男人天堂日韩,中文字幕18页,天天伊人网,成人性生交大片免费视频

小學數(shù)學圓的面積教案

時間:2023-03-13 19:34:13 教案 我要投稿

小學數(shù)學圓的面積教案

  作為一位無私奉獻的人民教師,總不可避免地需要編寫教案,編寫教案有利于我們科學、合理地支配課堂時間。那么什么樣的教案才是好的呢?以下是小編整理的小學數(shù)學圓的面積教案,供大家參考借鑒,希望可以幫助到有需要的朋友。

小學數(shù)學圓的面積教案

小學數(shù)學圓的面積教案1

  教學目標:

  1、在初步認識圓柱的基礎上理解圓柱的側面積和表面積的含義,掌握圓柱側面積和表面積的計算方法,會正確計算圓柱的側面積和表面積。

  2、通過實踐操作,在學生理解圓柱側面積和表面的含義的同時,能解決一些有關實際生活的問題。

  教學重點,難點:

  掌握圓柱側面積和表面積的計算方法。

  運用所學的知識解決簡單的實際問題。

  教學過程:

  一、引入新課:

  前一節(jié)課我們已經(jīng)認識了一個新朋友——圓柱,誰能說說這位新朋友長什么樣子以及有什么特征嗎?

  1、圓柱是由平面和曲面圍成的立體圖形。

  2、圓柱各部分的名稱(兩個底面,側面,高)。

  3、把圓柱的側面沿著它的一條高剪開得到一個長方形,這個長方形的長等于圓柱的底面周長、寬等于圓柱的高。

  同學們對圓柱已經(jīng)知道得這么多了,還想對它作進一步的了解嗎?今天我們就一起來研究怎樣求圓柱的表面積。

  二、探究新知:

  以前我們學過正方體、長方體的表面積,觀察一個長方體,我們是怎么求這個長方體的表面積的呢?(六個面的面積和就是它的表面積)

  同學們想一想我們要求圓柱的表面積,那么圓柱的表面積指的是什么?

  教師引導,學生討論結果:圓柱的側面積加上兩個底面的面積就是圓柱的表面積。

  板書:(圓柱的表面積=圓柱的側面積+兩個底面的面積。)

  1、圓柱的側面積

 。1)圓柱的側面積,顧名思義,也就是圓柱側面的面積。

 。2)出示圓柱的展開圖:這個展開后的長方形的面積和圓柱的側面積有什么關系呢?

 。▽W生觀察很容易看到這個長方形的面積等于圓柱的側面積。)

 。3)那么,圓柱的側面積應該怎樣計算呢?(引導學生根據(jù)展開后的長方形的長和寬與圓柱底面周長和高的關系,可以知道:圓柱的側面積=底面周長×高。)

  2、側面積練習:練習二第5題

  學生審題,回答下面的問題:

  這兩道題分別已知什么,求什么?

  小結:要計算圓柱的側面積,必須知道圓柱底面周長和高這兩個條件,有時題里只給出直徑或半徑,底面周長這個條件可以通過計算得到,在解題前要注意看清題意再列式。

  3、理解圓柱表面積的含義。

 。1)讓學生把自己制作的圓柱模型展開,觀察一下,圓柱的表面由哪幾個部分組成?(通過操作,使學生認識到:圓柱的.表面由上下兩個底面和側面組成。)

 。2)圓柱的表面積是指圓柱表面的面積,也就是圓柱的側面積加上兩個底面的面積。

  公式:圓柱的表面積=圓柱的側面積+底面積×2

  4、嘗試練習。

 。1)求下面各圓柱的側面積。

 、俚酌嬷荛L2.5分米,高0.6分米。

 、诘酌嬷睆8厘米,高12厘米。

 。2)求下面各圓柱的表面積。

 、俚酌娣e是40平方厘米,側面積是25平方厘米。

  ②底面半徑是2分米,高是5分米。

  5、小結:

  在計算圓柱形的表面積時,要根據(jù)給定的數(shù)據(jù)計算各部分的面積。(如:有時候給出的是底面半徑,有時是底面直徑。)

  三、鞏固練習。

  1、做第14頁“做一做”。(求表面積包括哪些部分?)

  2、練習二第6,7題。

  四、課后思考。

  同學們想一想是不是所有的圓柱在計算表面積時都可以用。

  公式:圓柱的表面積=圓柱的側面積+底面積×2來計算呢?

小學數(shù)學圓的面積教案2

  教學內容:

  圓的面積。

  教學目標:

  1、通過操作,引導學生推導出圓面積的計算公式,并能運用公式解答一些簡單的實際問題。

  2、激發(fā)學生參與整個課堂教學活動的學習興趣,培養(yǎng)學生的分析、觀察和概括能力,發(fā)展學生的空間觀念。

  3、滲透轉化的數(shù)學思想和極限思想。

  教學重點:

  正確計算圓的面積。

  教學難點:

  圓面積公式的推導。

  學情分析:

  本課是在學生掌握了面積的含義及長方形、正方形等平面圖形面積的計算方法,認識了圓,會計算圓的周長的基礎上進行教學的,教學時要注意遵循學生的認識規(guī)律,重視學生獲取知識的思維過程,重視從學生的生活經(jīng)驗和已有的知識出發(fā)。

  學法指導:

  教學本課時,重點引導學生提出將圓割拼成已學過的圖形,組織學生動手操作,讓學生主動參與知識形成的過程,從而培養(yǎng)學生的創(chuàng)新意識、實踐能力,并發(fā)展學生的空間觀念。

  教具準備:

  多媒體課件,圓片。

  學具準備:

  把圓片分成十六等分,并按課本圖所示,剪拼并貼成近似長方形。

  教學設計:

  一、復習舊知,導入新課

  1、前面我們學習了圓、圓的周長。如果圓的半徑用r表示,周長怎樣表示?(2πr)周長的一半怎樣表示?(πr)

  2、課件:出示一塊圓形的桌布。如果要給這塊桌布的邊縫上花邊,是求什么?(圓形桌布的周長)

  3、出示一塊圓形的鏡框。如果要鏡框配一塊玻璃,至少需要多大?是求什么?(圓的面積)誰能指出這個圓的面積?誰能概括一下什么是圓的面積?請同學們用手摸出學具圓的面積。

  提問:如果圓的半徑是2分米,你能猜猜這塊玻璃到底有多大?(同學們紛紛地猜測,有的學生可能說這個圓面小于所在的正方形面積)

  這塊圓形玻璃有多大,就是要求圓形的面積,這節(jié)課我們一起來研究怎樣計算圓的面積。(板書課題:圓的面積)

  二、動手操作,探索新知

  1、回憶平行四邊形、三角形、梯形面積計算公式推導過程。

 。1)以前我們學習了平行四邊形、三角形和梯形的面積計算公式。請同學們回想一下,這些圖形的面積計算公式是怎樣推導出來的?(學生回答,師用課件演示。)

 。2)通過回憶這三種平面圖形面積計算公式的推導,你發(fā)現(xiàn)了什么?(發(fā)現(xiàn)這三種平面圖形都是轉化為學過的.圖形來推導出它們的面積計算公式。)

  (3)能不能把圓轉化為學過的圖形來推導出它的面積計算公式呢?那么同學們想一想,圓可能轉化為什么平面圖形來計算呢?

  2、推導圓面積的計算公式。

 。1)拿出已準備好的學具,說說你把圓剪拼成了什么圖形?

  (2)學生小組討論。

  看拼成的長方形與圓有什么聯(lián)系?

  學生匯報討論結果。

  (3)課件演示:請看大屏幕,把圓分成16等份,拼成了近似平行四邊形,再分成32等份,拼成近似的平行四邊形,再分成64等份,拼成近似長方形,你發(fā)現(xiàn)什么?(如果分的份數(shù)越多,每一份就會越細,拼成的圖形就會越接近于長方形。)

 。4)你能根據(jù)長方形的面積計算公式推導出圓的面積計算公式嗎?小組討論一下。

  生邊答師邊演示課件。

  生答:因為拼成的長方形的面積與圓的面積相等,長方形的長相當于圓周長的一半,寬相當于半徑。

  因為長方形的面積=長×寬

  所以圓的面積=周長的一半×半徑

  S=πr × r S=πr2師小結公式

  S=πr2,讓學生小組內說說圓的面積是怎樣推導出來的?

