男人天堂日韩,中文字幕18页,天天伊人网,成人性生交大片免费视频

《3的倍數(shù)的特征》的教學(xué)反思

時(shí)間:2023-02-23 16:50:19 小花 教學(xué)反思 我要投稿

《3的倍數(shù)的特征》的教學(xué)反思(精選21篇)

  在辦理事務(wù)和工作生活中,教學(xué)是重要的任務(wù)之一,反思過(guò)去,是為了以后。反思要怎么寫呢?下面是小編幫大家整理的《3的倍數(shù)的特征》的教學(xué)反思,歡迎大家分享。

《3的倍數(shù)的特征》的教學(xué)反思(精選21篇)

  《3的倍數(shù)的特征》的教學(xué)反思 篇1

  《3的倍數(shù)的特征》是學(xué)生在學(xué)習(xí)過(guò)2.5倍數(shù)特征之后的又一內(nèi)容,因?yàn)?.5的倍數(shù)的特征僅僅體現(xiàn)在個(gè)位上的數(shù),比較明顯,容易理解。而3的倍數(shù)的特征,不能只從個(gè)位上的數(shù)來(lái)判斷,必須把其他各位上的數(shù)相加,看所得的和是否為3的倍數(shù)來(lái)判斷,學(xué)生理解起來(lái)有一定的困難。

  我決定在這節(jié)課中突出學(xué)生的自主探索,使學(xué)生猜想——觀察——再觀察——?jiǎng)邮衷囼?yàn)的過(guò)程中,概括歸納出了3的倍數(shù)特征。

  我從學(xué)生的已有認(rèn)知出發(fā),引導(dǎo)學(xué)生先進(jìn)行合理的猜想,進(jìn)而引發(fā)學(xué)生從不同的角度驗(yàn)證自己的猜想,通過(guò)驗(yàn)證,學(xué)生自我否定了自己的猜想。此時(shí)學(xué)生處于“不憤不啟”的最佳的學(xué)習(xí)狀態(tài),他們迫切想知道3的倍數(shù)的特征究竟是什么?這樣來(lái)調(diào)動(dòng)學(xué)生學(xué)習(xí)的欲望,增強(qiáng)學(xué)生主動(dòng)探究意識(shí),

  有利于后面的探究學(xué)習(xí)。他們還認(rèn)為在我們實(shí)際生活中,當(dāng)你解決一個(gè)新問(wèn)題時(shí),一般沒(méi)有人告訴你解決這個(gè)問(wèn)題會(huì)碰到什么困難。你只有碰到問(wèn)題后,在解決問(wèn)題的過(guò)程中方才清楚還需要哪些知識(shí),然后,你要在原來(lái)的知識(shí)庫(kù)中去提取并靈活地應(yīng)用原有的知識(shí)。

  新課堂呼喚“自主、合作、探究”,而真探究必然伴隨大量差錯(cuò)的生成,學(xué)生總會(huì)出現(xiàn)各種各樣的錯(cuò)誤,我們的課堂教學(xué)不應(yīng)該有意識(shí)地去避免學(xué)生犯錯(cuò)誤。

  因?yàn)檎n堂是學(xué)生出錯(cuò)的地方,出錯(cuò)是學(xué)生的權(quán)利,學(xué)生的.錯(cuò)誤是勞動(dòng)的成果,關(guān)鍵是要看我們教師如何看待學(xué)生的錯(cuò)誤,有個(gè)教育專家說(shuō)得好:“課堂上的錯(cuò)誤是教學(xué)的巨大財(cái)富”。因此,我們教師在課堂中要有沉著冷靜的心理、海納百川的境界和從容應(yīng)變的機(jī)智,給學(xué)生一個(gè)出錯(cuò)的機(jī)會(huì)和權(quán)利。

  《3的倍數(shù)的特征》的教學(xué)反思 篇2

  《3的倍數(shù)特征》進(jìn)行了兩次教學(xué)授課,第一次是新授,第二次是錄課重復(fù)授課。下面就本節(jié)課前后兩次上課進(jìn)行如下反思:第一次上課,采用游戲的方式引入,提前給學(xué)生編號(hào),根據(jù)編號(hào)做游戲。由于每個(gè)學(xué)生的編號(hào)不一樣,所以在做游戲的時(shí)候,每個(gè)學(xué)生集中注意力,傾聽(tīng)游戲要求,激發(fā)了學(xué)生的學(xué)習(xí)興趣。設(shè)置游戲的目的是復(fù)習(xí)2或5倍數(shù)的特征,

  同時(shí),對(duì)3的倍數(shù)特征的學(xué)習(xí)產(chǎn)生求知欲。接下來(lái)是采用提出猜想,舉出個(gè)例否定猜想來(lái)過(guò)渡。讓學(xué)生充分地認(rèn)識(shí)到依據(jù)2或5的倍數(shù)特征的思想已經(jīng)行不通了,從而開(kāi)始新的探索。在探索過(guò)程中借助“百數(shù)表”,讓學(xué)生獨(dú)立地圈出3的倍數(shù),圈完后互相交流3的倍數(shù)的個(gè)位有什么特點(diǎn),

  再次否定了之前的思維定式。由于個(gè)位上沒(méi)有特點(diǎn),所以引導(dǎo)學(xué)生從其他的角度觀察,學(xué)生能想到橫著觀察、豎著觀察,但對(duì)于斜著觀察不能很好的發(fā)現(xiàn),所以本節(jié)課中我關(guān)注到學(xué)生的思考困境,引導(dǎo)學(xué)生從斜著觀察的角度思考探索。當(dāng)學(xué)生斜著觀察時(shí)能發(fā)現(xiàn)個(gè)位上的數(shù)字依次減1,十位上的數(shù)字依次加1,適時(shí)提出“什么是沒(méi)有變的?”問(wèn)題一提出,學(xué)生恍然大悟,發(fā)現(xiàn):個(gè)位和十位上的數(shù)的和沒(méi)有變!順其自然的知道了3的倍數(shù)具有這樣規(guī)律。經(jīng)過(guò)研究每一斜行發(fā)現(xiàn):個(gè)位和十位上的數(shù)的和不變,都是3的倍數(shù)。知道了這個(gè)規(guī)律后,下面開(kāi)始延伸這個(gè)規(guī)律。

  一方面:驗(yàn)證百數(shù)表內(nèi)其他不是3的`倍數(shù)是否具有這個(gè)規(guī)律?另一方面:比100大的數(shù),三位數(shù)、四位數(shù)、五位數(shù)等是否具有這個(gè)規(guī)律?通過(guò)兩方面的驗(yàn)證,再次強(qiáng)調(diào)了這個(gè)規(guī)律是普遍存在的,而這時(shí)3的倍數(shù)特征已經(jīng)歸結(jié)為:一個(gè)數(shù)各位上的數(shù)的和是3的倍數(shù),這個(gè)數(shù)就是3的倍數(shù)。知道了3的倍數(shù)特征之后通過(guò)練習(xí)鞏固加強(qiáng),練習(xí)的設(shè)計(jì)是三道題,這三道題設(shè)計(jì)為不同的層次,第一題是基礎(chǔ)題,第二題是拔高題,第三題是解決問(wèn)題。通過(guò)做題發(fā)現(xiàn)學(xué)生本節(jié)課掌握得不錯(cuò)。

  最后,對(duì)本節(jié)課的知識(shí)進(jìn)行了延伸,通過(guò)出示課本第13頁(yè)“你知道嗎?”,讓學(xué)生明白為什么2或5的倍數(shù)特征只看個(gè)位就可以了,而3的倍數(shù)特征需要看所有數(shù)位。從而達(dá)到學(xué)知識(shí)不但要知其然還要知其所以然。整個(gè)教學(xué)過(guò)程中,學(xué)生能在猜想、操作、驗(yàn)證、交流、歸納的數(shù)學(xué)活動(dòng)中獲得豐富的數(shù)學(xué)經(jīng)驗(yàn),同時(shí)這也有利于學(xué)生創(chuàng)造力的培養(yǎng)。通過(guò)本節(jié)課的教學(xué)以及學(xué)生的掌握情況,

  最終檢測(cè)本節(jié)課的目標(biāo)較好的達(dá)成。但反思這節(jié)課的不足,我覺(jué)得在每個(gè)環(huán)節(jié)上的過(guò)渡應(yīng)該更加的自然。另外,在小組討論的時(shí)候應(yīng)多關(guān)注學(xué)生的交流,對(duì)學(xué)生進(jìn)行適時(shí)地指導(dǎo)。

  基于第一節(jié)課的優(yōu)點(diǎn)和不足,進(jìn)行了第二次的授課即錄課。由于學(xué)生們已經(jīng)學(xué)習(xí)了過(guò)本節(jié)課,所以對(duì)于學(xué)生們來(lái)說(shuō)已經(jīng)是舊知識(shí)。要把舊知識(shí)重新來(lái)講,如果照搬之前的授課方式已經(jīng)遠(yuǎn)遠(yuǎn)不夠了。如何更改,這給我提出來(lái)一個(gè)新的問(wèn)題。為此,這節(jié)課我做了適當(dāng)?shù)恼{(diào)整。本節(jié)課我更多關(guān)注的是數(shù)學(xué)方法和思維方式的培養(yǎng)。其中體現(xiàn)在:

  1、學(xué)生在舉例驗(yàn)證猜想的時(shí)候,讓學(xué)生體會(huì)反例的作用,如果有一個(gè)反例的存在,就說(shuō)明猜想的結(jié)論是錯(cuò)誤的。

  2、在探索3的倍數(shù)特征時(shí),對(duì)于100以內(nèi)3的倍數(shù),應(yīng)如何著手驗(yàn)證,怎么選取數(shù)來(lái)驗(yàn)證,這一環(huán)節(jié)讓學(xué)生體會(huì):在研究規(guī)律的時(shí)候,優(yōu)先選擇數(shù)比較多的這一組,讓學(xué)生明白如果有規(guī)律更容易探索和發(fā)現(xiàn)。

  3、在拓展規(guī)律的時(shí)候,采用舉了大量的數(shù)據(jù),證明了規(guī)律的普遍存在,讓學(xué)生體會(huì)規(guī)律的適用范圍。

  4、在做練習(xí)的時(shí)候,第2小題,關(guān)注學(xué)生思考問(wèn)題是否全面,關(guān)注學(xué)生的思考過(guò)程。

  5、練習(xí)的第3小題,一道解決問(wèn)題的題目,通過(guò)讓學(xué)生讀題、審題、分析題之后,再思考。這一道題學(xué)生展示了多種的做題方法,體現(xiàn)了方法的多樣性,同時(shí)也說(shuō)明學(xué)生的思維是活躍的。本節(jié)課中的不足,練習(xí)中第3題學(xué)生的做法沒(méi)有完全的在黑板上板書(shū),

  另外,本節(jié)課中學(xué)生會(huì)超前說(shuō)出所有問(wèn)題的答案,使得教師略顯失措,我覺(jué)得這是因?yàn)槲覀鋵W(xué)生還不夠。在今后的教學(xué)中,我會(huì)改進(jìn)自己的不足。我將更深入地研究教材、鉆研教法,不斷提高自己的教學(xué)水平,設(shè)計(jì)出學(xué)生更能接受和喜歡的課。

  《3的倍數(shù)的特征》的教學(xué)反思 篇3

  站在跳板上學(xué)習(xí)數(shù)學(xué)——3的倍數(shù)的特征教學(xué)反思

  《3的倍數(shù)的特征》看似一節(jié)知識(shí)簡(jiǎn)單的課,但從教學(xué)實(shí)際來(lái)看,是我想得過(guò)于簡(jiǎn)單了,教師注重的不應(yīng)該僅僅是對(duì)知識(shí)的掌握,更應(yīng)該使學(xué)生站在跳板上學(xué)習(xí)數(shù)學(xué),關(guān)注數(shù)學(xué)思維的發(fā)展 。

