男人天堂日韩,中文字幕18页,天天伊人网,成人性生交大片免费视频

《3的倍數(shù)的特征》數(shù)學(xué)教學(xué)反思

時(shí)間:2023-03-02 18:09:16 澤彪 教學(xué)反思 我要投稿

《3的倍數(shù)的特征》數(shù)學(xué)教學(xué)反思(精選10篇)

  身為一位優(yōu)秀的教師,課堂教學(xué)是我們的工作之一,寫教學(xué)反思可以很好的把我們的教學(xué)記錄下來,教學(xué)反思我們應(yīng)該怎么寫呢?下面是小編為大家整理的《3的倍數(shù)的特征》數(shù)學(xué)教學(xué)反思,供大家參考借鑒,希望可以幫助到有需要的朋友。

《3的倍數(shù)的特征》數(shù)學(xué)教學(xué)反思(精選10篇)

  《3的倍數(shù)的特征》數(shù)學(xué)教學(xué)反思 篇1

  3的倍數(shù)的特征比較隱蔽,學(xué)生一般想不到從“個(gè)位上的數(shù)字之和”去研究。上課開始先讓學(xué)生通過練習(xí)回顧舊知:2的倍數(shù)與5的倍數(shù)的特征。然后讓學(xué)生猜想:3的倍數(shù)又有什么特征呢?這樣能較好調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性。由于受2的倍數(shù)與5的倍數(shù)特征的影響,有些學(xué)生很自然猜測到“個(gè)位上是0,3,6,9的數(shù)是3的倍數(shù)”、“各位上的數(shù)字加起來是3,6,9的數(shù)是3的倍數(shù)”等等,學(xué)生能想到這幾點(diǎn)是非常不錯(cuò)的。

  學(xué)生進(jìn)行猜想后,我并沒有判斷學(xué)生的猜想是否正確,而是出現(xiàn)了百數(shù)表,讓學(xué)生在百數(shù)表中圈出所有的3的倍數(shù),讓學(xué)生從表中發(fā)現(xiàn)3 的倍數(shù)的特征,把自己發(fā)現(xiàn)的在小組間交流。此時(shí),我還是沒有判斷學(xué)生的發(fā)現(xiàn)是否正確,而是讓學(xué)生打開課本自學(xué),從課本中找3的倍數(shù)的特征,當(dāng)遇到問題解決不了時(shí),我們可以向課本求助。然后問學(xué)生“各位上的數(shù)字的和是3的倍數(shù)是什么意思?請結(jié)合舉例說說!苯酉聛韺(shù)擴(kuò)到百以上,通過各種方式舉正反例通過計(jì)算來驗(yàn)證從而得出3的倍數(shù)的特征。最后比較驗(yàn)證之前的.猜想與發(fā)現(xiàn)。當(dāng)我們向課本找到結(jié)論時(shí),我們也要質(zhì)疑,通過舉例來驗(yàn)證。鼓勵(lì)學(xué)生對知識要敢于質(zhì)疑,敢于通過各種方式去驗(yàn)證,培養(yǎng)學(xué)生良好的數(shù)學(xué)思維。

  在教學(xué)中,我能有效獲取課堂生成資源,同時(shí)也注重方法的指導(dǎo)。比如:同桌舉例驗(yàn)證時(shí),涉及到了“123456”是否是3的倍數(shù),先給予學(xué)生思考的時(shí)間,讓后問:還有更加簡便的方法嗎?老師有效引導(dǎo),讓學(xué)生去發(fā)現(xiàn)“去3法”能給我們的判斷帶來很大的方便。還有在方框里填數(shù)等。有較好的教學(xué)機(jī)智與課堂駕馭能力,如:在百數(shù)表圈3的倍數(shù)時(shí),我的課件中有個(gè)數(shù)“99”忘記沒有圈好,學(xué)生發(fā)現(xiàn)了這問題。在這里,我是表揚(yáng)了發(fā)現(xiàn)此問題的學(xué)生,老師故意說:我是特意沒有圈的,看我們的學(xué)生觀察是否仔細(xì),考慮問題是否全面……,把原本的錯(cuò)誤變成良好的教學(xué)資源。練習(xí)的設(shè)計(jì)業(yè)很有層次與梯度,聯(lián)系生活實(shí)際。

  本節(jié)課也有很多不足的地方:百數(shù)表中的數(shù)據(jù)太多,部分學(xué)生的發(fā)現(xiàn)是亂七八糟的;在舉例驗(yàn)證的過程中,學(xué)生的計(jì)算還不夠,學(xué)生親自從算中去體會(huì)更好;總結(jié)不太及時(shí),從及時(shí)總結(jié)中提煉、提升會(huì)更好。

  《3的倍數(shù)的特征》數(shù)學(xué)教學(xué)反思 篇2

  1. 找準(zhǔn)知識間的沖突,激發(fā)探究的愿望。學(xué)生剛剛學(xué)習(xí)了2.5的倍數(shù)的特征,知道只要看一個(gè)數(shù)的個(gè)位,因此在學(xué)習(xí)3的倍數(shù)的特征時(shí),自然會(huì)把“看個(gè)位”這一方法遷移過來。而實(shí)際上,3的倍數(shù)的特征,卻要把各個(gè)位上的數(shù)加起來研究。于是新舊知識之間的矛盾沖突使學(xué)生產(chǎn)生了困惑,“為什么2或5的倍數(shù)只看個(gè)位?”“為什么3的倍數(shù)要把各個(gè)位上的數(shù)加起來研究?”……學(xué)生急于想了解這些為什么,便會(huì)自覺地進(jìn)入到自主探究的狀態(tài)之中。知識不是孤立的,新舊知識有時(shí)會(huì)存在矛盾沖突,教師如能找準(zhǔn)知識間的沖突并巧妙激發(fā)出來,就能激起學(xué)生探究的愿望。這樣不僅有利于學(xué)生對新知的掌握,有效地將新知納入到原有的認(rèn)知結(jié)構(gòu)中去,還有利于培養(yǎng)學(xué)生深入探究的意識和能力。