 。5)讀公式并理解記憶。

 。6)要求圓的面積必須知道什么?(半徑)

  3、利用公式計算。

  (1)用新的方法算一算:剛才的玻璃到底有多大?看誰剛才猜得較接近。(學生計算并匯報)

  (2)出示例3,學生嘗試練習,反饋評價。

  提問:如果這道題告訴的不是圓的半徑,而是直徑,該怎樣解答?不計算,誰知道結果是多少嗎?

  (3)完成第95頁做一做的第1題。

  (4)看書質疑。

  三、運用新知,解決問題

  1、求下面各圓的面積,只列式不計算。(CAI課件出示)

  2、測量一個圓形實物的直徑,計算它的周長及面積。

  3、課件演示

  用一根繩子把羊栓在木樁上,演示羊邊吃草邊走的情景。(生看完提問題并計算)(羊吃到草的面積即圓面積是多少?)

  四、全課小結

  這節(jié)課你自己運用了什么方法,學到了哪些知識?

  五、布置作業(yè)

  1、第97頁的第3題和第4題。

  2、找出身邊的圓,同桌合作量一量半徑,算一算面積(完成實驗報告單)

  測量物、直徑(厘米)、半徑(厘米)、面積(平方厘米)

  板書設計:

  圓的面積

  長方形的面積=長×寬

  圓的面積=周長的一半×半徑

  S=πr×r

  S=πr2

小學數(shù)學圓的面積教案3

  教學內容:

  義務教育課程標準實驗教科書第十一冊P69~71例1、例2。

  教學目標:

  1、認知目標:使學生理解圓面積的含義;掌握圓的面積公式,并能運用所學知識解決生活中的簡單問題。

  2、過程與方法目標:經(jīng)歷圓的面積公式的推導過程,體驗實驗操作,邏輯推理的學習方法。

  3、情感目標:引導學生進一步體會“轉化”的數(shù)學思想,初步了解極限思想;體驗發(fā)現(xiàn)新知識的快樂,增強學生的合作交流意識和能力,培養(yǎng)學生學習數(shù)學的興趣。

  教學重點:

  掌握圓的面積的計算公式,能夠正確地計算圓的面積。

  教學難點:

  理解圓的面積計算公式的推導。

  教學準備:

  相應課件;圓的面積演示教具

  教學過程:

  一、情境導入

  出示場景——《馬兒的困惑》

  師:同學們,你們知道馬兒吃草的大小是一個什么圖形呀?

  生:是一個圓形。

  師:那么,要想知道馬兒吃草的大小,就是求圓形的什么呢?

  生:圓的面積。

  師:今天我們就一起來學習圓的面積。(板書課題:圓的面積)

  [設計意圖:通過“馬兒的困惑”這一場景,讓學生自己去發(fā)現(xiàn)問題,同時使學生感悟到今天要學習的內容與身邊的生活息息相關、無處不在,同時了解學習任務,激發(fā)學生學習的興趣。]

  二、探究合作,推導圓面積公式

  1、滲透“轉化”的數(shù)學思想和方法。

  師:圓的面積怎樣計算呢?計算公式又是什么?你們想知道嗎?

  我們先來回憶一下平行四邊形的面積是怎樣推導出來?

  生:沿著平行四邊形的'高切割成兩部分,把這兩部分拼成長方形師:哦,請看是這樣嗎?(教師演示)。

  生:是的,平行四邊形的底等于長方形的長,平行四邊形的高等于長方形的寬,因為長方形的面積等于長乘寬,所以平行四邊形的面積等于底乘高。

  師:同學們對原來的知識掌握得非常好。剛才我們是把一個圖形先切,然后拼,就轉化成別的圖形。這樣有什么好處呢?

  生:這樣就把一個不懂的問題轉化成我們可以解決的問題。

  師:對,這是我們在學習數(shù)學的過程當中的一種很好的方法。今天,我們就用這種方法把圓轉化成已學過的圖形。

  師:那圓能轉化成我們學過的什么圖形?你們想知道嗎?(想)

  2、演示揭疑。

  師:(邊說明邊演示)把這個圓平均分成16份,沿著直徑來切,變成兩個半圓,拼成一個近似的平行四邊形。

  師:如果老師把這個圓平均分成32份,那又會拼成一個什么圖形?我們一起來看一看(師課件演示)。

  師:大家想象一下,如果老師再繼續(xù)分下去,分的份數(shù)越多,每一份就會越小,拼成的圖形就會越接近于什么圖形?(長方形)

  [設計意圖:通過這一環(huán)節(jié),滲透一種重要的數(shù)學思想,那就是轉化的思想,引導學生抽象概括出新的問題可以轉化成舊的知識,利用舊知識解決新的問題。并借助電腦課件的演示,生動形象地展示了化曲為直的剪拼過程。]

  3、學生合作探究,推導公式。

  (1)討論探究,出示提示語。

  師:下面請同學們看老師給的三個問題,請你們四人一組,拿出課前準備的學具拼一拼,觀察、討論完成這三個問題

 、俎D化的過程中它們的(形狀)發(fā)生了變化,但是它們的(面積)不變?

 、谵D化后長方形的長相當于圓的(周長的一半),寬相當于圓的(半徑)?

  ③你能從計算長方形的面積推導出計算圓的面積的公式嗎?嘗試用“因為……所以……”類似的關聯(lián)詞語。

  師:你們明白要求了嗎?(明白)好,開始吧。

  學生匯報結果,師隨機板書。

  同學們經(jīng)過觀察,討論,尋找出圓的面積計算公式,真了不起。

  (2)師:如果圓的半徑用r表示,那么圓周長的一半用字母怎么表示?

  (3)揭示字母公式。

  師:如果用S表示圓的面積,那么圓的面積計算公式就是:S=πr2

  (4)齊讀公式,強調r2=r×r(表示兩個r相乘)。

  從公式上看,計算圓的面積必須知道什么條件?在計算過程中應先算什么?

  [設計意圖:通過小組合作、討論使學生進一步明確拼成的長方形與圓之間的對應關系,有效地突破了本課的難點。]

  三、運用公式,解決問題

  1.教學例1。

  師:同學們,從這個公式我們可以看出,要求圓的面積,必須先知道什么?(出示例1)知道圓的半徑,讓學生根據(jù)圓的面積計算公式計算圓的面積。

  預設:教師應加強巡視,發(fā)現(xiàn)問題及時指導,并提醒學生注意公式、單位使用是否正確。

  2.如果我們知道一個圓形花壇的直徑是20m,我們該怎樣求它的面積呢?請大家動筆算一算這個圓形花壇的面積吧!

  3.求下面各圓的面積。

  [設計意圖:學生已經(jīng)掌握了圓面積的計算公式,可大膽放手讓學生嘗試解答,從而促進了理論與實踐的結合,培養(yǎng)了學生靈活運用所學知識解決實際問題的能力。]

  3.教學例2。

  師:(出示例2)這是一張光盤,這張光盤由內、外兩個圓構成。光盤的銀色部分是一個圓環(huán)。請同學們小聲地讀一讀題。開始!

  師:怎樣求這個圓環(huán)的面積呢?大家商量商量,想想辦法吧!

  師:找到解決問題的方法了嗎?

  師:好的,就按同學們想到的方法算一算這個圓環(huán)的面積吧!

  教師繼續(xù)對學困生加強巡視,如果還有問題的學生并給予指導。

  [設計意圖:學生已經(jīng)掌握了圓面積的計算公式,掌握環(huán)形面積計算,教師可以引導學生分析理解,大膽放手讓學生嘗試解答,培養(yǎng)了學生運用所學知識解決實際問題的能力。]

  四、課堂作業(yè)。

  1、教材P69頁“做一做”第2小題。

  2、判斷題

  讓學生先判斷,并講一講錯誤的原因。

  3、填空題

  復習圓的半徑、直徑、周長、面積之間的相互關系。

  4、教材P70頁練習十六第2小題。

  5、完成課件練習(知道圓的周長求面積)

  老師強調學生認真審題,并引導學生要求圓的面積必須知道哪一個條件(半徑),知道圓的周長就如何求出圓的面積,老師注意輔導中下學生。

  五、課堂總結

  師:同學們,通過這節(jié)課的學習,你有什么收獲?