  “3的倍數(shù)的特征”屬于數(shù)論的范疇,離學(xué)生的生活較遠(yuǎn),有一定的難度。而2.5的倍數(shù)的特征是學(xué)生學(xué)習(xí)這一課的基礎(chǔ)。所以,在教學(xué)“3的倍數(shù)的特征”時(shí),我首先以學(xué)生原有認(rèn)知為基礎(chǔ),激發(fā)學(xué)生的探究欲望,利用學(xué)生剛學(xué)完“2.5的倍數(shù)的特征”產(chǎn)生的負(fù)遷移,直接拋出問(wèn)題,激活了學(xué)生的原有認(rèn)知,學(xué)生自然而然地會(huì)將“2.5的倍數(shù)的特征”遷移到“3的倍數(shù)的特征”的問(wèn)題中,由此產(chǎn)生認(rèn)知沖突,萌發(fā)疑問(wèn),激發(fā)強(qiáng)烈的探究欲望,因此學(xué)生很快進(jìn)入問(wèn)題情境,猜測(cè)、否定、反思、觀察、討論,使得大部分學(xué)生漸漸進(jìn)入了探究者的角色。但針對(duì)這樣的環(huán)節(jié),也有老師提出反對(duì)意見(jiàn),他們認(rèn)為教師在教學(xué)中不僅要注重知識(shí)的正遷移,還要防止負(fù)遷移的產(chǎn)生,要能正確地預(yù)見(jiàn)學(xué)生學(xué)習(xí)中可能出現(xiàn)的錯(cuò)誤,采取適當(dāng)措施,防患于未然,達(dá)到所謂“防微杜漸”的目的;他們滿足于學(xué)生的一路凱歌,陶醉于學(xué)生的盡善盡美,視學(xué)生的差錯(cuò)為洪水猛獸。但是課堂就是學(xué)生出錯(cuò)的地方,出錯(cuò)是學(xué)生的權(quán)利,學(xué)生的錯(cuò)誤是勞動(dòng)的成果,關(guān)鍵是要看我們教師如何看待學(xué)生的錯(cuò)誤,有個(gè)教育專家說(shuō)得好:“課堂上的錯(cuò)誤是教學(xué)的巨大財(cái)富”。正式因?yàn)槿绱,我們的新課堂也呼喚“自主、合作、探究”,而真探究必然伴隨大量差錯(cuò)的生成,學(xué)生總會(huì)出現(xiàn)各種各樣的錯(cuò)誤,我們的課堂教學(xué)不應(yīng)該有意識(shí)地去避免學(xué)生犯錯(cuò)誤。因此,我們教師在課堂中要有沉著冷靜的心理、海納百川的境界和從容應(yīng)變的機(jī)智,給學(xué)生一個(gè)出錯(cuò)的.機(jī)會(huì)和權(quán)利。

  其次,看一個(gè)數(shù)是不是2.5的倍數(shù),只需看這個(gè)數(shù)的個(gè)位。個(gè)位是0、2、4、6、8的數(shù)就是2的倍數(shù),個(gè)位是0、5的數(shù)就是5的倍數(shù)。而3的倍數(shù)特征則不然,一個(gè)數(shù)是不是3的倍數(shù),不能只看個(gè)位,而要看它所有所有數(shù)位上的數(shù)的和是不是3的倍數(shù)。在教學(xué)中,我和大多數(shù)的教師一樣,更多的是關(guān)注兩者的不同,注重讓學(xué)生對(duì)兩種特征進(jìn)行區(qū)分,因此,教學(xué)中往往刻意對(duì)比強(qiáng)化,凸顯這種差異。但這樣的處理很明顯在數(shù)論的角度上割裂了兩者的共同點(diǎn)。實(shí)際上教師在引導(dǎo)學(xué)生發(fā)現(xiàn)3的倍數(shù)的獨(dú)特特征的同時(shí),也應(yīng)該注意引導(dǎo)學(xué)生歸納2、3、5倍數(shù)特征的共同點(diǎn)。別小看這寥寥數(shù)言的引導(dǎo),實(shí)質(zhì)它蘊(yùn)藏著深意。因?yàn)閺臄?shù)論角度講一個(gè)數(shù)能否被2、3、5乃至被其它數(shù)整除,其研究的理論基礎(chǔ)是一樣的:即如果各個(gè)數(shù)位上的數(shù)被某數(shù)除,所得的余數(shù)的和能夠被某數(shù)整除,那么這個(gè)數(shù)也一定能被某數(shù)整除。當(dāng)然,小學(xué)生由于知識(shí)和思維特點(diǎn)的限制,還不可能從數(shù)論的高度去建構(gòu)與理解。但是,這并不意味著教師不可以作相應(yīng)的滲透。事實(shí)上,正是由于有了教師看似無(wú)心實(shí)則有意的點(diǎn)撥:“其實(shí)3的倍數(shù)特征與2.5的倍數(shù)特征其實(shí)有一點(diǎn)還是很像的,不知同學(xué)們注意到?jīng)]有?”學(xué)生才可能從2、3、5倍數(shù)特征孤立、割裂、甚至是相互對(duì)立的表象中跳離出來(lái),朦朧地感受到這三者之間的聯(lián)系:2、3、5倍數(shù)特征可以看作是一樣的,都是看它是不是誰(shuí)的倍數(shù),只不過(guò)判斷一個(gè)數(shù)是不是2、5的倍數(shù),只需看這個(gè)數(shù)的個(gè)位是不是2.5的倍數(shù),而判斷一個(gè)數(shù)是不是3的倍數(shù)就要看它所有數(shù)位的和是不是3的倍數(shù)。

  《3的倍數(shù)的特征》的教學(xué)反思 篇4

  《3的倍數(shù)的特征》的教學(xué)是五年級(jí)數(shù)學(xué)上冊(cè)第三單元“因數(shù)與倍數(shù)”中一個(gè)重要知識(shí)點(diǎn),是學(xué)生在學(xué)習(xí)了2和5的倍數(shù)特征之后的新內(nèi)容。

  3的倍數(shù)的特征與2和5的倍數(shù)的特征有很大差別,2和5的倍數(shù)的特征僅僅體現(xiàn)在個(gè)位上的數(shù),比較明顯,容易理解。而3的倍數(shù)的特征,不能只從個(gè)位上的數(shù)來(lái)判斷,必須把其他各位上的數(shù)相加,看所得的和是否為3的倍數(shù)來(lái)判斷,學(xué)生理解起來(lái)有一定的困難。我在本節(jié)課設(shè)計(jì)理念上,突出以學(xué)生為主體,教師為主導(dǎo),方法為主線的.原則,從現(xiàn)象到本質(zhì),從質(zhì)疑到解疑。當(dāng)然本節(jié)課也存在很多問(wèn)題,下面我進(jìn)行做幾點(diǎn)反思。

  1、瞄準(zhǔn)目標(biāo),把握關(guān)鍵

  在導(dǎo)入環(huán)節(jié),我通過(guò)復(fù)習(xí)舊知識(shí)進(jìn)行“熱身”。由于學(xué)生已經(jīng)掌握了2和5倍數(shù)的特征,知道只要看一個(gè)數(shù)的個(gè)位就能判斷一個(gè)數(shù)是不是2或5的倍數(shù),因此在學(xué)習(xí)3的倍數(shù)特征時(shí),自然會(huì)把“看個(gè)位”這一方法遷移過(guò)來(lái),盡管是負(fù)遷移。實(shí)際上,鮮明的沖突讓學(xué)生發(fā)現(xiàn)卻不是這樣,于是新舊知識(shí)間的矛盾沖突使學(xué)生產(chǎn)生了困惑,有了新舊知識(shí)的矛盾沖突,就能激發(fā)起學(xué)生探究的愿望,這樣有利于學(xué)生對(duì)新知識(shí)的掌握,有效的將新知識(shí)納入到原有的認(rèn)知結(jié)構(gòu)中去,還有利于培養(yǎng)學(xué)生深入探究的意識(shí)和能力。

  2、經(jīng)歷過(guò)程,授之以漁

  猜想3的倍數(shù)特征是基礎(chǔ),在學(xué)生得出猜想后,我便引導(dǎo)學(xué)生找出百數(shù)表中3的倍數(shù)去驗(yàn)證,并在驗(yàn)證中推翻了剛才的猜想。驗(yàn)證也是有技巧的,30以內(nèi)即可發(fā)現(xiàn)3的倍數(shù)中,個(gè)位上可能是10個(gè)數(shù)字中的任何一個(gè),之前的判斷已經(jīng)站不住腳。之后繼續(xù)探究,在100以內(nèi),基本可以發(fā)現(xiàn)規(guī)律,但為了嚴(yán)謹(jǐn),必須跳出百數(shù)表,在100以上的數(shù)中去驗(yàn)證這個(gè)規(guī)律。最后,引導(dǎo)學(xué)生理解這個(gè)結(jié)論背后的原理,為什么它的規(guī)律和之前的規(guī)律不一樣?這樣一來(lái),學(xué)生不僅學(xué)會(huì)本節(jié)課知識(shí),更掌握了科學(xué)的探究方法。

  3、追求本真,知其所以然

  本節(jié)課的目標(biāo)定位上,我考慮到學(xué)生的已有認(rèn)知基礎(chǔ),我決定引導(dǎo)學(xué)生探索3的倍數(shù)的特征背后的道理。這一嘗試建立在我對(duì)學(xué)生學(xué)情把握的基礎(chǔ)上,因?yàn)?的倍數(shù)的特征的結(jié)論一但得出,運(yùn)用起來(lái)沒(méi)有難度,后面的練習(xí)往往成了“休閑時(shí)間”,而進(jìn)一步提升探索難度,無(wú)疑是開(kāi)發(fā)思維的良好契機(jī)。我運(yùn)用數(shù)形結(jié)合的方法逐步深入,最后還是把話語(yǔ)權(quán)留給學(xué)生,這樣就給予不同學(xué)生各自適應(yīng)的個(gè)性化學(xué)習(xí)方略,真正做到了讓每位同學(xué)在數(shù)學(xué)上都得到發(fā)展。

  《3的倍數(shù)的特征》的教學(xué)反思 篇5

  《3的倍數(shù)的特征》是人教版義務(wù)教材新課程第八冊(cè)的教學(xué)內(nèi)容,對(duì)這節(jié)課的教學(xué)設(shè)計(jì),有從2、5的倍數(shù)的特征中引入的、有讓學(xué)生通過(guò)擺火柴棒研究的,其中不乏好點(diǎn)子好設(shè)計(jì)。但是,大部分老師都要拋出一個(gè)問(wèn)題讓學(xué)生思考:“火柴棒的總根數(shù)跟3的倍數(shù)有什么聯(lián)系?”或者干脆問(wèn)“3的倍數(shù)和數(shù)位上的數(shù)字的和有什么關(guān)系?”總覺(jué)得教師對(duì)學(xué)生的引導(dǎo)過(guò)于直接,對(duì)于五年級(jí)的學(xué)生,經(jīng)過(guò)這樣的提問(wèn),一般都能找到3的倍數(shù)的特征,也能用語(yǔ)言來(lái)表述。我認(rèn)為,我們的關(guān)鍵不但要讓學(xué)生找到3的倍數(shù)的特征,更應(yīng)該引導(dǎo)學(xué)生怎樣去發(fā)現(xiàn)數(shù)位上的數(shù)字的和與3的倍數(shù)之間的關(guān)系。我考慮,能不能在本節(jié)課中運(yùn)用分類,讓學(xué)生自主探究呢?以下是兩個(gè)教學(xué)片段:

  教學(xué)片段一:

  讓學(xué)生用30秒時(shí)間,寫3的倍數(shù),大部分學(xué)生都從小到大寫了25個(gè)左右

  老師板演了10個(gè):105、111、156、273、300、339、504、918、1527、2442……然后提出探究的任務(wù)。

  師:請(qǐng)你給自己寫的3的倍數(shù)分類,看看能不能找到規(guī)律。限時(shí)2分鐘。

 。ńY(jié)束)學(xué)生回答。

  生1:3、6、9;12、15、18、21、24……按位數(shù)分類。(有3人和他一樣分)師:按位數(shù)分類,那么3位數(shù)里哪些是3的倍數(shù)呢:103、208是3的倍數(shù)

  嗎?(學(xué)生答不出)

  生2:3、6、9、12、15、18、21、24、27、30;

  33、36、39、42、45、48、51、54、57、60

  63、66……

 。ㄓ32人和他一樣)

  師:你分類的標(biāo)準(zhǔn)是什么?

  生2:個(gè)位是0——9的都?xì)w為一類,共兩類。

  生3:共十類。個(gè)位是0的一類,個(gè)位是1的一類,個(gè)位是2的一類,到個(gè)位是9的一類。

  師:懂了。3、33、63是一類;6、36、66是一類,共十類。那21253是不是3的倍數(shù),能迅速判斷嗎?(生無(wú)語(yǔ))

  師:看來(lái),分類的方法很多。但是,哪一種分類才能幫助我們發(fā)現(xiàn)3的倍數(shù)的特征,是有價(jià)值的呢?(學(xué)生陷入沉思)

  以上學(xué)生的分類方法,都有不同的標(biāo)準(zhǔn),從單一分類的角度來(lái)看,沒(méi)有問(wèn)題。但是對(duì)于尋求3的倍數(shù)的特征,卻沒(méi)有意義。大部分學(xué)生是從2、5的倍數(shù)的特征中受到啟示,這是學(xué)生的經(jīng)驗(yàn),卻是一種負(fù)遷移。課前,我也想到了,那么是不是就一定要先提醒學(xué)生,不要走彎路呢?我認(rèn)為,負(fù)遷移也是一種寶貴的經(jīng)驗(yàn),經(jīng)歷過(guò)挫折,對(duì)知識(shí)的理解就會(huì)更加深刻,無(wú)需刻意回避。

  教學(xué)片段二:

  師:繼續(xù)觀察這些數(shù),還有其它分類方法嗎?限時(shí)5分鐘。(陸續(xù)有學(xué)生舉手,5分鐘后,共有15位學(xué)生舉手,巡視一遍。)

  師:誰(shuí)來(lái)介紹自己新的分類方法?