  2. 激活學(xué)習(xí)中的困惑,讓探究走向深入。創(chuàng)造和發(fā)現(xiàn)往往是由驚訝和困惑開始。對比兩次教學(xué),第一次教學(xué)由于忽視了學(xué)習(xí)中的困惑,學(xué)生對于3的倍數(shù)的特征理解并不透徹,探索的體驗(yàn)也并不深刻。第二次教學(xué)留給學(xué)生質(zhì)疑的時(shí)空,巧設(shè)沖突,讓學(xué)生進(jìn)行新舊知識的對比,將困惑激發(fā)出來,通過學(xué)生間相互啟發(fā)、相互質(zhì)疑,對問題的思考漸漸完整而清晰。學(xué)生不但經(jīng)歷由困惑到明了的過程,而且思維不斷走向深入,獲得了更有價(jià)值的發(fā)現(xiàn),探究能力也得到切實(shí)提高。學(xué)生在學(xué)習(xí)中難免會(huì)產(chǎn)生困惑,這種困惑有時(shí)是學(xué)生希望理解更全面、更深刻的表現(xiàn)。面對這些有價(jià)值的思考,我們要有敏銳的洞察力,采取恰當(dāng)?shù)姆椒▽⑵浼せ,促使探究活?dòng)走向深入,讓學(xué)生獲得更大的發(fā)展。當(dāng)然,學(xué)生在學(xué)習(xí)中可能產(chǎn)生怎樣的困惑,面對這一困惑又該如何恰當(dāng)引導(dǎo),尚需要教師課前精心預(yù)設(shè)。

  3. 溝通知識間的聯(lián)系,讓學(xué)生不斷探究。顯然,2.5的倍數(shù)的特征與3的倍數(shù)的'特征是相互聯(lián)系的,其研究方法是相通的(都可以通過“拆數(shù)”進(jìn)行觀察),特征的本質(zhì)也是相同的。這種研究方法和特征本質(zhì)的及時(shí)溝通,激發(fā)了學(xué)生繼續(xù)研究4、7、9……的倍數(shù)的特征的好奇心,促使學(xué)生不斷探究,將學(xué)習(xí)由課內(nèi)延伸到課外,并在探究過程中建構(gòu)起對數(shù)的倍數(shù)特征的整體認(rèn)識,感悟數(shù)學(xué)其實(shí)就是以一馭萬,以簡馭繁。課堂不是句號,學(xué)生的發(fā)展始終是教學(xué)的落腳點(diǎn)。我們的教學(xué)絕不能僅僅局限于學(xué)生對于一堂課知識的掌握,而應(yīng)著眼于學(xué)生對于解決問題方法的感悟,獲得可持續(xù)發(fā)展的動(dòng)力。

  《3的倍數(shù)的特征》數(shù)學(xué)教學(xué)反思 篇3

  《3的倍數(shù)的特征》看似一節(jié)知識簡單的課,但從教學(xué)實(shí)際來看,是我想得過于簡單了,教師注重的不應(yīng)該僅僅是對知識的掌握,更應(yīng)該使學(xué)生站在跳板上學(xué)習(xí)數(shù)學(xué),關(guān)注數(shù)學(xué)思維的發(fā)展。

  新的課程理念要求我們在教學(xué)中盡可能地為學(xué)生提供一個(gè)自主、合作、探究機(jī)會(huì),其宗旨也就在于培養(yǎng)學(xué)生在實(shí)際的學(xué)習(xí)活動(dòng)中,善于發(fā)現(xiàn)問題和提出問題的能力,靈活運(yùn)用知識去解決問題的能力,在研究和解決問題的過程中學(xué)會(huì)合作。3的倍數(shù)的特征,有規(guī)律可循,容易上成機(jī)械刻板、枯燥無味的課,學(xué)生雖能死套規(guī)律判斷,但學(xué)生的能力沒能培養(yǎng),智力得不到開發(fā)。本課的設(shè)計(jì)采用了啟發(fā)與發(fā)現(xiàn)相結(jié)合的教學(xué)方法,激勵(lì)學(xué)生大膽猜想,動(dòng)手實(shí)踐,去發(fā)現(xiàn)規(guī)律,形成技能,升華至應(yīng)用于生活。

  本課主要使學(xué)生在原有認(rèn)知的基礎(chǔ)上產(chǎn)生認(rèn)知沖突,進(jìn)而產(chǎn)生新的探索欲望,突出了對學(xué)生“提出問題—探索問題—解決問題”的能力培養(yǎng),學(xué)生能在猜想、操作、驗(yàn)證、交流、反思、歸納的數(shù)學(xué)活動(dòng)中,獲得較為豐富的數(shù)學(xué)經(jīng)驗(yàn),也有助于創(chuàng)造性的'培養(yǎng)。當(dāng)然,培養(yǎng)學(xué)生的創(chuàng)造個(gè)性,僅僅停留在教學(xué)活動(dòng)的情境上是不夠的,教師首先要具有創(chuàng)造精神,注重設(shè)計(jì)寬松和諧民主的教學(xué)氛圍,尊重學(xué)生,抓住一切可以利用的機(jī)會(huì),激發(fā)學(xué)生的創(chuàng)新欲望,學(xué)生的創(chuàng)造意識才能得以培養(yǎng),個(gè)性才能充分發(fā)展。本課重點(diǎn)是要理解3的倍數(shù)特征,能夠準(zhǔn)確判斷一個(gè)數(shù)是不是3的倍數(shù)。我采用的是復(fù)習(xí)導(dǎo)入,先和學(xué)生們一起回憶了一下