  六、布置作業(yè)

小學數(shù)學圓的面積教案4

  教學目標:

  1、使學生經(jīng)歷操作、觀察、驗證和討論歸納等數(shù)學活動的過程,探索并掌握圓的面積公式,能正確計算圓的面積,并能應用公式解決相關的簡單實際問題。

  2、使學生進一步體會“轉化”方法的價值,培養(yǎng)運用已學知識解決新問題的能力,發(fā)展空間觀念和初步的推理能力。

  3、體會數(shù)學來自于生活實際的需要,感受數(shù)學與生活的聯(lián)系,進一步產生對數(shù)學的好奇心和興趣。

  教學重點:

  探索并掌握圓的面積公式,能正確計算圓的面積。

  教學難點:

  理解圓的面積公式的推導過程。

  教學準備:

  圓的面積公式的推導圖。

  一、回顧舊知,引入新知

  1、師:四年級時,我們學習了求長方形和正方形的面積的方法,誰來說一說它們的面積的計算方法。

  學生回答,教師予以肯定。

  2、提問:圓的周長怎么計算?已知圓的周長,如何計算它的直徑或半徑?

  3、引入:我們已經(jīng)研究了圓的周長和直徑、半徑的計算方法,今天這節(jié)課我們來研究圓的面積是如何計算的'。

  (板書:圓的面積)

  設計意圖通過復習,促進學生對周長和已知周長求直徑或半徑的理解,喚起學生求長方形和正方形面積的經(jīng)驗,為新課的學習做好準備。

  二、合作交流,探究新知

  1、教學例7。

 。╨)初步猜想:圓的面積可能與什么有關?說說你猜想的依據(jù)。

 。2)圓的面積和半徑或直徑究竟有著怎樣的關系呢?我們可以做一個實驗。

 。3)出示例7第一幅圖。思考:圖中正方形的邊長與圓的半徑有什么關系?圖中正方形的面積和圓的半徑有什么關系?

 。4)學生獨立完成填空。

 。5)猜測:圓的面積大約是正方形面積的幾倍?

  學生回笞后,明確:圓的面積小于正方形面積的4倍,有可能是3倍多一些。

 。6)出示例7后兩幅圖,按照同樣的方法進行計算并填表。

  正方形的面積/

  圓的半徑/

  圓的面積/

  圓面積大約是正方形面積的幾倍

 。ň_到十分位)

  2、交流歸納:觀察上面的表格,你有什么發(fā)現(xiàn)?

  通過交流,明確

 。1)圓的面積是它的半徑平方的3倍多一些。

  (2)圓的面積可能是半徑平方的兀倍。

  3、教學例8。

  (l)談話:經(jīng)過剛才的學習,我們已經(jīng)知道圓的面積大約是它半徑平方的3倍多一些,那么圓的面積究竟應該怎樣來計算呢?

 。2)操作體驗:教師演示把圓平均分成16份,并拼成一個近似的平行四邊形。

 。3)提問:拼成的圖形像什么圖形?追問:為什么說它像一個平行四邊形?

  初步想象:如果把圓平均分成32份,也用類似的方法拼一拼,想一想,拼成的圖形與前面的圖形相比有怎樣的變化?

  (4)進一步想象:如果將圓平均分成64份、128份,也用類似的方法拼一拼。閉上眼睛想一想,隨著份數(shù)的增加,拼成的圖形會越來越接近一個什么圖形?

 。5)交流后,教師出示推導圖。拼成的長方形與原來的圓有什么聯(lián)系?在小組中討論交流。

 。6)在集體交流中借助圖示小結:長方形的面積與圓的面積相等;長方形的寬是圓的半徑;長方形的長是圓周長的一半。

 。7)追問:如果圓的半徑是r,長方形的長和寬應該怎樣表示?根據(jù)長方形面積的計算方法,怎樣來計算圓的面積?

  (8)根據(jù)學生的回答,教師板書

  長方形的面積一長×寬

  圓的面積=

 。9)追問:有了這樣一個公式,知道圓的什么條件,就可以計算圓的面積了?

  4、教學例9。

 。1)出示例9,提問:有沒有在生活中見過自動旋轉X器?

 。2)想象一下自動X器旋轉一周后噴灌的地方是什么圖形,X的最遠的距離是什么意思。

  (3)學生獨立完成計算。

  (4)集體交流。

  5、教學例10。

 。1)請同學讀題,解讀題意。

 。2)找出題中的已知條件。

 。3)分析解題過程。

 。4)明確各個量之間的轉化關系。

  三、鞏固練習,加深理解

  1、完成“練一練”。

 。1)學生獨立解答。

 。2)集體交流。

  2、完成練習十五第1題。

  (l)學生獨立解答。

 。2)集體交流。

  3、完成練習十五第3題。

 。1)學生列式后用計算器計算。

  (2)集體交流。

  4、完成練習十五第4題。

 。1)學生獨立解答。

 。2)集體交流,指出:已知周長求面積,先要根據(jù)周長求出半徑。

  5、作業(yè):練習十五第2、5題。

  四、課堂小結

  師:通過今天的學習,你有什么收獲?

  學生發(fā)言,教師點評。

  圓的面積

  長方形的面積=長×寬

  圓的面積

小學數(shù)學圓的面積教案5

  一、教學目標

  【知識與技能】

  掌握圓的面積計算公式,并能利用公式正確解決簡單問題。

  【過程與方法】

  通過操作、觀察、比較等活動,自主探索圓的面積計算公式,滲透轉化的數(shù)學思想方法。

  【情感、態(tài)度與價值觀】

  感受數(shù)學與生活的聯(lián)系,激發(fā)學習興趣。

  二、教學重難點

  【教學重點】

  圓的面積計算公式。

  【教學難點】

  圓的面積計算公式的推導過程。

  三、教學過程

  (一)導入新課

  創(chuàng)設情境:呈現(xiàn)校園中的圓形草坪,提問學生如何求解圓形草坪的占地面積。引導學生通過已有認知,認識到解決這個問題實際就是求這個圓的面積,從而引出課題。

  (二)講解新知

  提出問題:之前的圖形面積公式是如何推導的?

  學生通過回憶,討論,得到是通過轉換成學過的圖形來推導得到的。

  追問:能否將圓的圖形轉換成之前的圖形?

  組織學生動手操作、合作探究,四人為一小組,討論分享自己的思路與剪拼過程,然后請各組的代表進行全班交流。

  預設1:將圓平均分成4份,剪切拼接之后,沒有得到之前圖形;

  預設2:將圓平均分成8份,剪切拼接之后,得到一個近似平行四邊形;

  預設3:將圓平均分成16份,剪切拼接之后,得到一個近似長方形。

  老師在此基礎上進行展示:大屏幕展示將圓平均分為32份,64份,128份,256份……的動圖,讓學生觀察其特點。

  學生能夠發(fā)現(xiàn)圓平均分的`份數(shù)越多,拼成的圖形越接近于長方形。

  進一步追問:觀察原來的圓和轉化后的這個近似長方形,發(fā)現(xiàn)他們之前有哪些等量關系?

  預設1:長方形的面積等于圓的面積;

  預設2:長方形的長近似等于圓周長的一半;

  預設3:長方形的寬近似等于圓的半徑。

小學數(shù)學圓的面積教案6

  教學目標

  (1)知識與技能目標:學生結合具體情境認識組和圖形的特征,掌握計算組合圖形的面積的方法,并能準確掌握和計算簡單組合圖形的面積。

  (2)過程與方法目標:通過自主合作,培養(yǎng)學生獨立思考、合作探究的意識。

  (3)情感態(tài)度與價值觀目標:學生在解決實際問題的過程中,進一步體驗圖形和生活的聯(lián)系,感受平面圖形的學習價值,提高學習好數(shù)學的自信心。

  教學重難點

  教學重點:組合圖形的認識及面積計算。

  教學難點:對組合圖形的分析。

  教學工具

  多媒體課件,各種基本圖形紙片

  教學過程

  一、創(chuàng)設情境,談話引入

  同學們,在中國古代的建筑中我們經(jīng)常會見到“外放內圓”“外圓內方”的設計,下面請同學們欣賞幾組圖片。(生欣賞完后)師提問:這些圖片美嗎?(生:美)

  師:這些圖片的設計中包含了我們學過的哪些平面圖形?(生:圓、正方形、長方形等)

  師:這些不同的幾何圖形拼在一起能構成精美的圖案,給我們以美的享受,這說明我們的數(shù)學和現(xiàn)實生活聯(lián)系密切。今天,我們就來學習會有圓的'組合圖形的面積。(板書課題)二、提出問題,自主探究

  1、教師出示例3的兩幅圖并出示自學提示出示自學提示:

  (1)上面兩幅圖有什么不同之處?

