《逆用完全平方和(或差)公式進(jìn)行因式分解》教學(xué)反思
公式法進(jìn)行因式分解,除了逆用平方差公式之外,還有兩個(gè)相對(duì)來(lái)說(shuō)較難的公式逆用即完全平方和(或差)公式:(a+b)2=a2+2ab+b2。
逆用完全平方公式進(jìn)行因式分解關(guān)鍵同樣是搞清完全平方公式的結(jié)構(gòu)特點(diǎn):等號(hào)左邊是一個(gè)二項(xiàng)式的平方,等號(hào)右邊是一個(gè)二次三項(xiàng)式,其中有兩項(xiàng)是公式左邊二項(xiàng)式中每一項(xiàng)的平方,另一項(xiàng)是左邊二項(xiàng)式中那兩項(xiàng)乘積的2倍;虻忍(hào)右邊記作:首平方,尾平方,2倍之積中間放。
有了前邊學(xué)習(xí)完全平方公式為基礎(chǔ),逆用完全平方公式進(jìn)行因式分解只需要“顛倒使用”即可:等號(hào)右邊作為“條件”,左邊作為“結(jié)果”,但對(duì)學(xué)生來(lái)說(shuō),還是相當(dāng)困難的。
逆用完全平方公式進(jìn)行因式分解的步驟可分三步:
1、寫(xiě)成“首平方,尾平方,2倍之積中間放”的形式
2、按公式寫(xiě)出“兩項(xiàng)和的平方”的形式,即因式分解
3、兩項(xiàng)和中能合并同類(lèi)項(xiàng)的合并。
例題及練習(xí)的'呈現(xiàn)次序盡量本著先易后難、先單一后綜合的螺旋上升原則。
1、a、b代表單獨(dú)單項(xiàng)式,如:(1)m2-6m+9(2)4a2-4ab+b2
2、a、b代表多項(xiàng)式,如:(1)(a+2b)2-8a(a+2b)+16a2
。2)4(x+y)2+25-20(x+y)
在此要有“整體思想”的意識(shí),注意:相同部分作為一個(gè)整體然后再套用公式。
3、先提取公因式,再用完全平方和(或差)公式如:
。1)ay2-2a2y+a3
。2)16xy2-9x2y-y2
4、先轉(zhuǎn)化一步,再用完全平方和(或差)公式,如:
。1)-m2+2mn-n2(2)3a2+6a+27
盡管課前進(jìn)行了充分的準(zhǔn)備工作,但是學(xué)生作業(yè)中仍暴露出許多問(wèn)題,如部分學(xué)生直接感到無(wú)從下手。
【《逆用完全平方和(或差)公式進(jìn)行因式分解》教學(xué)反思】相關(guān)文章:
《完全平方和差公式》教學(xué)反思05-13
《完全平方和差公式》教學(xué)反思06-26
《完全平方和差公式》優(yōu)秀的教學(xué)反思05-14
《逆用平方差公式進(jìn)行因式分解》教學(xué)反思11-21
完全平方公式教學(xué)反思07-04
《完全平方公式》教學(xué)反思12-13
《完全平方公式》教學(xué)反思09-02