  生1:3、21、30;

  6、15、24、33、42;

  9、18、36、45、63;

  12、39、48、57;

  ……

  師:你的分類標(biāo)準(zhǔn)是什么?

  生1:第一類,每個(gè)數(shù)數(shù)位上的數(shù)字的和是3;第二類,每個(gè)數(shù)數(shù)位上的數(shù)字的和是6;第三類,每個(gè)數(shù)數(shù)位上的數(shù)字的和是9;第四類,每個(gè)數(shù)數(shù)位上的數(shù)字的和是12;以此類推。

  師:誰(shuí)來(lái)幫他“以此類推”?

  生2:每個(gè)數(shù)數(shù)位上的數(shù)字的和是15,也是3的倍數(shù);每個(gè)數(shù)數(shù)位上的數(shù)字的和是18,也是3的倍數(shù)。

  生3:每個(gè)數(shù)數(shù)位上的數(shù)字的和是21,也是3的倍數(shù);每個(gè)數(shù)數(shù)位上的數(shù)字的和是24,也是3的倍數(shù)。

  師:你能用一句話來(lái)表達(dá)嗎?

  生4:每個(gè)數(shù)位上的數(shù)字的和是3、6、9、12、15、18等,這個(gè)數(shù)就是3的倍數(shù)。

  生5:每個(gè)數(shù)位上的數(shù)字的和是3的倍數(shù),這個(gè)數(shù)就是3的.倍數(shù)。

  師:很厲害。但是,我們需要驗(yàn)證。判斷老師剛才寫的3的倍數(shù)(前5個(gè))105、111、156、273、300。

  生4:1加0加5等于6,6是3的倍數(shù),105也是3的倍數(shù)。

  生5:1加1加1等于3,3是3的倍數(shù),111也是3的倍數(shù)。

  ……

 。ㄒ粋(gè)學(xué)生根據(jù)規(guī)律回答,其他學(xué)生用豎式驗(yàn)證。)

  生6:3的倍數(shù)的特征是找到了,但這樣的分類太亂。我一共分3類:

  第一類:每個(gè)數(shù)數(shù)位上的數(shù)字的和是3:3、12、21、30;

  第二類:每個(gè)數(shù)數(shù)位上的數(shù)字的和是6:6、15、24、42、51;

  第三類:每個(gè)數(shù)數(shù)位上的數(shù)字的和是9:9、18、27、36、45……,

  這樣的數(shù)是3的倍數(shù)。

  師:那老師的這些數(shù):339、504、918、1527、2442屬于哪一類呢?

  生6:339,3加3加9等于15,然后1加5等于6,分到第二類;918,9加1加8等于18,然后1加8等于9,分到第三類;1527分到第二類;2442分到第一類。所有3的倍數(shù)沒(méi)有超出這三類的。

  師:厲害!(讓其他學(xué)生說(shuō)了兩個(gè)四位數(shù),用他的方法來(lái)判斷是不是3的倍數(shù),大概有三十個(gè)左右的學(xué)生能用這樣的方法分析。老師又舉了一個(gè)反例。)

  師:誰(shuí)能用幾句話來(lái)概括?

  生6:一個(gè)數(shù),每個(gè)數(shù)位上的數(shù)字的和是3、6、9,如果和大于9的,數(shù)位上的數(shù)再加,直到出現(xiàn)一位數(shù),如果是3、6、9,那么這個(gè)數(shù)就是3的倍數(shù)。

  師:真佩服你們!

  第二天,有學(xué)生告訴我他發(fā)現(xiàn)了一種更快判斷3的倍數(shù)的方法,不用把數(shù)位上的數(shù)都加起來(lái),比如538,3是3的倍數(shù)就不要管它了,只要5加8加一下,13不是3的倍數(shù),538就不是3的倍數(shù)。我又說(shuō)了一個(gè)五位數(shù)2076,學(xué)生分析,6是3的倍數(shù),不去管它,2加7是9,9是3的倍數(shù),整個(gè)數(shù)就是3的倍數(shù)。

  學(xué)生的探究能力如此之強(qiáng),是我沒(méi)想到的,學(xué)生快速判斷3的倍數(shù)的方法,實(shí)際上已經(jīng)綜合了很多的知識(shí),盡管不能很明確地用語(yǔ)言來(lái)表達(dá),但是,方法是完全正確的,其實(shí)這又是一個(gè)學(xué)生新的探究的開(kāi)始。

  從本節(jié)課中,我有幾點(diǎn)小小的感悟:

  一、教師不要害怕學(xué)生探究的失敗。學(xué)生第一次探究的失敗,完全是正常的,這是他們運(yùn)用已有的經(jīng)驗(yàn),進(jìn)行探究后的結(jié)果。盡管這種經(jīng)驗(yàn)的遷移是負(fù)作用的,但是從失敗到成功的過(guò)程,記憶是深刻的。負(fù)遷移在教學(xué)中比比皆是,我們不但不能回避,而且要好好利用,要讓學(xué)生積累對(duì)數(shù)學(xué)活動(dòng)的經(jīng)驗(yàn),同時(shí)能將“經(jīng)驗(yàn)材料組織化”。

  二、教師要給學(xué)生創(chuàng)造探究的機(jī)會(huì)。學(xué)生的探究能力其實(shí)是老師意想不到的。最后一位學(xué)生對(duì)3的倍數(shù)的概括(一個(gè)數(shù),每個(gè)數(shù)位上的數(shù)字的和是3、6、9,如果和大于9的,數(shù)位上的數(shù)再加,直到出現(xiàn)一位數(shù),如果是3、6、9,那么這個(gè)數(shù)就是3的倍數(shù)。),盡管實(shí)際的意義不是很大,但是它更具有橫向的關(guān)聯(lián),2的倍數(shù)特征是:個(gè)位是0、2、4、6、8的數(shù)是2的倍數(shù);5的倍數(shù)的特征是個(gè)位是0或5的數(shù)是5的倍數(shù)。或許,這種類比聯(lián)想更容易讓學(xué)生理解新的知識(shí),更何況是學(xué)生自己探究出來(lái)的。其實(shí)很多教學(xué)內(nèi)容我們都可以讓學(xué)生進(jìn)行探究,關(guān)鍵是教師如何給學(xué)生提供一個(gè)探究的載體,一種探究的環(huán)境。

  三、教師對(duì)學(xué)過(guò)的知識(shí)要經(jīng)常地進(jìn)行整合。新教材的特點(diǎn)是有些知識(shí)點(diǎn)分得比較散,所以教師要經(jīng)常把學(xué)生學(xué)過(guò)的知識(shí),在新知中不知不覺(jué)地再應(yīng)用,再鞏固。溫故而知新,在復(fù)習(xí)與鞏固中,學(xué)生會(huì)對(duì)舊知有更高的認(rèn)識(shí),更深的理解,也容易排除學(xué)生對(duì)新知的畏難思想。同時(shí)要經(jīng)常地對(duì)各種知識(shí)進(jìn)行串聯(lián),編織學(xué)生知識(shí)的網(wǎng)絡(luò),使學(xué)生認(rèn)識(shí)到各種知識(shí)之間是相互關(guān)聯(lián)相互作用的,以利于學(xué)生解決一些實(shí)際問(wèn)題或綜合性問(wèn)題。

  四、教師要經(jīng)常在教學(xué)中滲透一些數(shù)學(xué)思想。分類是一種數(shù)學(xué)思想,同時(shí)也是一種數(shù)學(xué)思維的工具。人教版小學(xué)數(shù)學(xué)第一冊(cè)學(xué)生就接觸了分類《整理房間》,第七冊(cè)《角的分類》、第八冊(cè)《三角形的分類》,讓學(xué)生對(duì)分類有了更多的理解。其實(shí)在生活中,無(wú)處不在的分類:超市貨物的擺放、自己書(shū)本的整理、性別之間、班級(jí)之間等等。

  對(duì)于分類的標(biāo)準(zhǔn),分類的原則,學(xué)生在不知不覺(jué)中有了感悟。借助分類,有40%的學(xué)生找到了3的倍數(shù)的特征,學(xué)生完全是在觀察、嘗試、驗(yàn)證的基礎(chǔ)上探究的,是自主的行為研究。在小學(xué)數(shù)學(xué)中,滲透了很多數(shù)學(xué)思想,如集合、對(duì)應(yīng)、假設(shè)、比較、類比、轉(zhuǎn)化、分類、統(tǒng)計(jì)思想等,在教學(xué)中合理地運(yùn)用這些數(shù)學(xué)思想,對(duì)學(xué)生學(xué)習(xí)數(shù)學(xué)的影響是深遠(yuǎn)的,也會(huì)讓我們的數(shù)學(xué)探究活動(dòng)更有意義,更有價(jià)值。

  《3的倍數(shù)的特征》的教學(xué)反思 篇6

  本節(jié)課探究3的倍數(shù)的特征之前,我還是先讓學(xué)生寫出50以內(nèi)3的倍數(shù),然后讓學(xué)生觀察這些數(shù)有何特征,大部分同學(xué)找不著規(guī)律,個(gè)別同學(xué)可能是受上節(jié)課的影響,說(shuō)出了:個(gè)位上是0、1、2、3、4、5、6、7、8、9的.數(shù)就是3的倍數(shù),但馬上就被其他同學(xué)推翻了。

  然后我就出示計(jì)數(shù)器,依次撥出3的倍數(shù),讓學(xué)生觀察一共用了幾顆珠子,讓學(xué)生體會(huì)到有幾顆珠子就是各個(gè)數(shù)位上數(shù)的和,發(fā)現(xiàn)珠子的顆數(shù)正好是3的倍數(shù),

  也就是各個(gè)數(shù)位上數(shù)的和是3的倍數(shù),那么這個(gè)數(shù)就是3的倍數(shù)。說(shuō)實(shí)話,學(xué)生對(duì)于這一規(guī)律,不是很容易接受,在后來(lái)的練習(xí)中,才慢慢體會(huì)到。

  “想想做做”的五道題設(shè)計(jì)得比較好,體現(xiàn)了分層,特別是最后一道,學(xué)生通過(guò)交流討論后,得出了先選數(shù)后組數(shù)的思路,練習(xí)的效果比較好。

  《3的倍數(shù)的特征》的教學(xué)反思 篇7

  今天我教學(xué)了3的倍數(shù)的特征,我首先復(fù)習(xí)2、5的倍數(shù)的特征,然后我出示了幾個(gè)不同的四位數(shù),問(wèn)生:誰(shuí)能很快判斷出哪些是3的倍數(shù)?想知道有什么竅門嗎?這們引入課題很順當(dāng),學(xué)生也很有興趣。下面,我先讓學(xué)生寫出50以內(nèi)3的倍數(shù),再觀察:3的倍數(shù)有什么特點(diǎn)?學(xué)生一時(shí)很難發(fā)現(xiàn),仍從個(gè)位上的數(shù)去觀察,但馬上被其他同學(xué)否定,當(dāng)時(shí)我心里有點(diǎn)擔(dān)心怎么看不來(lái)呢?