  (2)右圖中的正方形的對角線和圓得直徑有什么關系?

  (3)上圖中兩個圓的半徑都是r,你能求出正方形和圓之間的半部分的面積嗎?

  2、請同學們帶著問題認真閱讀P69-70頁的內容,獨立思考自學提示中的問題,若有困難可以小組內討論。(自學時間:4分鐘)三、師生聯(lián)動,合作探究1、匯報交流,師生互動

  生匯報問題(1):這兩幅圖都是由圓和正方形組成,左圖是外圓內方,右圖是外方內圓。

  生匯報問題(2):右圖中的正方形的對角線和圓得直徑相等。

  生匯報問題(3):左圖陰影面積=正方形的面積-圓的面積列式為:S正=2×2=4(m2 ) S圓=3.14×12=3.14(m2 ) 4-3.14=0、86(m2 )左圖:圓的面積減去正方形的面積( 1/2 ×2×1)×2=2(m2 ) 3.14×12=3.14(m2 ) 3.14-2=1.14(m2 )

  師:同學們做的很好!可我又有問題了,若兩個圓的半徑都是r,那結果又是如何呢?生派代表回答:

  左圖;(2r)-3.14r =0.86r

  右圖:3.14r-( 1/2 ×2r×r)×2=1.14r當r=1m時,和前面的結果完全一致

  答:左圖中正方形和圓之間的面積是0、86m、右圖中圓與正方形之間的面積是1.14m。

  四、總結引導,知識生成這節(jié)課你有什么收獲?

  師順便對生進行德育教育:在我們今后的人生道路中,我們?yōu)槿颂幨,必須能屈能伸,可方可圓,外在大度圓融,內在正直公正。五、科學訓練,提高能力1、出示教材P70做一做2、完成教材P72第9題六、堂清作業(yè)

  七、作業(yè)布置P73第10、11、

  課后小結

  這節(jié)課你有什么收獲?

  課后習題

  1、出示教材P70做一做

  2、完成教材P72第9題

  板書

  含有圓的組合圖形的面積

  左圖:S正=2×2=4(m2 )右圖:( 1/2 ×2×1)×2=2(m2 )

  S圓=3.14×12=3.14(m2 ) 3.14×12=3.14(m2 )

  4-3.14=0.86(m2 ) 3.14-2=1.14(m2 )

小學數(shù)學圓的面積教案7

  教學目標:

  1、讓學生結合具體情境認識組合圖形的特征,掌握計算組合圖形的面積的方法,并能準確掌握和計算簡單組合圖形的面積。

  2、通過自主合作,培養(yǎng)學生獨立思考、合作探究的意識。

  3、讓學生在解決實際問題的過程中,進一步體驗圖形和生活的聯(lián)系,感受平面圖形的學習價值,提高數(shù)學學習的舉和學習好數(shù)學的自信心。

  教學重難點:

  組合圖形的認識及面積計算、圖形分析。

  教具學具準備:

  多媒體課件、各種基本圖形紙片。

  教學設計:

  ⊙創(chuàng)設情境,認識圓環(huán)

  1.師:我們來欣賞一組美麗的圖片。

  課件出示圓形花壇、圓形水池外的圓形甬路、奧運五環(huán)標志、光盤……

  2.同學們,你們從圖中發(fā)現(xiàn)了什么?(它們都是環(huán)形的)

  3.教師拿出環(huán)形光盤說明:像這樣的圖形,我們稱它為圓環(huán)或環(huán)形。

  你還知道生活中有哪些環(huán)形的物體?它們給我們的.生活帶來了怎樣的變化?

  (學生結合生活實際談談已經(jīng)知道的環(huán)形物體以及它給我們的生活帶來的樂趣)

  4.導入新課:這節(jié)課我們一起來探討環(huán)形的知識。(板書課題:圓環(huán)的面積)

  設計意圖:從學生掌握的常識和熟悉的事物入手,使其感受到數(shù)學就在我們身邊,學生從直觀上也感受到了環(huán)形的特點,為后面學習環(huán)形的面積奠定基礎。

  ⊙探索交流,解決問題

  1.畫一畫,剪一剪,發(fā)現(xiàn)環(huán)形特點。

  (1)畫一畫。

  讓學生在硬紙板上用同一個圓心分別畫一個半徑為10厘米和5厘米的圓。

 。▽W生按照要求畫圓)

 。2)剪一剪。

  指導學生先剪下所畫的大圓,再剪下所畫的小圓。

  問:剩下的部分是什么圖形?(環(huán)形)

  師:我們也稱它為圓環(huán)。

 。3)教師手拿學生剪的圓環(huán)提問:這個圓環(huán)是怎樣得到的?

  生明確:圓環(huán)是從外圓中去掉一個內圓得到的。

 。4)借助圖示認識圓環(huán)的各部分名稱。

  你知道圓環(huán)各部分的名稱嗎?(出示圖示引導學生明確相關內容并板書)

  ①外圓:又名大圓,它的半徑用R表示。

 、趦葓A:又名小圓,它的半徑用r表示。

 、郗h(huán)寬:指外圓半徑和內圓半徑相差的寬度。

  2.探究圓環(huán)面積的計算方法。

 。1)小組討論,怎樣求圓環(huán)的面積?

 。2)匯報討論結果。

 。3)小結:環(huán)形的面積=外圓面積-內圓面積。

  設計意圖:以學生的親身實踐貫穿始終,同時在這一過程中滲透一些方法,如動手操作、合作交流、觀察、分析等,使學生在學習中運用、在運用中掌握,學生通過自己動手操作,把環(huán)形從一般圖形中分離出來,快速地抓住了環(huán)形的本質特征,形成環(huán)形的概念,并順利推導出圓環(huán)面積的計算公式,發(fā)展了學生的空間觀念。

  3.課件出示例2。

  光盤的銀色部分是一個圓環(huán),內圓半徑是2cm,外圓半徑是6cm。圓環(huán)的面積是多少?

 。1)學生讀題。

  觀察:哪里是內圓和內圓半徑?你能指一指嗎?外圓是哪幾部分組成的?哪里是環(huán)形面積?你打算怎樣求出環(huán)形的面積?

 。2)學生試做,指生板演。

 。3)交流算法,學生將列式板書:

  解法一

  外圓的面積:πR2=3.14×62

 。3.14×36

  =113.04(cm2)

  內圓的面積:πr2=3.14×22

  =3.14×4

 。12.56(cm2)

  圓環(huán)的面積:πR2-πr2=113.04-12.56

 。100.48(cm2)

  解法二

  π×(R2-r2)=3.14×(62-22)=100.48(cm2)

  答:圓環(huán)的面積是100.48cm2。

 。4)比較兩種算法的不同。

 。5)小結:圓環(huán)的面積計算公式:S=πR2-πr2或S=π×(R2-r2)(板書公式)

  (6)討論。

  知道什么條件可以計算圓環(huán)的面積?怎樣計算?(給學生充分的思考時間,引導學生結合圖示多角度解答)

  ①知道內、外圓的面積,可以計算圓環(huán)的面積。

  S環(huán)=S外圓-S內圓

  ②知道內、外圓的半徑,可以計算圓環(huán)的面積。

  S環(huán)=πR2-πr2或S環(huán)=π×(R2-r2)

  ③知道內、外圓的直徑,可以計算圓環(huán)的面積。

 、苤纼取⑼鈭A的周長,也可以計算圓環(huán)的面積。

  S環(huán)=π×(C外÷π÷2)2-π×(C內÷π÷2)2

  或S環(huán)=π×[(C外÷π÷2)2-(C內÷π÷2)2]

 、葜纼取⑼鈭A的直徑或半徑及環(huán)寬,也可以計算圓環(huán)的面積。

  S環(huán)=π×[(r+環(huán)寬)2-r2]

  或S環(huán)=π×[R2-(R-環(huán)寬)2]

  ……

  設計意圖:聯(lián)系生活,進一步認識圓環(huán);結合圖示理解圓環(huán)面積的計算公式。例題主要由學生自己完成,最后老師引導學生列出綜合算式,使學生領會兩種方法間的區(qū)別,好中選優(yōu),展現(xiàn)學生的創(chuàng)新精神。在合作討論中進一步弄清求圓環(huán)面積所需要的條件,培養(yǎng)學生多角度思考的習慣。

  ⊙鞏固練習,拓展提高

  1.完成教材68頁1題。

  學生獨立完成,然后在班內說一說解題思路。

  2.一個環(huán)形鐵片,外圓直徑是20dm,內圓半徑是7dm,這個環(huán)形鐵片的面積是多少?