  2.5的倍數(shù)特征,然后出示本課的教學(xué)目標(biāo)。新授環(huán)節(jié)先讓學(xué)生猜測一下3的倍數(shù)會(huì)有哪些特征呢?接著采用數(shù)形結(jié)合的方法,學(xué)生動(dòng)手操作,在1~100的數(shù)字卡里找一找3的倍數(shù),然后用自己喜歡的符號圈起來,然后觀察小組討論匯報(bào)。發(fā)現(xiàn)3的倍數(shù)特征不像2.5的倍數(shù)特征一樣,看一個(gè)數(shù)的末尾了,引導(dǎo)學(xué)生是不是要看這個(gè)數(shù)其它的數(shù)位上的數(shù)呢?學(xué)生發(fā)現(xiàn)也不是很難。教材中有提示,學(xué)生回家預(yù)習(xí)后也會(huì)清楚敘述出3的倍數(shù)特征是一個(gè)數(shù)各個(gè)數(shù)位上數(shù)字相加的和。找準(zhǔn)知識之間的沖突并巧妙激發(fā)出來,這是一節(jié)課的出彩之處,剛開始我們先采用課本上百數(shù)表來研究,結(jié)果在一個(gè)班實(shí)踐后認(rèn)為效果并不是很理想,由于數(shù)太多,讓學(xué)生觀察3的倍數(shù)的這些數(shù)時(shí),并從中找出相同的地方,結(jié)果,很多同學(xué)找了與本節(jié)課毫無關(guān)系的東西,浪費(fèi)了很多時(shí)間。在評課的時(shí)候,我們又討論是不是找一些數(shù)代表百數(shù)表,于是我設(shè)計(jì)了一個(gè)表格,讓學(xué)生用除法計(jì)算的方法找到3的倍數(shù)的特征,并觀察這些數(shù),這些數(shù)的個(gè)位分別從0到9都有,讓學(xué)生知道3的倍數(shù)的特征跟數(shù)的個(gè)位沒有關(guān)系,然后從中又把像45和54,75和57,123和321等特殊的數(shù)單獨(dú)展示出來,讓學(xué)生觀察從中找出規(guī)律。結(jié)果我又重新上了這節(jié)課,效果比上節(jié)課要好。

  這節(jié)課結(jié)束后,我感覺最大的缺憾之處,最后總結(jié)3的倍數(shù)特征時(shí),應(yīng)放手讓孩子們多說,說透,這樣更有助于鍛煉孩子的概括歸納能力。而練習(xí)題方面,也應(yīng)形式面多樣化,如用卡片練習(xí)判斷,或通過打手勢的方法或先聽老師——這樣效率更高,課堂氛圍好,課堂不是同步,學(xué)生的發(fā)展始終是教學(xué)的落腳點(diǎn)。我們的教學(xué)應(yīng)著眼于學(xué)生對解決問題方法的感悟,這樣才可獲得最佳的效果。

  《3的倍數(shù)的特征》數(shù)學(xué)教學(xué)反思 篇4

  《3的倍數(shù)特征》進(jìn)行了兩次教學(xué)授課,第一次是新授,第二次是錄課重復(fù)授課。下面就本節(jié)課前后兩次上課進(jìn)行如下反思:第一次上課,采用游戲的方式引入,提前給學(xué)生編號,根據(jù)編號做游戲。由于每個(gè)學(xué)生的編號不一樣,所以在做游戲的時(shí)候,每個(gè)學(xué)生集中注意力,傾聽游戲要求,激發(fā)了學(xué)生的學(xué)習(xí)興趣。設(shè)置游戲的目的是復(fù)習(xí)2或5倍數(shù)的特征,同時(shí),對3的倍數(shù)特征的學(xué)習(xí)產(chǎn)生求知欲。接下來是采用提出猜想,舉出個(gè)例否定猜想來過渡。讓學(xué)生充分地認(rèn)識到依據(jù)2或5的倍數(shù)特征的思想已經(jīng)行不通了,從而開始新的探索。在探索過程中借助“百數(shù)表”,讓學(xué)生獨(dú)立地圈出3的倍數(shù),圈完后互相交流3的倍數(shù)的個(gè)位有什么特點(diǎn),再次否定了之前的思維定式。

  由于個(gè)位上沒有特點(diǎn),所以引導(dǎo)學(xué)生從其他的角度觀察,學(xué)生能想到橫著觀察、豎著觀察,但對于斜著觀察不能很好的發(fā)現(xiàn),所以本節(jié)課中我關(guān)注到學(xué)生的思考困境,引導(dǎo)學(xué)生從斜著觀察的角度思考探索。當(dāng)學(xué)生斜著觀察時(shí)能發(fā)現(xiàn)個(gè)位上的數(shù)字依次減1,十位上的數(shù)字依次加1,適時(shí)提出“什么是沒有變的?”問題一提出,學(xué)生恍然大悟,發(fā)現(xiàn):個(gè)位和十位上的數(shù)的和沒有變!順其自然的知道了3的倍數(shù)具有這樣規(guī)律。經(jīng)過研究每一斜行發(fā)現(xiàn):個(gè)位和十位上的數(shù)的.和不變,都是3的倍數(shù)。知道了這個(gè)規(guī)律后,下面開始延伸這個(gè)規(guī)律。一方面:驗(yàn)證百數(shù)表內(nèi)其他不是3的倍數(shù)是否具有這個(gè)規(guī)律?另一方面:比100大的數(shù),三位數(shù)、四位數(shù)、五位數(shù)等是否具有這個(gè)規(guī)律?通過兩方面的驗(yàn)證,再次強(qiáng)調(diào)了這個(gè)規(guī)律是普遍存在的,而這時(shí)3的倍數(shù)特征已經(jīng)歸結(jié)為:一個(gè)數(shù)各位上的數(shù)的和是3的倍數(shù),這個(gè)數(shù)就是3的倍數(shù)。知道了3的倍數(shù)特征之后通過練習(xí)鞏固加強(qiáng),練習(xí)的設(shè)計(jì)是三道題,這三道題設(shè)計(jì)為不同的層次,第一題是基礎(chǔ)題,第二題是拔高題,第三題是解決問題。通過做題發(fā)現(xiàn)學(xué)生本節(jié)課掌握得不錯(cuò)。