  我啟發(fā)學(xué)生再看看個(gè)位和十位上的數(shù),通過(guò)交流后,在部分學(xué)生馬上發(fā)現(xiàn)把每個(gè)數(shù)的數(shù)字加起來(lái)的和除以3都是正好除的,我讓學(xué)生用這個(gè)發(fā)現(xiàn)對(duì)書(shū)上第76頁(yè)的表格100以內(nèi)的數(shù)進(jìn)行驗(yàn)證一下,學(xué)生驗(yàn)證后我又讓學(xué)生從100以外的數(shù)來(lái)驗(yàn)證。從而得出了3的倍數(shù)的特征。

  再通過(guò)用1、2、6可以寫成哪些三位數(shù)?這些三位數(shù)是3的'倍數(shù)嗎?由此有什么發(fā)現(xiàn)?讓學(xué)生進(jìn)一步明白3的倍數(shù)跟數(shù)字的位置沒(méi)有關(guān)系,只跟各位上數(shù)的和有關(guān)系。

  這樣學(xué)生在完成想想做做第5題時(shí)學(xué)生思考時(shí)就不會(huì)漏寫了。最后,通過(guò)后面的練習(xí),我覺(jué)得在教學(xué)某些知識(shí)時(shí),最好老師不要輕易下結(jié)論,只有讓他們自己在反復(fù)實(shí)踐中自己得出結(jié)論,才能牢固地掌握知識(shí)。

  《3的倍數(shù)的特征》的教學(xué)反思 篇8

  《3的倍數(shù)的特征》是學(xué)生在學(xué)習(xí)過(guò)2.5倍數(shù)特征之后的又一內(nèi)容,因?yàn)?.5的倍數(shù)的特征僅僅體現(xiàn)在個(gè)位上的數(shù),比較明顯,容易理解。而3的倍數(shù)的特征,不能只從個(gè)位上的數(shù)來(lái)判斷,

  必須把其他各位上的數(shù)相加,看所得的和是否為3的倍數(shù)來(lái)判斷,學(xué)生理解起來(lái)有一定的困難。我決定在這節(jié)課中突出學(xué)生的自主探索,使學(xué)生猜想——觀察——再觀察——?jiǎng)邮衷囼?yàn)的過(guò)程中,概括歸納出了3的倍數(shù)特征。

  1、找準(zhǔn)知識(shí)沖突激發(fā)探索愿望。

  找準(zhǔn)備知識(shí)中沖紛激發(fā)探索,在第一環(huán)節(jié)中我先讓學(xué)生復(fù)習(xí)2.5的倍數(shù)特征并對(duì)一些數(shù)據(jù)做出了判斷而后我們“誰(shuí)來(lái)猜測(cè)一下3的倍數(shù)特征”激發(fā)學(xué)生探究的愿望。由于學(xué)生剛剛復(fù)習(xí)了2.5倍數(shù)的特征,知道只要看一個(gè)數(shù)的個(gè)位,因此在學(xué)習(xí)3的倍數(shù)特征時(shí),

  自然會(huì)把“看個(gè)位”這一方法遷移過(guò)來(lái)。但實(shí)際上,卻不是這樣,于是新舊知識(shí)間的矛盾沖突使學(xué)生產(chǎn)生了困惑,有了新舊知識(shí)的矛盾沖突,就能激發(fā)起學(xué)生探究的愿望,這樣不反有利于學(xué)生對(duì)新知識(shí)的掌握,有效的將新知識(shí)納入到原有的.認(rèn)知結(jié)構(gòu)中去,還有利于培養(yǎng)學(xué)生深入探究的意識(shí)和能力。

  2、激發(fā)學(xué)習(xí)中的困惑,讓探究走向深入。

  找準(zhǔn)知識(shí)之間的沖突并巧妙激發(fā)出來(lái),這是一節(jié)課的出彩之處,而我從孩子們的學(xué)號(hào)為入重點(diǎn),讓孩子們判斷自己的學(xué)號(hào)是否是3的倍數(shù),并再次探究3的倍數(shù)特征,

  并且發(fā)現(xiàn)3的倍數(shù)和數(shù)字排列順序的有關(guān)系。但和這個(gè)數(shù)的個(gè)位上的數(shù)字有關(guān)。使之所探究的問(wèn)題是漸漸完整而清晰,而后我又組織孩子們用擺小棒的方法來(lái)探究和驗(yàn)證,這種層層遞進(jìn)環(huán)環(huán)相扣的方法,促使探究活動(dòng)走向深入,讓學(xué)生獲得更大的發(fā)展。

  3、課后反思使之完美。

  這節(jié)課結(jié)束后,我感覺(jué)最大的缺憾之處,最后點(diǎn)選了的倍數(shù)特征時(shí),應(yīng)放手讓孩子們多說(shuō),說(shuō)透,這樣更有助于鍛煉孩子的概括歸納能力。而老練習(xí)題方面,也應(yīng)形式面多樣化,

  如用卡片練習(xí)判斷,或通過(guò)打手勢(shì)的方法或先聽(tīng)老師——這樣效率更高,課堂氛圍好,課堂不是同步,學(xué)生的發(fā)展始終是教學(xué)的落腳點(diǎn)。我們的教學(xué)應(yīng)著眼于學(xué)生對(duì)解決問(wèn)題方法的感悟,這樣才可獲得可持續(xù)發(fā)展的動(dòng)力。

  《3的倍數(shù)的特征》的教學(xué)反思 篇9

  《3的倍數(shù)的特征》看似一節(jié)知識(shí)簡(jiǎn)單的課,但從教學(xué)實(shí)際來(lái)看,是我想得過(guò)于簡(jiǎn)單了,教師注重的不應(yīng)該僅僅是對(duì)知識(shí)的掌握,更應(yīng)該使學(xué)生站在跳板上學(xué)習(xí)數(shù)學(xué),關(guān)注數(shù)學(xué)思維的發(fā)展。

  新的課程理念要求我們?cè)诮虒W(xué)中盡可能地為學(xué)生提供一個(gè)自主、合作、探究機(jī)會(huì),其宗旨也就在于培養(yǎng)學(xué)生在實(shí)際的學(xué)習(xí)活動(dòng)中,善于發(fā)現(xiàn)問(wèn)題和提出問(wèn)題的能力,靈活運(yùn)用知識(shí)去解決問(wèn)題的能力,在研究和解決問(wèn)題的過(guò)程中學(xué)會(huì)合作。3的倍數(shù)的特征,有規(guī)律可循,容易上成機(jī)械刻板、枯燥無(wú)味的課,學(xué)生雖能死套規(guī)律判斷,但學(xué)生的能力沒(méi)能培養(yǎng),智力得不到開(kāi)發(fā)。本課的設(shè)計(jì)采用了啟發(fā)與發(fā)現(xiàn)相結(jié)合的教學(xué)方法,激勵(lì)學(xué)生大膽猜想,動(dòng)手實(shí)踐,去發(fā)現(xiàn)規(guī)律,形成技能,升華至應(yīng)用于生活。

  本課主要使學(xué)生在原有認(rèn)知的基礎(chǔ)上產(chǎn)生認(rèn)知沖突,進(jìn)而產(chǎn)生新的探索欲望,突出了對(duì)學(xué)生“提出問(wèn)題—探索問(wèn)題—解決問(wèn)題”的能力培養(yǎng),學(xué)生能在猜想、操作、驗(yàn)證、交流、反思、歸納的數(shù)學(xué)活動(dòng)中,獲得較為豐富的數(shù)學(xué)經(jīng)驗(yàn),也有助于創(chuàng)造性的培養(yǎng)。當(dāng)然,培養(yǎng)學(xué)生的創(chuàng)造個(gè)性,僅僅停留在教學(xué)活動(dòng)的情境上是不夠的,教師首先要具有創(chuàng)造精神,注重設(shè)計(jì)寬松和諧民主的教學(xué)氛圍,尊重學(xué)生,抓住一切可以利用的機(jī)會(huì),激發(fā)學(xué)生的創(chuàng)新欲望,學(xué)生的創(chuàng)造意識(shí)才能得以培養(yǎng),個(gè)性才能充分發(fā)展。本課重點(diǎn)是要理解3的倍數(shù)特征,能夠準(zhǔn)確判斷一個(gè)數(shù)是不是3的倍數(shù)。我采用的是復(fù)習(xí)導(dǎo)入,先和學(xué)生們一起回憶了一下。

  2、5的倍數(shù)特征,然后出示本課的教學(xué)目標(biāo)。新授環(huán)節(jié)先讓學(xué)生猜測(cè)一下3的倍數(shù)會(huì)有哪些特征呢?接著采用數(shù)形結(jié)合的方法,學(xué)生動(dòng)手操作,在1~100的數(shù)字卡里找一找3的倍數(shù),然后用自己喜歡的`符號(hào)圈起來(lái),然后觀察小組討論匯報(bào)。發(fā)現(xiàn)3的倍數(shù)特征不像。

  2、5的倍數(shù)特征一樣,看一個(gè)數(shù)的末尾了,引導(dǎo)學(xué)生是不是要看這個(gè)數(shù)其它的數(shù)位上的數(shù)呢?學(xué)生發(fā)現(xiàn)也不是很難。教材中有提示,學(xué)生回家預(yù)習(xí)后也會(huì)清楚敘述出3的倍數(shù)特征是一個(gè)數(shù)各個(gè)數(shù)位上數(shù)字相加的和。找準(zhǔn)知識(shí)之間的沖突并巧妙激發(fā)出來(lái),這是一節(jié)課的出彩之處,剛開(kāi)始我們先采用課本上百數(shù)表來(lái)研究,結(jié)果在一個(gè)班實(shí)踐后認(rèn)為效果并不是很理想,由于數(shù)太多,讓學(xué)生觀察3的倍數(shù)的這些數(shù)時(shí),并從中找出相同的地方,結(jié)果,很多同學(xué)找了與本節(jié)課毫無(wú)關(guān)系的東西,浪費(fèi)了很多時(shí)間。在評(píng)課的時(shí)候,我們又討論是不是找一些數(shù)代表百數(shù)表,于是我設(shè)計(jì)了一個(gè)表格,讓學(xué)生用除法計(jì)算的方法找到3的倍數(shù)的特征,并觀察這些數(shù),這些數(shù)的個(gè)位分別從0到9都有,讓學(xué)生知道3的倍數(shù)的特征跟數(shù)的個(gè)位沒(méi)有關(guān)系,然后從中又把像45和54,75和57,123和321等特殊的數(shù)單獨(dú)展示出來(lái),讓學(xué)生觀察從中找出規(guī)律。結(jié)果我又重新上了這節(jié)課,效果比上節(jié)課要好。

  這節(jié)課結(jié)束后,我感覺(jué)最大的缺憾之處,最后總結(jié)3的倍數(shù)特征時(shí),應(yīng)放手讓孩子們多說(shuō),說(shuō)透,這樣更有助于鍛煉孩子的概括歸納能力。而練習(xí)題方面,也應(yīng)形式面多樣化,如用卡片練習(xí)判斷,或通過(guò)打手勢(shì)的方法或先聽(tīng)老師——這樣效率更高,課堂氛圍好,課堂不是同步,學(xué)生的發(fā)展始終是教學(xué)的落腳點(diǎn)。我們的教學(xué)應(yīng)著眼于學(xué)生對(duì)解決問(wèn)題方法的感悟,這樣才可獲得最佳的效果。

  《3的倍數(shù)的特征》的教學(xué)反思 篇10

  3的倍數(shù)是在學(xué)習(xí)了2、5的倍數(shù)特征的基礎(chǔ)上進(jìn)行學(xué)習(xí)的,我讓孩子們提前進(jìn)行了預(yù)習(xí),通過(guò)授課發(fā)現(xiàn)孩子們的預(yù)習(xí)沒(méi)有達(dá)到預(yù)想的效果。學(xué)生在匯報(bào)時(shí)能夠圈出3的倍數(shù),而且非常準(zhǔn)確,在匯報(bào)3的倍數(shù)的方法時(shí),他們大多數(shù)是借助結(jié)論得出來(lái)的,沒(méi)有體現(xiàn)出他們研究的過(guò)程。因此,我在課上進(jìn)行了及時(shí)的指導(dǎo),把孩子們需要匯報(bào)的過(guò)程進(jìn)行了詳細(xì)的說(shuō)明。孩子們很快理解了我的意思,立刻進(jìn)行了新的分工。第一位同學(xué)匯報(bào)了他們找到的3的倍數(shù),并介紹的找3的倍數(shù)的方法即,用這個(gè)數(shù)除以3,看商是不是整數(shù)而且沒(méi)有余數(shù)。接下來(lái)匯報(bào)百數(shù)表中前十個(gè)3的倍數(shù),讓大家觀察個(gè)位上的數(shù)字,通過(guò)觀察發(fā)現(xiàn)3的倍數(shù)個(gè)位上是0-9的任意一個(gè)數(shù),不能像2、5的倍數(shù)特征只看個(gè)位的特殊數(shù)就行了。因此只看個(gè)位不能確定是不是3的倍數(shù)。

  由于孩子們有了提前的預(yù)習(xí),孩子們心目中已經(jīng)有了結(jié)論。因此在這個(gè)時(shí)候孩子們思考的深度不夠,沒(méi)有理解教材的意圖。教師把教材的意圖有意識(shí)地進(jìn)行了滲透,讓學(xué)生駐足片刻,把握課堂的結(jié)構(gòu)。

  第三個(gè)環(huán)節(jié),孩子們發(fā)現(xiàn)斜著看每個(gè)數(shù)的各位逐漸加一,十位逐漸減一,因此個(gè)位上的數(shù)字和十位上的數(shù)字之和不變,而且都是3的倍數(shù)。讓孩子試著總結(jié)結(jié)論:兩位數(shù)個(gè)位上和十位上的數(shù)字之和是3的'倍數(shù),那么這個(gè)數(shù)也是3的倍數(shù)。