  3.已知陰影部分的面積是75cm2,求圓環(huán)的面積。

  [引導學生理解陰影部分的面積為R2-r2=75(cm2),圓環(huán)的面積=π(R2-r2)=3.14×75=235.5(cm2)]

  設計意圖:練習設計突出重點,由淺入深,由易到難。通過練習不僅鞏固了所學知識,又讓學生把獲得的知識應用于實際生活,提高了學生應用知識解決實際問題的能力,增強了學生的數(shù)學應用意識。

  ⊙反思體驗,總結提高

  這節(jié)課我們學習了什么?你有哪些收獲?還有什么問題?

  ⊙布置作業(yè),鞏固應用

  1.完成教材72頁8題。

  2.找一些關于環(huán)形的資料讀一讀。

  板書設計

  圓環(huán)的面積

  圓環(huán)面積=外圓面積-內圓面積

  S環(huán)=πR2-πr2或S環(huán)=π×(R2-r2)

小學數(shù)學圓的面積教案8

  教學目標:

  1、學生通過觀察、操作、分析和討論,推導出圓的面積公式。

  2、能夠利用公式進行簡單的面積計算。

  3、滲透轉化思想,初步了解極限思想,培養(yǎng)學生的觀察能力和動手操作能力。

  教學重難點:

  滲透轉化思想,初步了解極限思想,培養(yǎng)學生的觀察能力和動手操作能力。

  教學過程

  一、嘗試轉化,推導公式

  1、確定“轉化”的策略。

  師:同學們,你們想一想,當我們還不會計算平行四邊形的面積的時候,是利用什么方法推導出了平行四邊形的面積計算公式呢?

  引導學生明確:我們是用“割補法”將平行四邊形轉化成長方形的方法推導出了平行四邊形的面積計算公式。

  師:同學們再想想,我們又是怎樣推導出三角形的面積計算公式的呢?

  師:對了,我們將平行四邊形、三角形“轉化”成其它圖形的方法來推導出它們的面積計算公式。

  2、嘗試“轉化”。

  師:那么,怎樣才能把圓形轉化為我們已學過的其它圖形呢?(板書課題:圓的面積)

  請大家看屏幕(利用課件演示),老師先給大家一點提示。

  師:(教師配合課件演示作適當說明)如果我們把一個圓形平均分成16份(如圖三),其中的每一份(如圖四,課件閃爍其中1份)都是這個樣子的。同學們,你們覺得它像一個什么圖形呢?

  師:是的,其中的每一份都是一個近似三角形。請同學們再想一想,這個近似三角形這一條邊(教師指示)跟圓形有什么關系呢?

  引導學生觀察,明確這個近似三角形的兩條邊其實都是圓的半徑。

  師:如果我們用這些近似三角形重新拼組,就可以將這個圓形“轉化”成其它圖形了。同學們,老師為你們每個小組都準備了一個已經(jīng)等分好了的圓形,請你們動手拼一拼,把這個圓形“轉化”成我們已學過的其它圖形,開始吧!

  預設:學生利用這種近似三角形拼組圖形會有一定的難度,教師要加強巡視和有針對性的指導,既鼓勵學生拼出自己想象中的圖形,又要引導他們拼出最簡單、最容易計算面積的圖形。一般情況下,學生會拼出如下幾種圖形(如圖五、圖六、圖七)。

  3、探究聯(lián)系。

  師:同學們,“轉化”完了嗎?好,請大家來展示一下你們“轉化”后的圖形。

  預設:

  分組逐個展示,并將其中“轉化”成長方形的一組的作品貼在黑板上。如果有小組轉化成了不規(guī)則的圖形,教師應及時引導他們轉化為我們已學過的平面圖形。

  師:好,各個小組都不錯,F(xiàn)在請同學們思考一個問題:你們把一個圓形“轉化”成了現(xiàn)在的圖形之后,它們的面積有沒有改變?請小組內討論。

  師:誰來告訴大家,它們的面積有沒有改變?

  師:是的,沒有改變,就是說:這個近似的長方形的面積=圓的面積。

  師:雖然我們現(xiàn)在拼成的是一個近似的長方形,但是如果把圓等分成32份、64份、128份、256份……一直這樣下去分成很多很多份,拼成的圖形就變?yōu)檎嬲拈L方形(課件演示,如圖八)。

  4、推導公式。

  師:現(xiàn)在我們就來看這個長方形。同學們,如果圓的半徑為r,你們知道這個長方形的長和寬分別是多少嗎?現(xiàn)在請小組為單位進行討論討論。

  師:好,同學們,誰能首先告訴老師,這個長方形的寬是多少?

  預設:

  根據(jù)學生的回答,教師演示課件,同時閃爍圓的半徑和長方形的寬,并標示字母r,如圖九。

  師:那這個長方形的長是多少呢?(教師邊演示課件邊說明)這個長方形是由兩個半圓展開后拼成的,請大家看屏幕,這個紅色的半圓展開后,其中這條黃色的線段就是長方形的長(如圖十),請同學們仔細觀察(課件繼續(xù)演示如圖十一,半圓展開后再還原,再展開,),這個長方形的長究竟與圓的什么有關?究竟是多少呢?

  預設:

  教師引導學生明白:這個長方形的長與圓的周長有關,并且是圓的`周長的一半(如果學生有困難的話,教師利用課件演示,如圖十二)。并且讓學生通過計算得出長方形的長就是πr。

  師:現(xiàn)在我們已經(jīng)知道了這個長方形的長和寬(如圖十三),它的面積應該是多少?那圓的面積呢?

  預設:

  老師根據(jù)學生的回答進行相關的板書。

  師:你們真了不起,學會了“轉化”的方法推導出圓的面積計算公式。現(xiàn)在請大家讀一讀,記一記,寫一寫圓的面積計算公式。

  二、運用公式,解決問題

  1、教學例1。

  師:同學們,從這個公式我們可以看出,要求圓的面積,必須先知道什么?(出示例1)如果我們知道一個圓形花壇的直徑是20m,我們該怎樣求它的面積呢?請大家動筆算一算這個圓形花壇的面積吧!

  預設:

  教師應加強巡視,發(fā)現(xiàn)問題及時指導,并提醒學生注意公式、單位使用是否正確。

  2、完成做一做。

  師:真不錯!現(xiàn)在請同學們翻開數(shù)學課本第69頁,請大家獨立完成做一做的第1題。

  訂正。

  3、教學例2。

  師:(出示例2)這是一張光盤,這張光盤由內、外兩個圓構成。光盤的銀色部分是一個圓環(huán)。請同學們小聲地讀一讀題。開始!

  師:怎樣求這個圓環(huán)的面積呢?大家商量商量,想想辦法吧!

  師:找到解決問題的方法了嗎?

  師:好的,就按同學們想到的方法算一算這個圓環(huán)的面積吧!

  預設:

  教師繼續(xù)對學困生加強巡視,如果還有問題的學生并給予指導。

  交流,訂正。

  三、課堂作業(yè)。

  教材第70頁第2、3、4題。

  四、課堂小結

  師:同學們,通過這節(jié)課的學習,你有什么收獲?

