D在AB的延長線上,且BD=OB,過點D作射線DE,使∠ADE=30°。
求證:DE是⊙O的切線。
思考題:在Rt△ABC中,∠B=90°,∠A的平分線交BC于D,以D為圓心,BD為半徑作圓,問⊙D的切線有幾條?是哪幾條?為什么?
四、小結(jié)
1.切線的判定定理。
2.判定一條直線是圓的切線的方法:
、俣x:直線和圓有唯一公共點。
、跀(shù)量關(guān)系:直線到圓心的距離等于該圓半徑(即d = r).[
③切線的判定定理:經(jīng)過半徑外端且與這條半徑垂直的直線是圓的切線。
3.證明一條直線是圓的切線的輔助線和證法規(guī)律。
凡是已知公共點(如:直線經(jīng)過圓上的點;直線和圓有一個公共點;)往往是"連結(jié)"圓心和公共點,證明"垂直"(直線和半徑);若不知公共點,則過圓心作一條線段垂直于直線,證明所作的線段等于半徑。即已知公共點,“連半徑,證垂直”;不知公共點,則“作垂直,證半徑”。
五、布置作業(yè):略
《切線的判定》教后體會
本課例《切線的判定》作為市考試院調(diào)研課型兼區(qū)級研討課,我以“教師為引導(dǎo),學(xué)生為主體”的二期課改的理念出發(fā),通過學(xué)生自我活動得到數(shù)學(xué)結(jié)論作為教學(xué)重點,呈現(xiàn)學(xué)生真實的思維過程為教學(xué)宗旨,進行教學(xué)設(shè)計,目的在于讓學(xué)生對知識有一個本質(zhì)的、有效的理解。本節(jié)課切實反映了平時的教學(xué)情況,為前來調(diào)研和研討的老師提供了真實的樣本。反思本節(jié)課,有以下幾個成功與不足之處:
成功之處:
一、教材的二度設(shè)計順應(yīng)了學(xué)生的認(rèn)知規(guī)律
這批學(xué)生習(xí)慣于單一知識點的學(xué)習(xí),即得出一個知識點,必須由淺入深反復(fù)進行練習(xí),鞏固后方能加以提升與綜合,否則就會混淆概念或定理的條件和結(jié)論,導(dǎo)致錯誤,久之便會失去學(xué)習(xí)數(shù)學(xué)的興趣和信心。本教時課本上將切線判定定理和性質(zhì)定理的導(dǎo)出作為第一課時,兩個定理的運用和切線的兩種常用的判定方法作為第二課時,學(xué)生往往會因第一時間得不到及時的鞏固,對定理本質(zhì)的東西不能很好地理解,在運用時抓不住關(guān)鍵,解題僅僅停留在模仿層次上,接受能力薄弱的學(xué)生更是因知識點多不知所措,在云里霧里。二度設(shè)計將切線的判定方法作為第一課時,切線的性質(zhì)定理以及兩個定理的綜合運用作為第二課時,這樣的設(shè)計即是對前面所學(xué)的“直線與圓相切的判定方法”的復(fù)習(xí),又是對后面學(xué)習(xí)綜合運用兩個定理,合理選擇兩種方法判定切線作了鋪墊,教學(xué)呈現(xiàn)了一個循序漸進、溫過知新的過程。從學(xué)生的反饋情況判斷,教學(xué)效果較為理想。
二、重視學(xué)生數(shù)感的培養(yǎng)呼應(yīng)了課改的理念
數(shù)感類似與語感、樂感、美感,擁有了感覺,知識便會融會貫通,學(xué)習(xí)就會輕松。擁有數(shù)感,不僅會對數(shù)學(xué)知識反應(yīng)靈敏,更會在生活中不知不覺運用數(shù)學(xué)思維方式解決實際問題。本節(jié)課中,兩個例題由教師誘導(dǎo),學(xué)生發(fā)現(xiàn)完成的,而三個習(xí)題則完全放手讓學(xué)生去思考完成,不乏有不會做和做得復(fù)雜的學(xué)生,但在展示和交流中,撞擊出思維的火花,難以忘懷。讓學(xué)生嘗試總結(jié)規(guī)律,也是對學(xué)生能力的培養(yǎng),在本節(jié)課中,輔助線的規(guī)律是由學(xué)生得出,事實證明,學(xué)生有這樣的理解、概括和表達能力。通過思考得出正確的結(jié)論,這個結(jié)論往往是刻骨銘心的,長此以往,對數(shù)和形的感覺會越來越好。
【數(shù)學(xué)初中教案】相關(guān)文章:
初中數(shù)學(xué)《梯形》教案04-07
初中數(shù)學(xué)《線段》教案04-07
初中數(shù)學(xué)《矩形》教案04-07
初中數(shù)學(xué)備課教案11-26
初中數(shù)學(xué)教案06-29
初中數(shù)學(xué)簡單教案07-01
初中數(shù)學(xué)幾何教案08-04
初中數(shù)學(xué)軸對稱教案08-25