  第四個(gè)環(huán)節(jié),其實(shí)并不是把3的倍數(shù)特征總結(jié)出來(lái)了就完成任務(wù)了。這個(gè)結(jié)論只是通過(guò)觀察百數(shù)表得出的關(guān)于兩位數(shù)的結(jié)論,兩位數(shù)滿足這個(gè)特征,是不是所有的數(shù)都適用呢?于是讓孩子試著寫一個(gè)三位數(shù)、四位數(shù)而且是3的倍數(shù),然后用這個(gè)結(jié)論進(jìn)行驗(yàn)證,看是否符合。孩子們先試著寫幾個(gè)3的倍數(shù),老師羅列到黑板上,然后分別用用各個(gè)數(shù)位之和相加的方法和除以3是否有余數(shù)的方法進(jìn)行驗(yàn)證。驗(yàn)證的結(jié)果是肯定的,因此得出的結(jié)論適合所有的數(shù)。

  到這里孩子們對(duì)于3的倍數(shù)特征已經(jīng)理解的很透徹了,做起練習(xí)來(lái)也顯得得心應(yīng)手。孩子體驗(yàn)了結(jié)論得出的過(guò)程,每一個(gè)環(huán)節(jié)的設(shè)計(jì)都有他的意圖,在每個(gè)環(huán)節(jié)孩子都有思考,有思維的碰撞,這才是教材的意圖,才是真正的數(shù)學(xué)課。

  《3的倍數(shù)的特征》的教學(xué)反思 篇11

  3的倍數(shù)的特征比較隱蔽,學(xué)生一般想不到從“各位上數(shù)的和”去研究,本課注重引導(dǎo)學(xué)生經(jīng)歷探索的過(guò)程。上課開(kāi)始先讓學(xué)生回顧舊知,2的倍數(shù)和5的倍數(shù)有什么特征,學(xué)生們發(fā)現(xiàn)都只要看一個(gè)數(shù)個(gè)位上的數(shù)就行了,于是很順地設(shè)下了陷阱:同學(xué)們,那猜猜看3的倍數(shù)有什么特征呢?猜測(cè)是一種常用的數(shù)學(xué)思考方法,讓學(xué)生猜測(cè)3的倍數(shù)有什么特征,能較好地調(diào)動(dòng)學(xué)生的學(xué)習(xí)積極性。由于受2的倍數(shù)和5的倍數(shù)的特征的影響,有學(xué)生很自然猜測(cè)到:“個(gè)位上是0,3,6,9的數(shù)一定是3的倍數(shù)”,還有學(xué)生猜測(cè):“各位上的數(shù)字加起來(lái)是3,6,9一定是3的倍數(shù)”,能想到這點(diǎn)應(yīng)該說(shuō)是了不起的。本課到這里都很順利,因?yàn)橥耆谖业念A(yù)設(shè)之中。

  下面進(jìn)入驗(yàn)證環(huán)節(jié),先學(xué)生判斷自己的學(xué)號(hào)是不是3的倍數(shù),再在這些學(xué)號(hào)中挑出個(gè)位上是0,3,6,9的數(shù),通過(guò)交流這些數(shù)不一定都是3的倍數(shù)。學(xué)生初步發(fā)現(xiàn)了3的倍數(shù)的特征與2和5的倍數(shù)不同,不表現(xiàn)在數(shù)的個(gè)位上,那3的倍數(shù)究竟與什么有關(guān)系呢。于是進(jìn)入到動(dòng)手操作環(huán)節(jié),在此基礎(chǔ)上,利用計(jì)數(shù)器轉(zhuǎn)移探索的方向,讓學(xué)生用3顆算珠在計(jì)數(shù)器上任意擺數(shù),得出結(jié)果:擺出的數(shù)都是3的倍數(shù),到這里有幾個(gè)學(xué)生顯得很興奮。隨后用5顆算珠實(shí)驗(yàn),發(fā)現(xiàn)擺出的數(shù)都不是3的倍數(shù),到這里學(xué)生中已經(jīng)有一些議論,他們都有了發(fā)現(xiàn)。為了讓更多的學(xué)生看出其中的神奇,我將自主權(quán)交給了學(xué)生們,自己選擇算珠的顆數(shù)進(jìn)行了第三次實(shí)驗(yàn),然后板書(shū)出每組的實(shí)驗(yàn)結(jié)果,從結(jié)果的數(shù)據(jù)中,學(xué)生們都很興奮地發(fā)現(xiàn)了所用算珠的`顆數(shù)是3顆,6顆,9顆,撥出的數(shù)都是3的倍數(shù),每個(gè)數(shù)所用算珠的顆數(shù),也是每個(gè)數(shù)各位上數(shù)的和。把算珠顆數(shù)抽象成各位上數(shù)的和,是理解3的倍數(shù)特征的關(guān)鍵。

  “試一試”是教學(xué)的第三步,如果一個(gè)數(shù)不是3的倍數(shù),那么這個(gè)數(shù)各位數(shù)的和不是3的倍數(shù)。利用反例進(jìn)一步證實(shí)3的倍數(shù)的特征,體現(xiàn)了數(shù)學(xué)的嚴(yán)謹(jǐn)性和數(shù)學(xué)結(jié)論的確定性?上г谶@一點(diǎn)上,我很倉(cāng)促地指著黑板上算珠顆數(shù)是4顆,5顆,7顆,8顆時(shí),所擺出的數(shù)都不是3的倍數(shù),直接告訴了學(xué)生,而沒(méi)有讓學(xué)生自己舉出反例。隨后設(shè)計(jì)了一系列習(xí)題,使學(xué)生得到鞏固提高。

  整節(jié)課只能說(shuō)順利地走了下來(lái),對(duì)于教者我來(lái)說(shuō)從中發(fā)現(xiàn)了自己教學(xué)上的不足之處,在今后的教學(xué)中,我將不斷學(xué)習(xí),及時(shí)總結(jié),虛心請(qǐng)教,以進(jìn)一步提高自己的教學(xué)業(yè)務(wù)水平。

  《3的倍數(shù)的特征》的教學(xué)反思 篇12

  【初次實(shí)踐】

  課始,讓學(xué)生任意報(bào)數(shù),師生比賽誰(shuí)先判斷出這個(gè)數(shù)是不是3的倍數(shù),正當(dāng)我沉浸在游戲的情境之中,幾個(gè)“不識(shí)時(shí)務(wù)者”打亂了課前的預(yù)想。“老師,我知道其中的秘密,只要把各個(gè)數(shù)位上的數(shù)加起來(lái),看看是不是3的倍數(shù)就行了!”“對(duì)!在數(shù)學(xué)書(shū)上就有這句話!薄钟袔讉(gè)學(xué)生偷偷地打開(kāi)了數(shù)學(xué)書(shū)!霸趺崔k?”謎底都被學(xué)生揭開(kāi)了。面對(duì)這一生成,我沒(méi)有死守教案,而是果斷地調(diào)整了預(yù)設(shè),變“探索”為“驗(yàn)證”,將結(jié)論板書(shū)在黑板上,讓學(xué)生理解這句話的意思,然后組織學(xué)生將百數(shù)表中3的倍數(shù)圈出來(lái),驗(yàn)證是不是具有這樣的特征,最后進(jìn)行一系列鞏固練習(xí)……

  [反思]

  課堂上經(jīng)常會(huì)出現(xiàn)類似上述案例中的“超前行為”,即有些學(xué)生提前把要探究的新知識(shí)和盤托出。我們的習(xí)慣做法就是變“探索”為“驗(yàn)證”,當(dāng)然有些知識(shí)的教學(xué)采用這種方式是有效的,然而本課中“驗(yàn)證”的過(guò)程真能取代“探究發(fā)現(xiàn)”的過(guò)程嗎??jī)H僅舉幾個(gè)例子試一試,驗(yàn)證方法單一,思維含量低,學(xué)生充其量只能算是執(zhí)行操作命令的“計(jì)算器”,又能獲得哪些有益的發(fā)展?如果經(jīng)常進(jìn)行這樣的教學(xué),還容易使學(xué)生形成浮躁淺薄,不求甚解,甚至只要結(jié)論的不良學(xué)習(xí)風(fēng)氣。怎么辦,置之不理嗎?如果這樣,不僅沒(méi)有尊重學(xué)生已有的知識(shí)經(jīng)驗(yàn),而且在已經(jīng)揭開(kāi)“謎底”的情況下,再試圖引導(dǎo)學(xué)生進(jìn)行猜想、實(shí)驗(yàn)、發(fā)現(xiàn),體驗(yàn)遭受挫折后取得成功的那種激動(dòng),也只能是一種奢望。那么又該如何激發(fā)學(xué)生探究的熱情,促使學(xué)生進(jìn)行深入探究呢?

  【再次實(shí)踐】

 。ㄅc第一次教學(xué)情況基本相同,有些學(xué)生能夠正確地判斷一個(gè)數(shù)是不是3的倍數(shù),這時(shí)一些學(xué)生卻依然感到困惑,我設(shè)法將這一困惑激發(fā)出來(lái)。)

  師:同學(xué)們真能干,這么快就知道了3的倍數(shù)的特征,上節(jié)課我們學(xué)習(xí)了2、5的倍數(shù)的特征只和什么有關(guān)?

  生:只和一個(gè)數(shù)的個(gè)位有關(guān)。

  師:與今天學(xué)習(xí)的知識(shí)比較一下,你有什么疑問(wèn)嗎?

  生1:為什么判斷一個(gè)數(shù)是不是3的倍數(shù)只看個(gè)位不行?

  生2:為什么判斷一個(gè)數(shù)是不是2、5的倍數(shù)只看個(gè)位,而判斷是不是3的倍數(shù)要看各位上數(shù)的和?

  ……

  師:同學(xué)們思考問(wèn)題確實(shí)比較深入,提出了非常有研究?jī)r(jià)值的問(wèn)題。那我們先來(lái)研究一下2、5的倍數(shù)為什么只和它的個(gè)位有關(guān)。

 。▽W(xué)生嘗試探索,教師適時(shí)引導(dǎo)學(xué)生從簡(jiǎn)單數(shù)開(kāi)始研究,借助小棒或其他方法進(jìn)行解釋。)

  生1:我在擺小棒時(shí)發(fā)現(xiàn),十位上擺幾就是幾十,它肯定是2、5的倍數(shù),因此只要看個(gè)位擺幾就可以了。

  生2:其實(shí)不用擺小棒也可以,我們組發(fā)現(xiàn)每個(gè)數(shù)都可以拆成一個(gè)整十?dāng)?shù)加個(gè)位數(shù),整十?dāng)?shù)當(dāng)然都是2、5的倍數(shù),所以這個(gè)數(shù)的個(gè)位是幾就決定了它是否是2、5的倍數(shù)。

  師:同學(xué)們想到用“拆數(shù)”的方法來(lái)研究,是個(gè)好辦法。

  生3:是否是3的倍數(shù)只看個(gè)位就不行了。比如13,雖然個(gè)位上是3的倍數(shù),但10卻不是3的倍數(shù);12雖然個(gè)位不是3的倍數(shù),但12 = 10 + 2 = 9 + 1 + 2 = 9 + 3,因此只要看十位上余下的數(shù)和個(gè)位上的數(shù)合起來(lái)是不是3的倍數(shù)就行了。

  生4:我也是這樣想的,我還發(fā)現(xiàn)十位上余下的數(shù)正好和十位上的數(shù)字一樣。

  生5:(面帶困惑)起初,我也是這樣想的,可是在試三十幾、四十幾時(shí)就不行了。余下的數(shù)和十位上的數(shù)不一樣了,比如40除以3只余1,余下的數(shù)就和十位數(shù)字不同。

  生(部分):對(duì)。

  生4:其實(shí)40不要拆成39和1,你拆成36和4,余下的數(shù)不就和十位數(shù)字相同了嗎?

  生6:也就是說(shuō)整十?dāng)?shù)都可以拆成十位上的數(shù)字和一個(gè)3的倍數(shù)的數(shù)。這樣只要看十位上的數(shù)和個(gè)位上的和是不是3的倍數(shù)就可以了。

  師:同學(xué)們確實(shí)很厲害!那三位數(shù)、四位數(shù)是不是也有這樣的規(guī)律呢?

  學(xué)生用“拆數(shù)”的方法繼續(xù)研究三、四位數(shù),發(fā)現(xiàn)和兩位數(shù)一樣,只不過(guò)千位、百位上余下的數(shù)要依次加到下一位上進(jìn)行研究。3的倍數(shù)的特征在學(xué)生頭腦中越來(lái)越清晰。

  師:同學(xué)們通過(guò)自己的探索,你們不僅發(fā)現(xiàn)了3的倍數(shù)的特征,還弄清了為什么有這樣的特征,F(xiàn)在你還有哪些新的探索想法呢?