  課后作業(yè):完成數(shù)練第31頁。

小學數(shù)學圓的面積教案9

  教學目標:

  1、使學生經(jīng)歷操作、觀察、驗證和討論歸納等數(shù)學活動的過程,探索并掌握圓的面積公式,能正確計算圓的面積,并能應用公式解決相關的簡單實際問題。

  2、使學生進一步體會“轉化”方法的價值,培養(yǎng)運用已學知識解決新問題的能力,發(fā)展空間觀念和初步的推理能力。

  3、體會數(shù)學來自于生活實際的需要,感受數(shù)學與生活的聯(lián)系,進一步產生對數(shù)學的好奇心和興趣。

  教學重點:

  探索并掌握圓的面積公式,能正確計算圓的面積。

  教學難點:

  理解圓的面積公式的推導過程。

  教學準備:

  圓的面積公式的推導圖。

  一、回顧舊知,引入新知

  1、師:四年級時,我們學習了求長方形和正方形的面積的方法,誰來說一說它們的面積的計算方法。

  學生回答,教師予以肯定。

  2、提問:圓的`周長怎么計算?已知圓的周長,如何計算它的直徑或半徑?

  3、引入:我們已經(jīng)研究了圓的周長和直徑、半徑的計算方法,今天這節(jié)課我們來研究圓的面積是如何計算的。

 。ò鍟簣A的面積)

  設計意圖通過復習,促進學生對周長和已知周長求直徑或半徑的理解,喚起學生求長方形和正方形面積的經(jīng)驗,為新課的學習做好準備。

  二、合作交流,探究新知

  1、教學例7。

  (l)初步猜想:圓的面積可能與什么有關?說說你猜想的依據(jù)。

  (2)圓的面積和半徑或直徑究竟有著怎樣的關系呢?我們可以做一個實驗。

 。3)出示例7第一幅圖。思考:圖中正方形的邊長與圓的半徑有什么關系?圖中正方形的面積和圓的半徑有什么關系?

  (4)學生獨立完成填空。

 。5)猜測:圓的面積大約是正方形面積的幾倍?

  學生回笞后,明確:圓的面積小于正方形面積的4倍,有可能是3倍多一些。

  (6)出示例7后兩幅圖,按照同樣的方法進行計算并填表。

  正方形的面積/

  圓的半徑/

  圓的面積/

  圓面積大約是正方形面積的幾倍

  (精確到十分位)

  2、交流歸納:觀察上面的表格,你有什么發(fā)現(xiàn)?

  通過交流,明確

 。1)圓的面積是它的半徑平方的3倍多一些。

 。2)圓的面積可能是半徑平方的兀倍。

  3、教學例8。

  (l)談話:經(jīng)過剛才的學習,我們已經(jīng)知道圓的面積大約是它半徑平方的3倍多一些,那么圓的面積究竟應該怎樣來計算呢?

 。2)操作體驗:教師演示把圓平均分成16份,并拼成一個近似的平行四邊形。

 。3)提問:拼成的圖形像什么圖形?追問:為什么說它像一個平行四邊形?

  初步想象:如果把圓平均分成32份,也用類似的方法拼一拼,想一想,拼成的圖形與前面的圖形相比有怎樣的變化?

 。4)進一步想象:如果將圓平均分成64份、128份,也用類似的方法拼一拼。閉上眼睛想一想,隨著份數(shù)的增加,拼成的圖形會越來越接近一個什么圖形?

  (5)交流后,教師出示推導圖。拼成的長方形與原來的圓有什么聯(lián)系?在小組中討論交流。

  (6)在集體交流中借助圖示小結:長方形的面積與圓的面積相等;長方形的寬是圓的半徑;長方形的長是圓周長的一半。

  (7)追問:如果圓的半徑是r,長方形的長和寬應該怎樣表示?根據(jù)長方形面積的計算方法,怎樣來計算圓的面積?

 。8)根據(jù)學生的回答,教師板書

  長方形的面積一長×寬

  圓的面積=

 。9)追問:有了這樣一個公式,知道圓的什么條件,就可以計算圓的面積了?

  4、教學例9。

  (1)出示例9,提問:有沒有在生活中見過自動旋轉_器?

 。2)想象一下自動_器旋轉一周后噴灌的地方是什么圖形,_的最遠的距離是什么意思。

 。3)學生獨立完成計算。

 。4)集體交流。

  5、教學例10。

 。1)請同學讀題,解讀題意。

 。2)找出題中的已知條件。

 。3)分析解題過程。

 。4)明確各個量之間的轉化關系。

  三、鞏固練習,加深理解

  1、完成“練一練”。

 。1)學生獨立解答。

 。2)集體交流。

  2、完成練習十五第1題。

 。╨)學生獨立解答。

  (2)集體交流。

  3、完成練習十五第3題。

  (1)學生列式后用計算器計算。

 。2)集體交流。

  4、完成練習十五第4題。

 。1)學生獨立解答。

 。2)集體交流,指出:已知周長求面積,先要根據(jù)周長求出半徑。

  5、作業(yè):練習十五第2、5題。

  四、課堂小結

  師:通過今天的學習,你有什么收獲?

  學生發(fā)言,教師點評。

  圓的面積

  長方形的面積=長×寬

  圓的面積=

小學數(shù)學圓的面積教案10

  【教學內容】

  北師大版小學數(shù)學第十一冊第一單元P16——18圓的面積

  【教學目標】

  1、了解圓的面積的含義,經(jīng)歷圓面積計算公式的推導過程,掌握圓面積計算公式。

  2、能正確運用圓的面積公式計算圓的面積,并能運用圓面積知識解決一些簡單實際的問題。

  3、在估一估和探究圓面積公式的活動中,體會化曲為直的思想,初步感受極限思想。

  【教學重點】

  能正確運用圓的面積公式計算圓的面積,并能運用圓面積知識解決一些簡單實際的問題。

  【教具準備】

  投影儀,CAI課件,等分好的圓形紙片。

  【學具準備】

  等分好的圓形紙片。

  【教學設計】

  省略

  【教學過程】

  一、創(chuàng)設情境。提出問題

  師:請同學們觀察這幅插圖,說說從圖中你能發(fā)現(xiàn)數(shù)學知識嗎?

  學生觀察并討論,然后指名回答。

  生1:我能發(fā)現(xiàn)噴水頭轉動一周所走過的地方剛好是一個圓形。

  生2:對,這個圓形的半徑就是噴頭噴水的距離,也就是5米;周長也就是噴水所走過的路線;

  生3:我補充一點,這個圓形的中心就是噴頭所在的地方。

  師:同學們說得很好。晴大家說說這個圓形的面積指的是哪部分呢?

  生4:被噴到水的草坪大小就是這個圓形的面積。

  師:說得很好,今天這節(jié)課我們就來學習如何求噴水頭轉動一周澆灌的面積有多大。(板書:圓的面積)

  二、探究思考。解決問題

  1、估計圓面積大小。

  師:請大家估計半徑為5米的圓面積大約是多大?

 。ㄗ屚瑢W們充分發(fā)揮自己感官,估計草坪面積大小。)

  2、用數(shù)方格的方法求圓面積大小。

 、偻队俺鍪綪16方格圖,讓同學們看懂圖意后估算圓的面積,學生可以討論交流。

  ②指明反饋估算結果,并說明估算方法及依據(jù)。

  生1、我是根據(jù)圓里面的正方形來估計的,外面方格圖面積為1010=100平方米,圓里面的正方形面積大約為50平方米,那么這個圓形的面積大約在50——100平方米之間。

  生2:我是用數(shù)方格的方法來估計的。我把這個圓形平均分成4份,其中一份大約為20平方米,那么這個圓形的面積約有80平方米。

  生3:還可以通過計算來得到圓的面積。圓形外面的正方形可以看作邊長為2r的正方形,面積就是2r2r=4r2。

  而圓形里面的正方形可以看作由4個小三角形拼成的正方形,三角形的直角邊長為r,則一個三角形的面積是rr2=1/2r2,;那么四個三角形的面積即是41/2r2=2r2,那么圓形面積大約為3r2。

  師:同學們的估計很有道理,但是在實際生活中往往要有一個精確的結果,我們接下來就來討論一個能計算圓面積的方法。

  三、探索規(guī)律

  1、由舊知引入新知

  師:大家還記得我們以前學習的平行四邊形、三角形、梯形面積分別是由哪些圖形的面積來的嗎?