  最后,對本節(jié)課的知識進(jìn)行了延伸,通過出示課本第13頁“你知道嗎?”,讓學(xué)生明白為什么2或5的倍數(shù)特征只看個(gè)位就可以了,而3的倍數(shù)特征需要看所有數(shù)位。從而達(dá)到學(xué)知識不但要知其然還要知其所以然。整個(gè)教學(xué)過程中,學(xué)生能在猜想、操作、驗(yàn)證、交流、歸納的數(shù)學(xué)活動(dòng)中獲得豐富的數(shù)學(xué)經(jīng)驗(yàn),同時(shí)這也有利于學(xué)生創(chuàng)造力的培養(yǎng)。通過本節(jié)課的教學(xué)以及學(xué)生的掌握情況,最終檢測本節(jié)課的目標(biāo)較好的達(dá)成。但反思這節(jié)課的不足,我覺得在每個(gè)環(huán)節(jié)上的過渡應(yīng)該更加的自然。

  另外,在小組討論的時(shí)候應(yīng)多關(guān)注學(xué)生的交流,對學(xué)生進(jìn)行適時(shí)地指導(dǎo)。基于第一節(jié)課的優(yōu)點(diǎn)和不足,進(jìn)行了第二次的授課即錄課。由于學(xué)生們已經(jīng)學(xué)習(xí)了過本節(jié)課,所以對于學(xué)生們來說已經(jīng)是舊知識。要把舊知識重新來講,如果照搬之前的授課方式已經(jīng)遠(yuǎn)遠(yuǎn)不夠了。如何更改,這給我提出來一個(gè)新的問題。為此,這節(jié)課我做了適當(dāng)?shù)恼{(diào)整。本節(jié)課我更多關(guān)注的是數(shù)學(xué)方法和思維方式的培養(yǎng)。其中體現(xiàn)在:

  1、學(xué)生在舉例驗(yàn)證猜想的時(shí)候,讓學(xué)生體會(huì)反例的作用,如果有一個(gè)反例的存在,就說明猜想的結(jié)論是錯(cuò)誤的。

  2、在探索3的倍數(shù)特征時(shí),對于100以內(nèi)3的倍數(shù),應(yīng)如何著手驗(yàn)證,怎么選取數(shù)來驗(yàn)證,這一環(huán)節(jié)讓學(xué)生體會(huì):在研究規(guī)律的時(shí)候,優(yōu)先選擇數(shù)比較多的這一組,讓學(xué)生明白如果有規(guī)律更容易探索和發(fā)現(xiàn)。

  3、在拓展規(guī)律的時(shí)候,采用舉了大量的數(shù)據(jù),證明了規(guī)律的普遍存在,讓學(xué)生體會(huì)規(guī)律的適用范圍。

  4、在做練習(xí)的時(shí)候,第2小題,關(guān)注學(xué)生思考問題是否全面,關(guān)注學(xué)生的思考過程。

  5、練習(xí)的第3小題,一道解決問題的題目,通過讓學(xué)生讀題、審題、分析題之后,再思考。這一道題學(xué)生展示了多種的做題方法,體現(xiàn)了方法的多樣性,同時(shí)也說明學(xué)生的思維是活躍的。本節(jié)課中的不足,練習(xí)中第3題學(xué)生的做法沒有完全的在黑板上板書,另外,本節(jié)課中學(xué)生會(huì)超前說出所有問題的答案,使得教師略顯失措,我覺得這是因?yàn)槲覀鋵W(xué)生還不夠。在今后的教學(xué)中,我會(huì)改進(jìn)自己的不足。我將更深入地研究教材、鉆研教法,不斷提高自己的教學(xué)水平,設(shè)計(jì)出學(xué)生更能接受和喜歡的課。

  《3的倍數(shù)的特征》數(shù)學(xué)教學(xué)反思 篇5

  《3的倍數(shù)的特征》是學(xué)生在學(xué)習(xí)過2.5倍數(shù)特征之后的又一內(nèi)容,因?yàn)?.5的倍數(shù)的特征僅僅體現(xiàn)在個(gè)位上的數(shù),比較明顯,容易理解。而3的倍數(shù)的特征,不能只從個(gè)位上的數(shù)來判斷,必須把其他各位上的數(shù)相加,看所得的和是否為3的倍數(shù)來判斷,學(xué)生理解起來有一定的困難。我決定在這節(jié)課中突出學(xué)生的自主探索,使學(xué)生猜想——觀察——再觀察——?jiǎng)邮衷囼?yàn)的過程中,概括歸納出了3的.倍數(shù)特征。

  1、找準(zhǔn)知識沖突激發(fā)探索愿望。

  找準(zhǔn)備知識中沖紛激發(fā)探索,在第一環(huán)節(jié)中我先讓學(xué)生復(fù)習(xí)2.5的倍數(shù)特征并對一些數(shù)據(jù)做出了判斷而后我們“誰來猜測一下3的倍數(shù)特征”激發(fā)學(xué)生探究的愿望。由于學(xué)生剛剛復(fù)習(xí)了2.5倍數(shù)的特征,知道只要看一個(gè)數(shù)的個(gè)位,因此在學(xué)習(xí)3的倍數(shù)特征時(shí),自然會(huì)把“看個(gè)位”這一方法遷移過來。但實(shí)際上,卻不是這樣,于是新舊知識間的矛盾沖突使學(xué)生產(chǎn)生了困惑,有了新舊知識的矛盾沖突,就能激發(fā)起學(xué)生探究的愿望,這樣不反有利于學(xué)生對新知識的掌握,有效的將新知識納入到原有的認(rèn)知結(jié)構(gòu)中去,還有利于培養(yǎng)學(xué)生深入探究的意識和能力。

  2、激發(fā)學(xué)習(xí)中的困惑,讓探究走向深入。

  找準(zhǔn)知識之間的沖突并巧妙激發(fā)出來,這是一節(jié)課的出彩之處,而我從孩子們的學(xué)號為入重點(diǎn),讓孩子們判斷自己的學(xué)號是否是3的倍數(shù),并再次探究3的倍數(shù)特征,并且發(fā)現(xiàn)3的倍數(shù)和數(shù)字排列順序的有關(guān)系。但和這個(gè)數(shù)的個(gè)位上的數(shù)字有關(guān)。使之所探究的問題是漸漸完整而清晰,而后我又組織孩子們用擺小棒的方法來探究和驗(yàn)證,這種層層遞進(jìn)環(huán)環(huán)相扣的方法,促使探究活動(dòng)走向深入,讓學(xué)生獲得更大的發(fā)展。