  生1:我想知道4的倍數(shù)有什么特征?

  生2:我知道,應(yīng)該只要看末兩位就行了,因?yàn)檎、整千?shù)一定都是4的倍數(shù)。

  師:你能把學(xué)到的方法及時(shí)應(yīng)用,非常棒!

  生3:7或9的倍數(shù)有什么特征呢?

  ……

  師:同學(xué)們又提出了一些新的、非常有價(jià)值的問(wèn)題,課后可以繼續(xù)進(jìn)行探索。

  [反思]

  1. 找準(zhǔn)知識(shí)間的沖突,激發(fā)探究的愿望。學(xué)生剛剛學(xué)習(xí)了2、5的倍數(shù)的特征,知道只要看一個(gè)數(shù)的個(gè)位,因此在學(xué)習(xí)3的倍數(shù)的特征時(shí),自然會(huì)把“看個(gè)位”這一方法遷移過(guò)來(lái)。而實(shí)際上,3的倍數(shù)的特征,卻要把各個(gè)位上的數(shù)加起來(lái)研究。于是新舊知識(shí)之間的矛盾沖突使學(xué)生產(chǎn)生了困惑,“為什么2或5的倍數(shù)只看個(gè)位?”“為什么3的倍數(shù)要把各個(gè)位上的'數(shù)加起來(lái)研究?”……學(xué)生急于想了解這些為什么,便會(huì)自覺(jué)地進(jìn)入到自主探究的狀態(tài)之中。知識(shí)不是孤立的,新舊知識(shí)有時(shí)會(huì)存在矛盾沖突,教師如能找準(zhǔn)知識(shí)間的沖突并巧妙激發(fā)出來(lái),就能激起學(xué)生探究的愿望。這樣不僅有利于學(xué)生對(duì)新知的掌握,有效地將新知納入到原有的認(rèn)知結(jié)構(gòu)中去,還有利于培養(yǎng)學(xué)生深入探究的意識(shí)和能力。

  2. 激活學(xué)習(xí)中的困惑,讓探究走向深入。創(chuàng)造和發(fā)現(xiàn)往往是由驚訝和困惑開(kāi)始。對(duì)比兩次教學(xué),第一次教學(xué)由于忽視了學(xué)習(xí)中的困惑,學(xué)生對(duì)于3的倍數(shù)的特征理解并不透徹,探索的體驗(yàn)也并不深刻。第二次教學(xué)留給學(xué)生質(zhì)疑的時(shí)空,巧設(shè)沖突,讓學(xué)生進(jìn)行新舊知識(shí)的對(duì)比,將困惑激發(fā)出來(lái),通過(guò)學(xué)生間相互啟發(fā)、相互質(zhì)疑,對(duì)問(wèn)題的思考漸漸完整而清晰。學(xué)生不但經(jīng)歷由困惑到明了的過(guò)程,而且思維不斷走向深入,獲得了更有價(jià)值的發(fā)現(xiàn),探究能力也得到切實(shí)提高。學(xué)生在學(xué)習(xí)中難免會(huì)產(chǎn)生困惑,這種困惑有時(shí)是學(xué)生希望理解更全面、更深刻的表現(xiàn)。面對(duì)這些有價(jià)值的思考,我們要有敏銳的洞察力,采取恰當(dāng)?shù)姆椒▽⑵浼せ,促使探究活?dòng)走向深入,讓學(xué)生獲得更大的發(fā)展。當(dāng)然,學(xué)生在學(xué)習(xí)中可能產(chǎn)生怎樣的困惑,面對(duì)這一困惑又該如何恰當(dāng)引導(dǎo),尚需要教師課前精心預(yù)設(shè)。

  3. 溝通知識(shí)間的聯(lián)系,讓學(xué)生不斷探究。顯然,2、5的倍數(shù)的特征與3的倍數(shù)的特征是相互聯(lián)系的,其研究方法是相通的(都可以通過(guò)“拆數(shù)”進(jìn)行觀察),特征的本質(zhì)也是相同的。這種研究方法和特征本質(zhì)的及時(shí)溝通,激發(fā)了學(xué)生繼續(xù)研究4、7、9……的倍數(shù)的特征的好奇心,促使學(xué)生不斷探究,將學(xué)習(xí)由課內(nèi)延伸到課外,并在探究過(guò)程中建構(gòu)起對(duì)數(shù)的倍數(shù)特征的整體認(rèn)識(shí),感悟數(shù)學(xué)其實(shí)就是以一馭萬(wàn),以簡(jiǎn)馭繁。課堂不是句號(hào),學(xué)生的發(fā)展始終是教學(xué)的落腳點(diǎn)。我們的教學(xué)絕不能僅僅局限于學(xué)生對(duì)于一堂課知識(shí)的掌握,而應(yīng)著眼于學(xué)生對(duì)于解決問(wèn)題方法的感悟,獲得可持續(xù)發(fā)展的動(dòng)力。

  《3的倍數(shù)的特征》的教學(xué)反思 篇13

  心理學(xué)原理表明,新異的刺激可以引起學(xué)生的注意和興趣。在教學(xué)中,根據(jù)不同的教材和要求,采取不同的教學(xué)方法,能夠引起學(xué)生學(xué)習(xí)的興趣,有利于創(chuàng)設(shè)良好的課堂氣氛。

  教學(xué)3的倍數(shù)特征這一課時(shí),教師組織學(xué)生進(jìn)行下列鞏固練習(xí):

  下列數(shù)中3的倍數(shù)有:()

  1435451003328767488

  學(xué)生利用3的倍數(shù)的特征一下子就回答了上面的問(wèn)題,得到了老師的肯定。這時(shí)我接著說(shuō):“我們來(lái)一場(chǎng)老師、學(xué)生打擂臺(tái)怎么樣?看誰(shuí)說(shuō)的3的倍數(shù)的數(shù)最多,我們看誰(shuí)能考倒老師。”這時(shí)同學(xué)們興趣盎然,紛紛出題來(lái)考老師。

  生:42

  師:111

  生:78

  師:57

  生:81

  師:2037

  生:6891

  …………

  這時(shí)師故意出錯(cuò):369041

  學(xué)生馬上發(fā)現(xiàn)了這個(gè)數(shù)不是3的倍數(shù),師問(wèn):“你能不能改一改其中的某個(gè)數(shù)字使它成為3的倍數(shù)!

  生:“可以將1改為2。”

  生:“可以將4改為5!

  生:“可以將1改為5!

  生:“可以將1改為8!

  生:“可以將4改為2”

  生:“可以將4改為8”

  學(xué)生回答完后,我及時(shí)提問(wèn):“你們?yōu)槭裁床桓钠渲械?、6、9和0呢?”學(xué)生通過(guò)思考回答:“因?yàn)?、6、3、9每一個(gè)數(shù)都是3的倍數(shù),所以只要改4和1這兩個(gè)數(shù)就行了。”這時(shí)我及時(shí)指出:“判斷一個(gè)數(shù)是不是3的倍數(shù)可以用篩選法來(lái)判斷,在各數(shù)位的數(shù)字中先篩去3的倍數(shù)或和為3的'倍數(shù)的數(shù)字,若余下的數(shù)字之和是3的倍數(shù),原數(shù)就是3的倍數(shù),否則就不是!边@時(shí)我逐漸地出示下列這組數(shù)要求學(xué)生馬上判斷是否3的倍數(shù)。

  56

  561

  5617

  56178

  561784

  5617849

  …………

  這個(gè)鞏固練習(xí),有效地調(diào)動(dòng)了學(xué)生的積極性,不斷激起學(xué)生認(rèn)知的內(nèi)驅(qū)力,使學(xué)生在探索的過(guò)程中,主動(dòng)學(xué)習(xí)、主動(dòng)探索,帶來(lái)了內(nèi)心的滿足感。

  《3的倍數(shù)的特征》的教學(xué)反思 篇14

  2、5、3的倍數(shù)特征是分為兩節(jié)課完成的,上完后,給我最大的感受,學(xué)生對(duì)2、5的倍數(shù)的特征不難理解,對(duì)偶數(shù)和奇數(shù)的概念也容易掌握,2、5的倍數(shù)的特征這節(jié)課,概念比較多,學(xué)生很容易混淆。怎樣才能把抽象的概念轉(zhuǎn)化為形象直觀的知識(shí)讓學(xué)生們接受呢?

  一、互動(dòng)、質(zhì)疑,激發(fā)學(xué)生的探究興趣。

  好的開(kāi)始等于成功了一半。課伊始,我便說(shuō):“老師不用計(jì)算,就能很快判斷一個(gè)數(shù)是不是2或5的倍數(shù),你們相信嗎?”學(xué)生自然不相信,爭(zhēng)先恐后地來(lái)考老師,結(jié)果不得而知。幾輪過(guò)后,看到他們還是不服氣的樣子,我故作神秘說(shuō):“其實(shí),是老師知道一個(gè)秘訣。你們想知道是什么嗎?”由此引出課題。這樣大大的調(diào)動(dòng)了學(xué)生學(xué)習(xí)的積極性,激發(fā)了其探究的欲望。

  二、鼓勵(lì)學(xué)生獨(dú)立思考,經(jīng)歷猜測(cè)驗(yàn)證的過(guò)程。

  數(shù)學(xué)學(xué)習(xí)過(guò)程中充滿了觀察、實(shí)驗(yàn)、推斷等探索性與挑戰(zhàn)性活動(dòng)。由于5的倍數(shù)的特征比較容易發(fā)現(xiàn),我便把它調(diào)到2的倍數(shù)的特征前面來(lái)進(jìn)行教學(xué)。首先讓學(xué)生獨(dú)立寫出100以內(nèi)5的倍數(shù),獨(dú)立觀察,看看你有什么發(fā)現(xiàn)?學(xué)生很容易發(fā)現(xiàn)“個(gè)位上是0或5的數(shù)是5的倍數(shù)。”而這只是猜測(cè),結(jié)論還需要進(jìn)一步的驗(yàn)證。我們不能滿足于學(xué)生能夠得到結(jié)論就夠了,而應(yīng)該抱著科學(xué)嚴(yán)謹(jǐn)?shù)膽B(tài)度,引導(dǎo)學(xué)生認(rèn)識(shí)到這個(gè)結(jié)論僅僅適用于1—100這個(gè)小范圍。是不是在所有不等于0的自然數(shù)中都適用呢?還需要研究。在老師的引導(dǎo)下,學(xué)生開(kāi)始認(rèn)識(shí)到還要繼續(xù)拓展范圍,研究大于100的自然數(shù)中所有5的倍數(shù)是不是也是個(gè)位上的數(shù)字是5或0。在這一過(guò)程中,學(xué)生感受到了科學(xué)嚴(yán)謹(jǐn)?shù)膽B(tài)度,知道了在進(jìn)行一項(xiàng)數(shù)目巨大的研究過(guò)程中,可以從小范圍入手,得到一定的猜想,然后逐漸擴(kuò)范圍大,最后得出科學(xué)的結(jié)論。這樣,當(dāng)下節(jié)課研究3的倍數(shù)的.特征時(shí),學(xué)生就會(huì)大膽猜想,并有方法來(lái)驗(yàn)證自己的猜想了。

  三、小組合作,發(fā)揮團(tuán)體的作用

  動(dòng)手實(shí)踐、合作交流是學(xué)生學(xué)習(xí)數(shù)學(xué)的重要方式。與5的倍數(shù)特征相比較,2的倍數(shù)特征稍顯困難,所以我組織學(xué)生利用小組合作的方式,根據(jù)探究5的倍數(shù)的特征的思路,小組合作探究2的倍數(shù)的特征。經(jīng)過(guò)這樣的合作討論,大多數(shù)小組能夠得到正確或接近正確的答案。突出了學(xué)生的主體地位,讓他們?cè)诔浞值奶剿骰顒?dòng)中充分發(fā)現(xiàn)規(guī)律、舉例驗(yàn)證、總結(jié)歸納。

  《3的倍數(shù)的特征》的教學(xué)反思 篇15

  3的倍數(shù)的特征比較隱蔽,學(xué)生一般想不到從“個(gè)位上的數(shù)字之和”去研究。上課開(kāi)始先讓學(xué)生通過(guò)練習(xí)回顧舊知:2的倍數(shù)與5的倍數(shù)的特征。然后讓學(xué)生猜想:3的倍數(shù)又有什么特征呢?這樣能較好調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性。由于受2的倍數(shù)與5的倍數(shù)特征的影響,有些學(xué)生很自然猜測(cè)到“個(gè)位上是0,3,6,9的數(shù)是3的倍數(shù)”、“各位上的數(shù)字加起來(lái)是3,6,9的數(shù)是3的倍數(shù)”等等,學(xué)生能想到這幾點(diǎn)是非常不錯(cuò)的。