  學生回答,教師訂正。那么圓形的面積可由什么圖形面積得來呢。

  2、探索圓面積公式

  師:拿出我們剪好的圖形拼一拼,看看能成為一個什么圖形?并考慮你拼成的圖形與原來的圓形有什么關系?(同學們開始操作,教師巡視。)

  生:我拼成的圖形接近一個平行四邊形,平行四邊形的底也就是圓形周長的一半;平行四邊形的高就是圓形的半徑。

  師:說得很好,大家看看自己拼成的圖形與剛才這個同學說的是否一樣呢?

  生:我拼成的圖形更接近于長方形,這個長方形的長也就是圓形周長的一半,長方形的寬就是圓形的半徑。

  師:現(xiàn)在請大家來觀察一下剛才兩個同學拼成的圖形,哪個更接近長方形呢?

  生:等分為32份的更接近長方形。

  師:大家想象一下,如果把一個圓等分的份數(shù)越多,拼成的圖形越接近什么圖形呢?

  生:等分的'份數(shù)越多,就越接近長方形。

  師:下面請大家觀察黑板上的板書,你能否由平行四邊形或者長方形的面積公式得到圓形面積公式呢?并說出你的理由。(生說,教師板書)

  生1:因為拼成的平行四邊形的底也就是圓形周長的一半;平行四邊形的高就是圓形的半徑。而平行四邊形面積=底高,那么圓形面積公式=圓周長的1/2半徑即可。

  生2:因為拼成的長方形的長也就是圓形周長的一半,長方形的寬就是圓形的半徑。而長方形面積=長寬,那么那么圓形面積=圓周長的1/2半徑即可。

  師:用字母怎么表示圓面積公式呢?

  生:S=RR

  生:還可以寫作S=R2

  師:這說明求圓的面積只需要知道半徑即可,那我只告訴你們圓的直徑又如何求出圓的面積呢,請大家自己把這個公式寫出來。教師板書。

  3、應用圓面積公式

  師:現(xiàn)在請大家用圓面積公式計算噴水頭轉動一周可。

  以澆灌多大面積的農田。

 。▽W生獨立解答,知名回答)

  四、應用圓面積公式解決實際問題。

  1、P18,NO1

  學生獨立解答,集體訂正的時候要求學生說出每一步。

  計算過程和依據(jù)。

  2、P18,NO2

  讓學生理解題意后,鼓勵學生在頭腦中想象,猜一猜。

  結果,然后在地上畫一個半徑是1米的圓,讓學生看看,并試著站一站。在估計半徑是10米的圓大約有幾個教室大的時候,可以讓學生先估計再算一算。

  五、小結

  師:誰能用自己的話說說圓面積的推導過程。

小學數(shù)學圓的面積教案11

  一、教材分析:

  1、首先提出圓的面積計算和其他已經(jīng)學過的圖形的面積計算有什么關系。通過學生自主、獨立的發(fā)現(xiàn)問題,對可能的答案做出假設與猜想,并通過多次的檢驗,得出正確的結論。學生通過收集和處理信息、表達與交流等活動,獲得知識、技能、方法、態(tài)度特別是創(chuàng)新精神和實踐能力等方面的發(fā)展。

  2、用標準的數(shù)學語言得出結論,使學生感受科學的嚴謹,啟迪學習態(tài)度和方法。

  在學習本課之前應具備的基本知識和技能:

  二、內容分析:

  1、在學習本課之前應具備的基本知識和技能:

  掌握平面圖形的計算方法

  2、學習本課的入手點及目的:

  在學習圓的面積之前,學生已經(jīng)掌握其他平面圖形的計算方法。這節(jié)課的目的就是讓學生從平行四邊形、長方形的面積計算方法和圓的面積的關系,總結出圓面積計算方法。

  三、教學目標及其對應的課程標準:

  (一)教學目標:

  1、經(jīng)歷探索圓面積計算方法的過程,進一步發(fā)展推力能力。

  2、能運用圓面積公式進行簡單的計算。

  (二)知識與技能:通過動手實踐推導出圓面積計算公式;探索圓面積計算方法和長方形面積計算方法飛關系,并能正確運用公式進行計算。

  (三)解決問題:能結合具體情景發(fā)現(xiàn)并提出數(shù)學問題;嘗試從不同角度尋求解決問題的方法,并能有效地解決問題,嘗試評價不同方法之間的差異;通過對解決問題過程的反思,獲得解決問題的經(jīng)驗。

  (四)情感與態(tài)度:敢于面對數(shù)學活動中的困難,并有獨立克服困難和運用知識解決問題的成功體驗,有學好數(shù)學的自信心;并尊重與理解他人的見解;能從交流中獲益。

  四、教育理念和教學方式:

  1、教師是學生學習的組織者、促進者、合作者:學生是學習的主人,在教師指導下主動的、富有個性的學習,用自己的身體去親自經(jīng)歷,用自己的心靈去親自感悟。教學是師生交往、積極互動、共同發(fā)展的過程。當學生迷路的時候,教師不輕易告訴方向,而是引導他怎樣去辨明方向;當學生登山畏懼了的時候,教師不是拖著他走,而是喚起他內在的精神動力,鼓勵他不斷向上攀登。

  2、采用“問題情景—探究交流—得出結論—強化訓練”的模式展開教學。

  3、教學評價方式:

  (1)通過課堂觀察,關注學生在觀察、總結、訓練等活動中的主動參與程度與合作交流意識,及時給與鼓勵、強化、指導和矯正。

  (2)通過判斷和舉例,給學生更多機會,在自然放松的狀態(tài)下,揭示思維過程和反饋知識與技能的掌握情況,使老師可以及時診斷學情,調查教學。

  (3)通過課后訪談和作業(yè)分析,及時查漏補缺,確保達到預期的教學效果。

  五、教學媒體:

  多媒體

  六、教學和活動過程:

  教學過程設計如下:

  〈一〉、復習舊知,導入新課

  1.問:已知圓的直徑或半徑怎樣求圓的周長?(c=2πr或c=πd)

  2.課件:出示一塊圓形的苗圃。如果要給這塊苗圃圍柵欄,是求什么?(圓形苗圃的周長)

  3.我們以前學過正方形、長方形等平面圖形的面積,誰能概括一下什么是圓的.面積?請同學們用手摸出學具圓的面積。

  3.提問:如果圓的半徑是2分米,你能猜猜這個圓的面積有多大?(同學們紛紛地猜測,有的學生可能說這個圓面小于所在的正方形面積)

  這節(jié)課我們一起來研究怎樣計算圓的面積。(板書課題:圓的面積)

  〈二〉、動手實踐

  [引入]同學們,前面我們學習了正方形、長方形等平面圖形的面積是計算方法,通過動手將圓拼成我們學過的平行四邊形或長方形,你能總結出圓的面積和長方形面積計算方法之間的關系嗎?

  1、[學生回答]分組交流、討論拿出已準備好的學具,說說你把圓剪拼成了什么圖形?你發(fā)現(xiàn)了什么?

  課件演示:請看大屏幕,把圓分成16等份,拼成了近似平行四邊形,再分成32等份,拼成近似的平行四邊形,再分成64等份,拼成近似長方形,你發(fā)現(xiàn)什么?(如果分的份數(shù)越多,每一份就會越細,拼成的圖形就會越接近于長方形。)

  2、[學生回答] 總結圓面積計算公式的語言描述:

  長方形的長相當于圓周長的一半,長方形的寬相當于圓的半徑

  3、[學生回答]圓面積計算公式:

  s=πr2

  〈三〉、運用公式,解決問題

  1、口答,根據(jù)半徑計算出圓的面積:(搶答形式,活躍課堂氣氛,激發(fā)學生的學習積極性)

  r=1 r=2 r=3

  2、練一練

  r=9,s =______________;c=12.56,s =_______________;

  r=5,s =_____________; d=8,s =_______________;

  〈四〉、[學生小結]

  你認為圓面積計算公式在應用過程中,需要注意那些問題?

  (1) r2=r×r

  (2) π取3.14。

  〈五〉、知識應用

  用一根長3米的繩子,把一只羊拴在樹桿上,羊的活動范圍是多少?

  〈六〉、學生自我評價

  [小結]通過本節(jié)課的學習,你有什么收獲和感悟?