  3、課后反思使之完美。

  這節(jié)課結(jié)束后,我感覺最大的缺憾之處,最后點(diǎn)選了的倍數(shù)特征時(shí),應(yīng)放手讓孩子們多說,說透,這樣更有助于鍛煉孩子的概括歸納能力。而老練習(xí)題方面,也應(yīng)形式面多樣化,如用卡片練習(xí)判斷,或通過打手勢的方法或先聽老師——這樣效率更高,課堂氛圍好,課堂不是同步,學(xué)生的發(fā)展始終是教學(xué)的落腳點(diǎn)。我們的教學(xué)應(yīng)著眼于學(xué)生對解決問題方法的感悟,這樣才可獲得可持續(xù)發(fā)展的動(dòng)力。

  《3的倍數(shù)的特征》數(shù)學(xué)教學(xué)反思 篇6

  “能被3整除數(shù)的數(shù)”一課,能體現(xiàn)新的教育理念、教育思想。仔細(xì)分析,有以下幾個(gè)特點(diǎn):

  1、確立了基本技能目標(biāo)和發(fā)展性目標(biāo)并重的教學(xué)目標(biāo)。

  本節(jié)課不僅重視學(xué)生掌握能被3整除數(shù)的特征,并能運(yùn)用特征進(jìn)行正確判斷,同時(shí)十分重視學(xué)生學(xué)習(xí)過程的體驗(yàn)和方法的滲透,讓學(xué)生通過“猜測——驗(yàn)證——提出新的假設(shè)——驗(yàn)證”的探索過程來發(fā)現(xiàn)知識,獲得結(jié)論,并感悟方法。

  2、理性處理教材,使教學(xué)內(nèi)容生活化。

  教科書只是提供了學(xué)生學(xué)習(xí)活動(dòng)的基本線索。教學(xué)中,教師要充分發(fā)揮主觀能動(dòng)性,創(chuàng)造性的使用教科書,本節(jié)課重新設(shè)計(jì)例題,通過用“0——9”十個(gè)數(shù)字組成能被整除的'三位數(shù)讓學(xué)生探索特征,這樣處理使教學(xué)內(nèi)容有較強(qiáng)的靈活性,促進(jìn)了學(xué)生思維的發(fā)展。教學(xué)內(nèi)容生活化不僅能激發(fā)學(xué)生興趣,產(chǎn)生親切感,而且使學(xué)生認(rèn)識到現(xiàn)實(shí)生活中蘊(yùn)藏著豐富的數(shù)學(xué)問題。開課時(shí)收集的數(shù)據(jù)一方面激發(fā)了學(xué)生學(xué)習(xí)的興趣,同時(shí)也縮短了教師和學(xué)生的距離,課后“你再長幾歲,這個(gè)歲數(shù)就能被3整除”這一開放題富有情趣,給學(xué)生留下了深刻的印象。

  3、著力改變學(xué)生的學(xué)習(xí)方式。

  學(xué)習(xí)方式的轉(zhuǎn)變是本節(jié)課的主要特色。本節(jié)課始終以自主探索、合作交流為主要的學(xué)習(xí)方式,讓學(xué)生通過自主選教學(xué)內(nèi)容,舉例驗(yàn)證等獨(dú)立思考和小組討論等合作探究活動(dòng),獲得教學(xué)知識、感悟方法。如在課的第二階段,設(shè)計(jì)三個(gè)層次的教學(xué)活動(dòng),讓學(xué)生充分探索、討論、交流,使學(xué)生真正成為學(xué)習(xí)的主人。第一層通過學(xué)生猜測、舉例、選數(shù)字組數(shù),使學(xué)生產(chǎn)生兩次認(rèn)知沖突;第二層通過交換三位數(shù)數(shù)字的位置,仍然沒能發(fā)現(xiàn)特征,產(chǎn)生第三次認(rèn)知沖突;第三層次通過計(jì)算各位上的數(shù)的“和、差、積、商”使結(jié)論逐漸顯露。這一過程不僅培養(yǎng)了學(xué)生探究精神,磨練了意志,同時(shí)也使學(xué)生品嘗了成功的喜悅。

 。础⒑侠矶ㄎ唤處熃巧,營造民主、和諧的學(xué)習(xí)氛圍。

  課堂教學(xué)中只有擺正了師生關(guān)系,才可能使學(xué)生得到發(fā)展。本節(jié)課學(xué)生始終是數(shù)學(xué)學(xué)習(xí)的主人,教師是數(shù)學(xué)學(xué)習(xí)的組織者、引導(dǎo)者和合作者。可以從以下兩方面看出:一是從師生活動(dòng)的時(shí)間分配上,二是從分層探究、有針對性的適當(dāng)引導(dǎo)上。這節(jié)課從開始到結(jié)束,氣氛始終處在民主、和諧之中,生活化的學(xué)習(xí)材料、平等的師生關(guān)系和開放的探究方式,

  《3的倍數(shù)的特征》數(shù)學(xué)教學(xué)反思 篇7

  3的倍數(shù)的特征比較隱蔽,學(xué)生一般想不到從“各位上數(shù)的和”去研究,本課注重引導(dǎo)學(xué)生經(jīng)歷探索的過程。上課開始先讓學(xué)生回顧舊知,2的倍數(shù)和5的倍數(shù)有什么特征,學(xué)生們發(fā)現(xiàn)都只要看一個(gè)數(shù)個(gè)位上的數(shù)就行了,于是很順地設(shè)下了陷阱:同學(xué)們,那猜猜看3的倍數(shù)有什么特征呢?猜測是一種常用的數(shù)學(xué)思考方法,讓學(xué)生猜測3的倍數(shù)有什么特征,能較好地調(diào)動(dòng)學(xué)生的學(xué)習(xí)積極性。由于受2的倍數(shù)和5的倍數(shù)的特征的影響,有學(xué)生很自然猜測到:“個(gè)位上是0,3,6,9的數(shù)一定是3的倍數(shù)”,還有學(xué)生猜測:“各位上的數(shù)字加起來是3,6,9一定是3的倍數(shù)”,能想到這點(diǎn)應(yīng)該說是了不起的。本課到這里都很順利,因?yàn)橥耆谖业念A(yù)設(shè)之中。