  學(xué)生進(jìn)行猜想后,我并沒(méi)有判斷學(xué)生的猜想是否正確,而是出現(xiàn)了百數(shù)表,讓學(xué)生在百數(shù)表中圈出所有的3的倍數(shù),讓學(xué)生從表中發(fā)現(xiàn)3 的倍數(shù)的特征,把自己發(fā)現(xiàn)的在小組間交流。此時(shí),我還是沒(méi)有判斷學(xué)生的發(fā)現(xiàn)是否正確,而是讓學(xué)生打開(kāi)課本自學(xué),從課本中找3的倍數(shù)的特征,當(dāng)遇到問(wèn)題解決不了時(shí),我們可以向課本求助。然后問(wèn)學(xué)生“各位上的數(shù)字的和是3的倍數(shù)是什么意思?請(qǐng)結(jié)合舉例說(shuō)說(shuō)!苯酉聛(lái)將數(shù)擴(kuò)到百以上,通過(guò)各種方式舉正反例通過(guò)計(jì)算來(lái)驗(yàn)證從而得出3的倍數(shù)的特征。最后比較驗(yàn)證之前的猜想與發(fā)現(xiàn)。當(dāng)我們向課本找到結(jié)論時(shí),我們也要質(zhì)疑,通過(guò)舉例來(lái)驗(yàn)證。鼓勵(lì)學(xué)生對(duì)知識(shí)要敢于質(zhì)疑,敢于通過(guò)各種方式去驗(yàn)證,培養(yǎng)學(xué)生良好的數(shù)學(xué)思維。

  在教學(xué)中,我能有效獲取課堂生成資源,同時(shí)也注重方法的指導(dǎo)。比如:同桌舉例驗(yàn)證時(shí),涉及到了“123456”是否是3的倍數(shù),先給予學(xué)生思考的時(shí)間,讓后問(wèn):還有更加簡(jiǎn)便的方法嗎?老師有效引導(dǎo),讓學(xué)生去發(fā)現(xiàn)“去3法”能給我們的判斷帶來(lái)很大的方便。還有在方框里填數(shù)等。有較好的教學(xué)機(jī)智與課堂駕馭能力,如:在百數(shù)表圈3的.倍數(shù)時(shí),我的課件中有個(gè)數(shù)“99”忘記沒(méi)有圈好,學(xué)生發(fā)現(xiàn)了這問(wèn)題。在這里,我是表?yè)P(yáng)了發(fā)現(xiàn)此問(wèn)題的學(xué)生,老師故意說(shuō):我是特意沒(méi)有圈的,看我們的學(xué)生觀察是否仔細(xì),考慮問(wèn)題是否全面……,把原本的錯(cuò)誤變成良好的教學(xué)資源。練習(xí)的設(shè)計(jì)業(yè)很有層次與梯度,聯(lián)系生活實(shí)際。

  本節(jié)課也有很多不足的地方:百數(shù)表中的數(shù)據(jù)太多,部分學(xué)生的發(fā)現(xiàn)是亂七八糟的;在舉例驗(yàn)證的過(guò)程中,學(xué)生的計(jì)算還不夠,學(xué)生親自從算中去體會(huì)更好;總結(jié)不太及時(shí),從及時(shí)總結(jié)中提煉、提升會(huì)更好。

  《3的倍數(shù)的特征》的教學(xué)反思 篇16

  《3 的倍數(shù)的特征》本節(jié)課的教學(xué)活動(dòng),注重學(xué)生實(shí)踐操作,展開(kāi)探究活動(dòng),組織學(xué)生進(jìn)行交流和探討,注重培養(yǎng)學(xué)生發(fā)現(xiàn)問(wèn)題,解決問(wèn)題的能力,讓學(xué)生經(jīng)歷科學(xué)探索的過(guò)程,感受數(shù)學(xué)的嚴(yán)謹(jǐn)性和數(shù)學(xué)結(jié)論的正確性。我是從教學(xué)環(huán)節(jié)維度進(jìn)行觀課的,本節(jié)課有五個(gè)環(huán)節(jié)包括:一、復(fù)習(xí)舊知,直接導(dǎo)入。二、自主探究,合作驗(yàn)證。三、總結(jié)提升,共同驗(yàn)證。四、運(yùn)用結(jié)論,鞏固訓(xùn)練。五、全課小結(jié),課后延伸。每個(gè)環(huán)節(jié)環(huán)環(huán)相扣,設(shè)計(jì)合理。下面就說(shuō)一下自己的想法。

  一、以舊帶新,引入新課。

  趙老師先復(fù)習(xí)了2、5的倍數(shù)的特征,為這節(jié)課的學(xué)習(xí)打下了基礎(chǔ)。趙老師以學(xué)生原有認(rèn)知為基礎(chǔ),激發(fā)學(xué)生的探究欲望,利用學(xué)生剛學(xué)完“2、5的倍數(shù)的特征”遷移到“3的倍數(shù)的特征”的問(wèn)題中,由此萌發(fā)疑問(wèn),激發(fā)強(qiáng)烈的探究欲望,因此學(xué)生很快進(jìn)入問(wèn)題情境,猜測(cè)、否定、反思、觀察、討論,使得大部分學(xué)生漸漸進(jìn)入了探究者的角色。

  二、親身經(jīng)歷,探索規(guī)律。

  本節(jié)課教師努力嘗試構(gòu)建數(shù)學(xué)生態(tài)課堂,讓學(xué)生繼續(xù)利用小棒擺一擺,進(jìn)而發(fā)現(xiàn)不止是3根、6根小棒能擺出3的倍數(shù),9根也能“只要小棒的根數(shù)是3的倍數(shù),擺出來(lái)的數(shù)就是3的倍數(shù)。”教師將“動(dòng)手?jǐn)[小棒”升級(jí)為“腦中撥計(jì)數(shù)器”,將“直觀性思維”升華為“理性思維”,通過(guò)小組交流、集體驗(yàn)證,學(xué)生的探索發(fā)現(xiàn)離“3的倍數(shù)的特征”只有咫尺之遙。整節(jié)課讓學(xué)生經(jīng)歷“動(dòng)手操作——觀察發(fā)現(xiàn)——舉例驗(yàn)證——?dú)w納總結(jié)”的探究過(guò)程,實(shí)現(xiàn)課程、師生、知識(shí)等多層次的互動(dòng)。

  三、精心選題,鞏固新知。

  習(xí)題的設(shè)計(jì)力爭(zhēng)在突出重點(diǎn),突破難點(diǎn),遵循學(xué)生認(rèn)知規(guī)律的基礎(chǔ)上,體現(xiàn)基礎(chǔ)性、層次性、靈活性、生活性、趣味性。本節(jié)課教師設(shè)計(jì)了3道練習(xí)題。在鞏固練習(xí)部分,第(1)、(2)題是基本題;第(3)題,教師努力拉近數(shù)學(xué)與生活的聯(lián)系。把數(shù)學(xué)和生活有機(jī)聯(lián)系起來(lái),使學(xué)生體會(huì)到數(shù)學(xué)在現(xiàn)實(shí)生活中作用和價(jià)值,初步學(xué)會(huì)用數(shù)學(xué)的`眼光去觀察事物、思考問(wèn)題,樹(shù)立學(xué)好數(shù)學(xué)、用好數(shù)學(xué)的志趣。

  四、回顧梳理,舉一反。

  在學(xué)生學(xué)習(xí)的過(guò)程中注意“學(xué)習(xí)方法”的指導(dǎo),讓學(xué)生感受到掌握方法才能舉一反三,真正做到觸類旁通。最后一個(gè)環(huán)節(jié)設(shè)計(jì)了讓學(xué)生靜靜的回顧這節(jié)課的學(xué)習(xí)歷程“動(dòng)手操作——觀察發(fā)現(xiàn)——舉例驗(yàn)證——?dú)w納總結(jié)”,使其在數(shù)學(xué)思想上做進(jìn)一步的提升。

  《3的倍數(shù)的特征》的教學(xué)反思 篇17

  在執(zhí)教《2、5、3的倍數(shù)的特征》后,我針對(duì)本節(jié)課的教學(xué)情況進(jìn)行反思。

  一、跨年級(jí)學(xué)習(xí)新數(shù)學(xué)知識(shí),知識(shí)銜接不上,不符合學(xué)生的認(rèn)知規(guī)律。

  雖然2、5、3的倍數(shù)的特征看起來(lái)很簡(jiǎn)單,探究的過(guò)程可能沒(méi)有什么困難之處,但要內(nèi)容讓學(xué)生學(xué)懂,首先存在知識(shí)銜接問(wèn)題,整除、倍數(shù)、因數(shù)這些概念學(xué)生都從未接觸過(guò),因此,我在課開(kāi)始安排了整除、倍數(shù)、因數(shù)新概念的介紹,在我看來(lái),這些概念比較抽象,學(xué)生一時(shí)難以掌握。

  二、為了體現(xiàn)“容量大”,教學(xué)延堂。

  備課時(shí)也參考了不少資料,大多數(shù)教學(xué)設(shè)計(jì)都是將這一內(nèi)容分成兩節(jié)課來(lái)學(xué)習(xí),一節(jié)學(xué)《2、5的倍數(shù)的特征》,一節(jié)學(xué)《3的倍數(shù)的特征》,我確定用一節(jié)課教學(xué)《2、5、3的倍數(shù)的特征》,其目的是為了體現(xiàn)容量大,我的設(shè)計(jì)內(nèi)容多,相應(yīng)的`學(xué)生自學(xué)、展示、鞏固練習(xí)的時(shí)間和機(jī)會(huì)就壓縮的比較少了。而3的倍數(shù)的特征與2、5的又完全不同,學(xué)生接受起來(lái)可能會(huì)有一定的難度,最好單獨(dú)作為一課時(shí)學(xué)習(xí)。最后的環(huán)節(jié)達(dá)標(biāo)測(cè)試拖堂了。

  三、學(xué)生合作學(xué)習(xí)的效果較好,但展示未體現(xiàn)立體式。

  高效課堂要充分發(fā)揮學(xué)生的主體作用,要體現(xiàn)學(xué)生會(huì)學(xué),學(xué)會(huì),在本節(jié)課上,學(xué)生合作學(xué)習(xí)的熱情高,通過(guò)展示,發(fā)現(xiàn)學(xué)生學(xué)懂了,總結(jié)出了2、5、3的倍數(shù)的特征,在展示環(huán)節(jié),學(xué)生講的、板書(shū)的相互干擾,于是,我臨時(shí)安排按先后順序進(jìn)行,沒(méi)體現(xiàn)出高效課堂的“立體式”這一特點(diǎn)。

  《3的倍數(shù)的特征》的教學(xué)反思 篇18

  《3的倍數(shù)的特征》的教學(xué)是五下數(shù)學(xué)第二單元“因數(shù)與倍數(shù)”中一個(gè)知識(shí)點(diǎn),是在學(xué)生已認(rèn)識(shí)倍數(shù)和因數(shù)、2和5倍數(shù)的特征的基礎(chǔ)上進(jìn)行教學(xué)的。由于2、5的倍數(shù)的特征從數(shù)的表面的特點(diǎn)就可以很容易看出——根據(jù)個(gè)位數(shù)的特點(diǎn)就可以判斷出來(lái)。但是3的倍數(shù)的特征卻不能只從個(gè)位上的數(shù)來(lái)判斷,必須把其他各位上的數(shù)相加,看所得的和是否為3的倍數(shù)來(lái)判斷,學(xué)生理解起來(lái)有一定的困難。因而在《3的倍數(shù)的特征》的開(kāi)始階段我復(fù)習(xí)了2、5的倍數(shù)的特征之后就讓學(xué)生猜一猜什么樣的數(shù)是3的倍數(shù),學(xué)生自然而然地會(huì)將“2。5的倍數(shù)的特征”遷移到“3的倍數(shù)特征的問(wèn)題中, 得出:個(gè)位上是3、6、9的數(shù)是3的倍數(shù),后被學(xué)生補(bǔ)充到“個(gè)位上是0—9的任何一個(gè)數(shù)字都有可能是3的倍數(shù),”其特征不明顯,也就是說(shuō)3的倍數(shù)和一個(gè)數(shù)的個(gè)位數(shù)沒(méi)有關(guān)系,因此要從另外的角度來(lái)觀察和思考。