  本節(jié)課,我們自己通過計算、分析結果,總結出了圓面積計算公式。在知識探索的過程中,同學們積極思考,大膽探索,團結協(xié)作共同取得了進步。

  〈七〉[作業(yè)]隨堂練習課本

小學數(shù)學圓的面積教案12

  教學目標

  1、使學生學會圓環(huán)面積的計算方法,以及圓形與矩形混合圖形的相關計算方法。

  2、學會利用已有的知識,運用數(shù)學思想方法,推導出圓環(huán)面積計算公式,有關于圓形與正方形應用的解答方法。

  3、培養(yǎng)學生觀察、分析、推理和概括的能力,發(fā)展學生的空間概念。

  教學重難點

  1、教學重點

  會利用圓和其他已學的相關知識解決實際問題。

  2、教學難點

  圓與其他圖形計算公式的混合使用。

  教學工具

  PPT卡片

  教學過程

  1、復習鞏固上節(jié)知識,導入新課

  2、新知探究

  2、1圓環(huán)面積

  一、問題引入

  同學們知道光盤可以用來做什么嗎?誰能來描述一下光盤的外觀。

  回答(略)。

  今天我們就來做一做與光盤相關的數(shù)學問題。

  二、圓環(huán)面積求解

  例2、光盤的銀色部分是一個圓環(huán),內圓半徑是50px,外圓半徑是150px。圓環(huán)的面積是多少?

  步驟:

  師:求圓環(huán)面積需要先求什么?

  生:內圓和外圓的面積

  師:同學們可以自己做一做,分組交流一下自己的解法。

  師:給出計算過程與結果:

  三、知識應用

  做一做第2題:

  一個圓形環(huán)島的直徑是50m,中間是一個直徑為10m的圓形花壇,其他地方是草坪。草坪的占地面積是多少?

  師:這是一道典型的圓環(huán)面積應用題。通過直徑得到半徑,代入圓環(huán)面積公式,很簡單。

  2、2圓與正方形

  一、問題引入

  師:同學們知道蘇州的園林吧。大家有沒有觀察過園林建筑的窗戶?它有很多很漂亮的設計,也有很多很常見的圖形,比如五邊形、六邊形、八邊形等等。其中外圓內方或者外方內圓是一種很常見的設計。

  師:不僅是在園林中,事實上在中國的建筑和其他的`設計中都經(jīng)常能見到“外圓內方”和“外方內圓”,比如這座沈陽的方圓大廈、商標等等。下面我們來認識一下這種圓形與正方形結合起來構成的圖形。

  二、知識點

  例3:圖中的兩個圓半徑是1m,你能求出正方形和圓之間部分的面積嗎?

  步驟:

  師:題目中都告訴了我們什么?

  生:左圖圓的半徑=正方形的邊長的一半=1m;右圖圓的面積=正方形對角線的一半=1m

  師:分別要求的是什么?

  生:一個求正方形比圓多的面積,一個求圓比正方形多的面積。

  師:應該怎么計算呢?

  歸納總結

  如果兩個圓的半徑都是r,結果又是怎樣的呢?

  當r=1時,與前面的結果完全一致。

  四、知識應用

  70頁做一做:

  下圖是一面我國唐代外圓內方的銅鏡。銅鏡的直徑是600px。外面的圓與內部的正方形之間的面積是多少?

  師:同學們用我們剛剛學過的知識來解答一下這道題目吧。

  解:銅鏡的半徑是300px

  5、3隨堂練習

  若還有足夠時間,課堂練習練習十五第5/6/7題。

  (可以邀請同學板書解題過程)

  6 小結

  1、今天我們共同研究了什么?

  今天我們在已知圓和正方形的面積公式的前提下,探索了圓環(huán)和“外圓內方”“外方內圓”圖形的面積計算方法。這不是要求同學們記住這些推導出來的公式,而是希望同學們能過明白推導的方法,以后遇到類似的問題可以自己運用學過的知識來解決問題。

  2、在日常生活中經(jīng)常需要去求圓的面積,譬如說:蒙古包做成圓形的是因為可以最大化地利用居住面積,植物根莖的橫截面是圓形的,也是因為可以最大化的吸收水分。我們還可以再舉出其他的一些例子,如裝菜的盤子、車輪為什么要做成圓形的?大家需要多看多想!

小學數(shù)學圓的面積教案13

  教學目標:

  1、在初步認識圓柱的基礎上理解圓柱的側面積和表面積的含義,掌握圓柱側面積和表面積的計算方法,會正確計算圓柱的側面積和表面積。

  2、通過實踐操作,在學生理解圓柱側面積和表面的含義的同時,能解決一些有關實際生活的問題。

  教學重點,難點:

  掌握圓柱側面積和表面積的計算方法。

  運用所學的知識解決簡單的實際問題。

  教學過程:

  一、引入新課:

  前一節(jié)課我們已經(jīng)認識了一個新朋友——圓柱,誰能說說這位新朋友長什么樣子以及有什么特征嗎?

  1.圓柱是由平面和曲面圍成的立體圖形。

  2.圓柱各部分的名稱(兩個底面,側面,高)。

  3.把圓柱的側面沿著它的一條高剪開得到一個長方形,這個長方形的長等于圓柱的底面周長、寬等于圓柱的高。

  同學們對圓柱已經(jīng)知道得這么多了,還想對它作進一步的了解嗎?今天我們就一起來研究怎樣求圓柱的表面積。

  二、探究新知:

  以前我們學過正方體、長方體的表面積,觀察一個長方體,我們是怎么求這個長方體的表面積的呢?(六個面的面積和就是它的表面積)

  同學們想一想我們要求圓柱的表面積,那么圓柱的表面積指的是什么?

  教師引導,學生討論結果:圓柱的側面積加上兩個底面的面積就是圓柱的表面積。

  板書:(圓柱的表面積=圓柱的側面積+兩個底面的面積)

  1.圓柱的側面積

  (1)圓柱的側面積,顧名思義,也就是圓柱側面的面積。

  (2)出示圓柱的展開圖:這個展開后的長方形的面積和圓柱的側面積有什么關系呢?

  (學生觀察很容易看到這個長方形的面積等于圓柱的側面積)

  (3)那么,圓柱的側面積應該怎樣計算呢?(引導學生根據(jù)展開后的長方形的長和寬與圓柱底面周長和高的關系,可以知道:圓柱的側面積=底面周長×高)

  2.側面積練習:練習二第5題

  學生審題,回答下面的問題:

  這兩道題分別已知什么,求什么?

  小結:要計算圓柱的`側面積,必須知道圓柱底面周長和高這兩個條件,有時題里只給出直徑或半徑,底面周長這個條件可以通過計算得到,在解題前要注意看清題意再列式。

  3.理解圓柱表面積的含義。

  (1)讓學生把自己制作的圓柱模型展開,觀察一下,圓柱的表面由哪幾個部分組成?(通過操作,使學生認識到:圓柱的表面由上下兩個底面和側面組成。)

  (2)圓柱的表面積是指圓柱表面的面積,也就是圓柱的側面積加上兩個底面的面積。

  公式:圓柱的表面積=圓柱的側面積+底面積×2

  4.嘗試練習。

  (1)求下面各圓柱的側面積。

 、俚酌嬷荛L2.5分米,高0.6分米。

 、诘酌嬷睆8厘米,高12厘米。

  (2)求下面各圓柱的表面積。

 、俚酌娣e是40平方厘米,側面積是25平方厘米。

  ②底面半徑是2分米,高是5分米。

  5.小結:

  在計算圓柱形的表面積時,要根據(jù)給定的數(shù)據(jù)計算各部分的面積。(如:有時候給出的是底面半徑,有時是底面直徑。)

  三、鞏固練習。

  1.做第14頁“做一做”。(求表面積包括哪些部分?)

  2.練習二第6,7題。

  四、課后思考。

  同學們想一想是不是所有的圓柱在計算表面積時都可以用公式:圓柱的表面積=圓柱的側面積+底面積×2來計算呢?

【小學數(shù)學圓的面積教案】相關文章:

小學數(shù)學《圓的面積》教案06-03

小學數(shù)學《圓的面積》教案02-24

數(shù)學圓的面積教案02-15

小學數(shù)學《圓的面積》教案優(yōu)秀02-23

圓的面積的數(shù)學教案01-21

小學數(shù)學《圓的面積》說課稿07-20

小學數(shù)學圓的面積說課稿02-07

《圓的面積》教案06-29

圓的面積教案02-28