  下面進(jìn)入驗(yàn)證環(huán)節(jié),先學(xué)生判斷自己的學(xué)號是不是3的倍數(shù),再在這些學(xué)號中挑出個(gè)位上是0,3,6,9的數(shù),通過交流這些數(shù)不一定都是3的倍數(shù)。學(xué)生初步發(fā)現(xiàn)了3的倍數(shù)的特征與2和5的倍數(shù)不同,不表現(xiàn)在數(shù)的個(gè)位上,那3的倍數(shù)究竟與什么有關(guān)系呢。于是進(jìn)入到動(dòng)手操作環(huán)節(jié),在此基礎(chǔ)上,利用計(jì)數(shù)器轉(zhuǎn)移探索的方向,讓學(xué)生用3顆算珠在計(jì)數(shù)器上任意擺數(shù),得出結(jié)果:擺出的數(shù)都是3的倍數(shù),到這里有幾個(gè)學(xué)生顯得很興奮。隨后用5顆算珠實(shí)驗(yàn),發(fā)現(xiàn)擺出的數(shù)都不是3的倍數(shù),到這里學(xué)生中已經(jīng)有一些議論,他們都有了發(fā)現(xiàn)。為了讓更多的學(xué)生看出其中的神奇,我將自主權(quán)交給了學(xué)生們,自己選擇算珠的顆數(shù)進(jìn)行了第三次實(shí)驗(yàn),然后板書出每組的實(shí)驗(yàn)結(jié)果,從結(jié)果的數(shù)據(jù)中,學(xué)生們都很興奮地發(fā)現(xiàn)了所用算珠的`顆數(shù)是3顆,6顆,9顆,撥出的數(shù)都是3的倍數(shù),每個(gè)數(shù)所用算珠的顆數(shù),也是每個(gè)數(shù)各位上數(shù)的和。把算珠顆數(shù)抽象成各位上數(shù)的和,是理解3的倍數(shù)特征的關(guān)鍵。

  “試一試”是教學(xué)的第三步,如果一個(gè)數(shù)不是3的倍數(shù),那么這個(gè)數(shù)各位數(shù)的和不是3的倍數(shù)。利用反例進(jìn)一步證實(shí)3的倍數(shù)的特征,體現(xiàn)了數(shù)學(xué)的嚴(yán)謹(jǐn)性和數(shù)學(xué)結(jié)論的確定性?上г谶@一點(diǎn)上,我很倉促地指著黑板上算珠顆數(shù)是4顆,5顆,7顆,8顆時(shí),所擺出的數(shù)都不是3的倍數(shù),直接告訴了學(xué)生,而沒有讓學(xué)生自己舉出反例。隨后設(shè)計(jì)了一系列習(xí)題,使學(xué)生得到鞏固提高。

  整節(jié)課只能說順利地走了下來,對于教者我來說從中發(fā)現(xiàn)了自己教學(xué)上的不足之處,在今后的教學(xué)中,我將不斷學(xué)習(xí),及時(shí)總結(jié),虛心請教,以進(jìn)一步提高自己的教學(xué)業(yè)務(wù)水平。

  《3的倍數(shù)的特征》數(shù)學(xué)教學(xué)反思 篇8

  《3 的倍數(shù)的特征》本節(jié)課的教學(xué)活動(dòng),注重學(xué)生實(shí)踐操作,展開探究活動(dòng),組織學(xué)生進(jìn)行交流和探討,注重培養(yǎng)學(xué)生發(fā)現(xiàn)問題,解決問題的能力,讓學(xué)生經(jīng)歷科學(xué)探索的過程,感受數(shù)學(xué)的嚴(yán)謹(jǐn)性和數(shù)學(xué)結(jié)論的正確性。我是從教學(xué)環(huán)節(jié)維度進(jìn)行觀課的,本節(jié)課有五個(gè)環(huán)節(jié)包括:

  一、復(fù)習(xí)舊知,直接導(dǎo)入。

  二、自主探究,合作驗(yàn)證。

  三、總結(jié)提升,共同驗(yàn)證。

  四、運(yùn)用結(jié)論,鞏固訓(xùn)練。

  五、全課小結(jié),課后延伸。每個(gè)環(huán)節(jié)環(huán)環(huán)相扣,設(shè)計(jì)合理。

  下面就說一下自己的想法。

  一、以舊帶新,引入新課。

  趙老師先復(fù)習(xí)了2.5的倍數(shù)的特征,為這節(jié)課的學(xué)習(xí)打下了基礎(chǔ)。趙老師以學(xué)生原有認(rèn)知為基礎(chǔ),激發(fā)學(xué)生的探究欲望,利用學(xué)生剛學(xué)完“2.5的倍數(shù)的特征”遷移到“3的倍數(shù)的特征”的問題中,由此萌發(fā)疑問,激發(fā)強(qiáng)烈的探究欲望,因此學(xué)生很快進(jìn)入問題情境,猜測、否定、反思、觀察、討論,使得大部分學(xué)生漸漸進(jìn)入了探究者的角色。