  在問(wèn)題情境中讓學(xué)生產(chǎn)生認(rèn)知沖突,萌發(fā)疑問(wèn),激發(fā)強(qiáng)烈的探究欲望。接著提供給每位學(xué)生一張百數(shù)表,讓他們?nèi)Τ鏊?的`倍數(shù),拋出問(wèn)題:把 3 的倍數(shù)的各位上的數(shù)相加,看看你有什么發(fā)現(xiàn),引導(dǎo)學(xué)生換角度思考3的倍數(shù)特征 。學(xué)生在經(jīng)歷了猜測(cè)、分析、判斷、驗(yàn)證、概括、等一系列的數(shù)學(xué)活動(dòng)后感悟和理解了3的倍數(shù)的特征,引導(dǎo)學(xué)生真正發(fā)現(xiàn):3的倍數(shù)各位上數(shù)的和一定是3的倍數(shù);不是3的倍數(shù)各位上數(shù)的和一定不是3的倍數(shù)。從而,使學(xué)生明確3的倍數(shù)的特征,然后進(jìn)行練習(xí)與拓展。這樣的探究學(xué)習(xí)比我們老師直接教給他們答案要扎實(shí)許多,之后的知識(shí)應(yīng)用學(xué)生就相應(yīng)比較靈活和自如,效果較好。

  這節(jié)課結(jié)束后,我感覺(jué)最大的缺憾之處在最后的拓展練習(xí)上,由于自己事先練習(xí)下水沒(méi)有做足,所以誤導(dǎo)了學(xué)生。題目如下:“從3、0、4、5這四個(gè)數(shù)中,選出兩個(gè)數(shù)字組成一個(gè)兩位數(shù),分別滿足以下條件:1、是3的倍數(shù)。2、同時(shí)是2和3的倍數(shù)。3、同時(shí)是3和5的倍數(shù)。4、同時(shí)是2、3和5的倍數(shù)!睂W(xué)生問(wèn)要寫幾個(gè)時(shí),我回答如果數(shù)量很多至少寫3個(gè)。呵呵,其實(shí)此題不需要如此考慮,因?yàn)樗鼈兊臄?shù)量都有限。

  希望以后自己的教學(xué)會(huì)更扎實(shí)起來(lái)。

  《3的倍數(shù)的特征》的教學(xué)反思 篇19

  2、3、5倍數(shù)的特征我設(shè)計(jì)的是一節(jié)課,但上完這節(jié)課上完后,給我最大的感受,學(xué)生對(duì)2、5的倍數(shù)的特征不難理解,對(duì)偶數(shù)和奇數(shù)的概念也容易掌握,但我由于對(duì)教材的把握不夠,時(shí)間用到2、5倍數(shù)上的較多。以至于對(duì)3的倍數(shù)特征探究不到位。

  好的'開(kāi)始等于成功了一半。課伊始,我設(shè)計(jì)了搶“30”的游戲,目的是讓學(xué)生從中找到3的倍數(shù),但我發(fā)現(xiàn)這個(gè)游戲沒(méi)讓學(xué)生部明白要求沒(méi)有能提高學(xué)生的興趣。意義不到。數(shù)學(xué)學(xué)習(xí)過(guò)程中應(yīng)該是觀察、發(fā)現(xiàn)、驗(yàn)證、結(jié)論等探索性與挑戰(zhàn)性活動(dòng)。首先讓學(xué)生獨(dú)圈出寫出100以內(nèi)2、5的倍數(shù),獨(dú)立觀察,看看你有什么發(fā)現(xiàn)?學(xué)生很容易發(fā)現(xiàn)他們的特征,而這只是猜測(cè),結(jié)論還需要進(jìn)一步的驗(yàn)證。但我對(duì)這部分的處理太過(guò)于復(fù)雜零碎。以至于用的時(shí)間過(guò)多。比如說(shuō)2、5倍數(shù)與其他數(shù)位的關(guān)系,著就不是本節(jié)課的重點(diǎn)。

  小組合作,發(fā)揮團(tuán)體的作用,動(dòng)手實(shí)踐、合作交流是學(xué)生學(xué)習(xí)數(shù)學(xué)的重要方式。我覺(jué)得我們班小組小組合作還有很多部足的地方,比如說(shuō)學(xué)生的之一能力傾聽(tīng)能等等還需進(jìn)一步訓(xùn)練。

  《3的倍數(shù)的特征》的教學(xué)反思 篇20

  五年級(jí)下冊(cè)《3的倍數(shù)的特征》教學(xué)反思《3的倍數(shù)的特征》的教學(xué)是五下數(shù)學(xué)第二單元因數(shù)與倍數(shù)中一個(gè)知識(shí)點(diǎn),是在學(xué)生已認(rèn)識(shí)倍數(shù)和因數(shù)、2和5倍數(shù)的特征的基礎(chǔ)上進(jìn)行教學(xué)的。由于2、5的倍數(shù)的特征從數(shù)的表面的特點(diǎn)就可以很容易看出根據(jù)個(gè)位數(shù)的特點(diǎn)就可以判斷出來(lái)。但是3的倍數(shù)的特征卻不能只從個(gè)位上的數(shù)來(lái)判斷,必須把其他各位上的數(shù)相加,看所得的和是否為3的倍數(shù)來(lái)判斷,學(xué)生理解起來(lái)有一定的困難。

  因而在《3的倍數(shù)的特征》的開(kāi)始階段我復(fù)習(xí)了2、5的倍數(shù)的特征之后就讓學(xué)生猜一猜什么樣的數(shù)是3的倍數(shù),學(xué)生自然而然地會(huì)將2.5的倍數(shù)的特征遷移到3的倍數(shù)特征的問(wèn)題中, 得出:個(gè)位上是3、6、9的數(shù)是3的倍數(shù),后被學(xué)生補(bǔ)充到個(gè)位上是0-9的任何一個(gè)數(shù)字都有可能是3的倍數(shù),其特征不明顯,也就是說(shuō)3的倍數(shù)和一個(gè)數(shù)的個(gè)位數(shù)沒(méi)有關(guān)系,因此要從另外的角度來(lái)觀察和思考。

  在問(wèn)題情境中讓學(xué)生產(chǎn)生認(rèn)知沖突,萌發(fā)疑問(wèn),激發(fā)強(qiáng)烈的探究欲望。接著提供給每位學(xué)生一張百數(shù)表,讓他們?nèi)Τ鏊?的倍數(shù),拋出問(wèn)題:把 3 的倍數(shù)的各位上的數(shù)相加,看看你有什么發(fā)現(xiàn),引導(dǎo)學(xué)生換角度思考3的倍數(shù)特征 。學(xué)生在經(jīng)歷了猜測(cè)、分析、判斷、驗(yàn)證、概括、等一系列的數(shù)學(xué)活動(dòng)后感悟和理解了3的倍數(shù)的特征,引導(dǎo)學(xué)生真正發(fā)現(xiàn):3的倍數(shù)各位上數(shù)的和一定是3的倍數(shù);不是3的倍數(shù)各位上數(shù)的和一定不是3的倍數(shù)。從而,使學(xué)生明確3的'倍數(shù)的特征,然后進(jìn)行練習(xí)與拓展。這樣的探究學(xué)習(xí)比我們老師直接教給他們答案要扎實(shí)許多,之后的知識(shí)應(yīng)用學(xué)生就相應(yīng)比較靈活和自如,效果較好。

  這節(jié)課結(jié)束后,我感覺(jué)最大的缺憾之處在最后的拓展練習(xí)上,由于自己事先練習(xí)下水沒(méi)有做足,所以誤導(dǎo)了學(xué)生。題目如下:從3、0、4、5這四個(gè)數(shù)中,選出兩個(gè)數(shù)字組成一個(gè)兩位數(shù),分別滿足以下條件:

  1、是3的倍數(shù)。

  2、同時(shí)是2和3的倍數(shù)。

  3、同時(shí)是3和5的倍數(shù)。

  4、同時(shí)是2、3和5的倍數(shù)。學(xué)生問(wèn)要寫幾個(gè)時(shí),我回答如果數(shù)量很多至少寫3個(gè)。呵呵,其實(shí)此題不需要如此考慮,因?yàn)樗鼈兊臄?shù)量都有限。

  希望以后自己的教學(xué)會(huì)更扎實(shí)起來(lái)。

  《3的倍數(shù)的特征》的教學(xué)反思 篇21

  “能被3整除數(shù)的數(shù)”一課,能體現(xiàn)新的教育理念、教育思想。仔細(xì)分析,有以下幾個(gè)特點(diǎn):

  1、確立了基本技能目標(biāo)和發(fā)展性目標(biāo)并重的教學(xué)目標(biāo)。

  本節(jié)課不僅重視學(xué)生掌握能被3整除數(shù)的特征,并能運(yùn)用特征進(jìn)行正確判斷,同時(shí)十分重視學(xué)生學(xué)習(xí)過(guò)程的體驗(yàn)和方法的滲透,讓學(xué)生通過(guò)“猜測(cè)——驗(yàn)證——提出新的假設(shè)——驗(yàn)證”的探索過(guò)程來(lái)發(fā)現(xiàn)知識(shí),獲得結(jié)論,并感悟方法。

  2、理性處理教材,使教學(xué)內(nèi)容生活化。

  教科書(shū)只是提供了學(xué)生學(xué)習(xí)活動(dòng)的基本線索。教學(xué)中,教師要充分發(fā)揮主觀能動(dòng)性,創(chuàng)造性的使用教科書(shū),本節(jié)課重新設(shè)計(jì)例題,通過(guò)用“0——9”十個(gè)數(shù)字組成能被整除的三位數(shù)讓學(xué)生探索特征,這樣處理使教學(xué)內(nèi)容有較強(qiáng)的靈活性,促進(jìn)了學(xué)生思維的發(fā)展。教學(xué)內(nèi)容生活化不僅能激發(fā)學(xué)生興趣,產(chǎn)生親切感,而且使學(xué)生認(rèn)識(shí)到現(xiàn)實(shí)生活中蘊(yùn)藏著豐富的數(shù)學(xué)問(wèn)題。開(kāi)課時(shí)收集的數(shù)據(jù)一方面激發(fā)了學(xué)生學(xué)習(xí)的興趣,同時(shí)也縮短了教師和學(xué)生的距離,課后“你再長(zhǎng)幾歲,這個(gè)歲數(shù)就能被3整除”這一開(kāi)放題富有情趣,給學(xué)生留下了深刻的印象。

  3、著力改變學(xué)生的學(xué)習(xí)方式。

  學(xué)習(xí)方式的轉(zhuǎn)變是本節(jié)課的主要特色。本節(jié)課始終以自主探索、合作交流為主要的學(xué)習(xí)方式,讓學(xué)生通過(guò)自主選教學(xué)內(nèi)容,舉例驗(yàn)證等獨(dú)立思考和小組討論等合作探究活動(dòng),獲得教學(xué)知識(shí)、感悟方法。如在課的第二階段,設(shè)計(jì)三個(gè)層次的教學(xué)活動(dòng),讓學(xué)生充分探索、討論、交流,使學(xué)生真正成為學(xué)習(xí)的'主人。第一層通過(guò)學(xué)生猜測(cè)、舉例、選數(shù)字組數(shù),使學(xué)生產(chǎn)生兩次認(rèn)知沖突;第二層通過(guò)交換三位數(shù)數(shù)字的位置,仍然沒(méi)能發(fā)現(xiàn)特征,產(chǎn)生第三次認(rèn)知沖突;第三層次通過(guò)計(jì)算各位上的數(shù)的“和、差、積、商”使結(jié)論逐漸顯露。這一過(guò)程不僅培養(yǎng)了學(xué)生探究精神,磨練了意志,同時(shí)也使學(xué)生品嘗了成功的喜悅。

 。、合理定位教師角色,營(yíng)造民主、和諧的學(xué)習(xí)氛圍。

  課堂教學(xué)中只有擺正了師生關(guān)系,才可能使學(xué)生得到發(fā)展。本節(jié)課學(xué)生始終是數(shù)學(xué)學(xué)習(xí)的主人,教師是數(shù)學(xué)學(xué)習(xí)的組織者、引導(dǎo)者和合作者?梢詮囊韵聝煞矫婵闯觯阂皇菑膸熒顒(dòng)的時(shí)間分配上,二是從分層探究、有針對(duì)性的適當(dāng)引導(dǎo)上。這節(jié)課從開(kāi)始到結(jié)束,氣氛始終處在民主、和諧之中,生活化的學(xué)習(xí)材料、平等的師生關(guān)系和開(kāi)放的探究方式。

【《3的倍數(shù)的特征》的教學(xué)反思】相關(guān)文章:

3的倍數(shù)的特征教學(xué)反思06-10

《3的倍數(shù)的特征》教學(xué)反思04-11

3的倍數(shù)特征教學(xué)反思04-07

《3的倍數(shù)特征》教學(xué)反思07-20

《3的倍數(shù)的特征》教學(xué)反思02-11

3的倍數(shù)的特征的教學(xué)反思02-18

3的倍數(shù)的特征教學(xué)反思03-28

《3的倍數(shù)特征》教學(xué)反思04-11

3的倍數(shù)特征反思03-09

3的倍數(shù)的特征教學(xué)反思(精選17篇)08-19