  二、親身經(jīng)歷,探索規(guī)律。

  本節(jié)課教師努力嘗試構(gòu)建數(shù)學(xué)生態(tài)課堂,讓學(xué)生繼續(xù)利用小棒擺一擺,進(jìn)而發(fā)現(xiàn)不止是3根、6根小棒能擺出3的倍數(shù),9根也能“只要小棒的'根數(shù)是3的倍數(shù),擺出來的數(shù)就是3的倍數(shù)!苯處煂ⅰ皠(dòng)手?jǐn)[小棒”升級為“腦中撥計(jì)數(shù)器”,將“直觀性思維”升華為“理性思維”,通過小組交流、集體驗(yàn)證,學(xué)生的探索發(fā)現(xiàn)離“3的倍數(shù)的特征”只有咫尺之遙。整節(jié)課讓學(xué)生經(jīng)歷“動(dòng)手操作——觀察發(fā)現(xiàn)——舉例驗(yàn)證——?dú)w納總結(jié)”的探究過程,實(shí)現(xiàn)課程、師生、知識等多層次的互動(dòng)。

  三、精心選題,鞏固新知。

  習(xí)題的設(shè)計(jì)力爭在突出重點(diǎn),突破難點(diǎn),遵循學(xué)生認(rèn)知規(guī)律的基礎(chǔ)上,體現(xiàn)基礎(chǔ)性、層次性、靈活性、生活性、趣味性。本節(jié)課教師設(shè)計(jì)了3道練習(xí)題。在鞏固練習(xí)部分,第(1)、(2)題是基本題;第(3)題,教師努力拉近數(shù)學(xué)與生活的聯(lián)系。把數(shù)學(xué)和生活有機(jī)聯(lián)系起來,使學(xué)生體會(huì)到數(shù)學(xué)在現(xiàn)實(shí)生活中作用和價(jià)值,初步學(xué)會(huì)用數(shù)學(xué)的眼光去觀察事物、思考問題,樹立學(xué)好數(shù)學(xué)、用好數(shù)學(xué)的志趣。

  四、回顧梳理,舉一反。

  在學(xué)生學(xué)習(xí)的過程中注意“學(xué)習(xí)方法”的指導(dǎo),讓學(xué)生感受到掌握方法才能舉一反三,真正做到觸類旁通。最后一個(gè)環(huán)節(jié)設(shè)計(jì)了讓學(xué)生靜靜的回顧這節(jié)課的學(xué)習(xí)歷程“動(dòng)手操作——觀察發(fā)現(xiàn)——舉例驗(yàn)證——?dú)w納總結(jié)”,使其在數(shù)學(xué)思想上做進(jìn)一步的提升。

  《3的倍數(shù)的特征》數(shù)學(xué)教學(xué)反思 篇9

  《3的倍數(shù)的特征》的教學(xué)是五年級數(shù)學(xué)上冊第三單元“因數(shù)與倍數(shù)”中一個(gè)重要知識點(diǎn),是學(xué)生在學(xué)習(xí)了2和5的倍數(shù)特征之后的新內(nèi)容。

  3的倍數(shù)的特征與2和5的倍數(shù)的特征有很大差別,2和5的倍數(shù)的特征僅僅體現(xiàn)在個(gè)位上的數(shù),比較明顯,容易理解。而3的倍數(shù)的特征,不能只從個(gè)位上的數(shù)來判斷,必須把其他各位上的數(shù)相加,看所得的和是否為3的倍數(shù)來判斷,學(xué)生理解起來有一定的困難。我在本節(jié)課設(shè)計(jì)理念上,突出以學(xué)生為主體,教師為主導(dǎo),方法為主線的原則,從現(xiàn)象到本質(zhì),從質(zhì)疑到解疑。當(dāng)然本節(jié)課也存在很多問題,下面我進(jìn)行做幾點(diǎn)反思。

  1、瞄準(zhǔn)目標(biāo),把握關(guān)鍵

  在導(dǎo)入環(huán)節(jié),我通過復(fù)習(xí)舊知識進(jìn)行“熱身”。由于學(xué)生已經(jīng)掌握了2和5倍數(shù)的特征,知道只要看一個(gè)數(shù)的個(gè)位就能判斷一個(gè)數(shù)是不是2或5的倍數(shù),因此在學(xué)習(xí)3的倍數(shù)特征時(shí),自然會(huì)把“看個(gè)位”這一方法遷移過來,盡管是負(fù)遷移。實(shí)際上,鮮明的沖突讓學(xué)生發(fā)現(xiàn)卻不是這樣,于是新舊知識間的`矛盾沖突使學(xué)生產(chǎn)生了困惑,有了新舊知識的矛盾沖突,就能激發(fā)起學(xué)生探究的愿望,這樣有利于學(xué)生對新知識的掌握,有效的將新知識納入到原有的認(rèn)知結(jié)構(gòu)中去,還有利于培養(yǎng)學(xué)生深入探究的意識和能力。

  2、經(jīng)歷過程,授之以漁

  猜想3的倍數(shù)特征是基礎(chǔ),在學(xué)生得出猜想后,我便引導(dǎo)學(xué)生找出百數(shù)表中3的倍數(shù)去驗(yàn)證,并在驗(yàn)證中推翻了剛才的猜想。驗(yàn)證也是有技巧的,30以內(nèi)即可發(fā)現(xiàn)3的倍數(shù)中,個(gè)位上可能是10個(gè)數(shù)字中的任何一個(gè),之前的判斷已經(jīng)站不住腳。之后繼續(xù)探究,在100以內(nèi),基本可以發(fā)現(xiàn)規(guī)律,但為了嚴(yán)謹(jǐn),必須跳出百數(shù)表,在100以上的數(shù)中去驗(yàn)證這個(gè)規(guī)律。最后,引導(dǎo)學(xué)生理解這個(gè)結(jié)論背后的原理,為什么它的規(guī)律和之前的規(guī)律不一樣?這樣一來,學(xué)生不僅學(xué)會(huì)本節(jié)課知識,更掌握了科學(xué)的探究方法。

  3、追求本真,知其所以然

  本節(jié)課的目標(biāo)定位上,我考慮到學(xué)生的已有認(rèn)知基礎(chǔ),我決定引導(dǎo)學(xué)生探索3的倍數(shù)的特征背后的道理。這一嘗試建立在我對學(xué)生學(xué)情把握的基礎(chǔ)上,因?yàn)?的倍數(shù)的特征的結(jié)論一但得出,運(yùn)用起來沒有難度,后面的練習(xí)往往成了“休閑時(shí)間”,而進(jìn)一步提升探索難度,無疑是開發(fā)思維的良好契機(jī)。我運(yùn)用數(shù)形結(jié)合的方法逐步深入,最后還是把話語權(quán)留給學(xué)生,這樣就給予不同學(xué)生各自適應(yīng)的個(gè)性化學(xué)習(xí)方略,真正做到了讓每位同學(xué)在數(shù)學(xué)上都得到發(fā)展。

  《3的倍數(shù)的特征》數(shù)學(xué)教學(xué)反思 篇10

  《3的倍數(shù)的特征》是五年級下冊數(shù)學(xué)第二單元“因數(shù)與倍數(shù)”中的一個(gè)知識點(diǎn),是在學(xué)生已經(jīng)認(rèn)識倍數(shù)和因數(shù)、2和5倍數(shù)的特征的基礎(chǔ)上進(jìn)行教學(xué)的。由于2、5的倍數(shù)的特征從數(shù)的表面的特點(diǎn)就可以很容易看出——根據(jù)個(gè)位數(shù)的特點(diǎn)就可以判斷出來。但是3的倍數(shù)的特征卻不能只從個(gè)位上的數(shù)來判斷,必須把其他各位上的數(shù)相加,看所得的和是否為3的倍數(shù)來判斷,學(xué)生理解起來有一定的困難。

  因而在《3的倍數(shù)的特征》的'開始,我先復(fù)習(xí)了2、5的倍數(shù)的特征,然后學(xué)生猜一猜什么樣的數(shù)是3的倍數(shù),學(xué)生自然而然地會(huì)將“2.5的倍數(shù)的特征”遷移到“3的倍數(shù)特征的問題中,得出:個(gè)位上是3、6、9的數(shù)是3的倍數(shù),后被學(xué)生補(bǔ)充到“個(gè)位上是0—9的任何一個(gè)數(shù)字都有可能是3的倍數(shù),”其特征不明顯,也就是說3的倍數(shù)和一個(gè)數(shù)的個(gè)位數(shù)沒有關(guān)系,因此要從另外的角度來觀察和思考。在問題情境中讓學(xué)生產(chǎn)生認(rèn)知沖突產(chǎn)生疑問,激發(fā)強(qiáng)烈的探究欲望。接著提供給每位學(xué)生一張百數(shù)表,讓他們?nèi)Τ鏊?的倍數(shù),拋出問題:把3的倍數(shù)的各位上的數(shù)相加,看看你有什么發(fā)現(xiàn),引導(dǎo)學(xué)生換角度思考3的倍數(shù)特征。接下來,經(jīng)過進(jìn)一步提示,引導(dǎo)學(xué)生觀察各位上數(shù)的和,發(fā)現(xiàn)各位上的和是3的倍數(shù)。于是,形成新的猜想:一個(gè)數(shù)如果是3的倍數(shù),那么它各位上數(shù)的和也是3的倍數(shù)。

  為了驗(yàn)證這一猜想,我補(bǔ)充了一些其他的數(shù),如49×3=147,166×3=498等,使學(xué)生進(jìn)一步確認(rèn)這一結(jié)論的正確性。還可以任意寫一個(gè)數(shù),利用這一結(jié)論來驗(yàn)證,如3697,3+6+9+7=25,25不是3的倍數(shù),而3697÷3也不能得到整數(shù)商,因此,它不是3的倍數(shù)。通過這樣的方式也使學(xué)生認(rèn)識到:找出某個(gè)規(guī)律后,還要找出一些正面的、反面的例子進(jìn)行檢驗(yàn),看是不是普遍適用。

  為了使學(xué)生更好地掌握3的倍數(shù)的特征,進(jìn)行課堂練習(xí)時(shí),我還把一些數(shù)各個(gè)數(shù)位上的數(shù)經(jīng)過不同的排列,再讓學(xué)生判斷,以加深對“各位上數(shù)的和是3的倍數(shù)”的理解。如完成“做一做”第1題時(shí),學(xué)生判斷完45是3的倍數(shù)后,教師可以再讓學(xué)生判斷一下54是不是3的倍數(shù)。

  利用2、5、3的倍數(shù)的特征來判斷一個(gè)數(shù)是不是2、5或3的倍數(shù),其方法是比較容易掌握的,但要形成較好的數(shù)感,達(dá)到熟練判斷的程度,也不是一、兩節(jié)課所能解決的,還需要進(jìn)行較多的練習(xí)進(jìn)行鞏固。

  這節(jié)課結(jié)束后,我感到自主學(xué)習(xí)和合作探究是這節(jié)課中最重要的兩種學(xué)習(xí)方式,學(xué)生通過自主選擇研究內(nèi)容,舉例驗(yàn)證等獨(dú)立思考和小組討論,相互質(zhì)疑等合作探究活動(dòng),獲得了數(shù)學(xué)知識。學(xué)生的學(xué)習(xí)能動(dòng)性和潛在能力得到了激發(fā)。在自主探索的過程中,學(xué)生體驗(yàn)到了學(xué)習(xí)成功的愉悅,同時(shí)也促進(jìn)了自身的發(fā)展。但最大的缺憾之處,最后總結(jié)3的倍數(shù)特征時(shí),應(yīng)放手讓孩子們多說,說透,這樣更有助于鍛煉孩子的概括歸納能力。而練習(xí)題方面,也應(yīng)形式面多樣化。

【《3的倍數(shù)的特征》數(shù)學(xué)教學(xué)反思】相關(guān)文章:

倍數(shù)的特征數(shù)學(xué)教學(xué)反思02-22

《3的倍數(shù)的特征》教學(xué)反思02-22

《3的倍數(shù)特征》的教學(xué)反思06-28

3的倍數(shù)特征教學(xué)反思07-05

3的倍數(shù)特征的教學(xué)反思07-07

《3的倍數(shù)特征》教學(xué)反思07-20

3的倍數(shù)特征教學(xué)反思07-12

《3的倍數(shù)的特征》教學(xué)反思02-11

3的倍數(shù)的特征的教學(xué)反思02-18