公式教學(xué)反思(精選6篇)
身為一名剛到崗的教師,課堂教學(xué)是我們的工作之一,通過教學(xué)反思可以有效提升自己的課堂經(jīng)驗,那么優(yōu)秀的教學(xué)反思是什么樣的呢?下面是小編精心整理的公式教學(xué)反思(精選6篇),歡迎大家分享。
公式教學(xué)反思1
本課的學(xué)習(xí)目的主要是熟練掌握整式的運算,并且這些知識是以后學(xué)習(xí)分式、根式運算以及函數(shù)等知識的基礎(chǔ),同時也是學(xué)習(xí)物理、化學(xué)等學(xué)科及其他科學(xué)技術(shù)不可或缺的數(shù)學(xué)工具。而本節(jié)是整式乘法中乘法公式的首要內(nèi)容,學(xué)生只有熟練掌握了包括平方差公式在內(nèi)的乘法公式及它的推導(dǎo)過程,才能實現(xiàn)本節(jié)乃至本章作為數(shù)學(xué)工具的重要作用。因此,在教學(xué)安排上,我選擇從學(xué)生熟悉的求多邊形面積入手,遵循從感性認識上升為理性思維的認知規(guī)律,得出抽象的概念,并在多項式乘法的基礎(chǔ)上,再次推導(dǎo)公式,使原本枯燥的數(shù)學(xué)概念具有一定的實際意義和說理性;之后安排了一系列的例題和練習(xí)題,把新知運用到實戰(zhàn)中去,解決簡單的實際問題,這樣既調(diào)動了學(xué)生學(xué)習(xí)的主動性,又鍛煉了思維,整個過程由淺入深,在對所得結(jié)論不斷觀察、討論、分析中,加深對概念的理解,增強學(xué)生應(yīng)用知識解決問題的能力,從而達到較好的授課效果。
數(shù)學(xué)是一門抽象的學(xué)科,但數(shù)學(xué)是來源于實際生活的。因此,數(shù)學(xué)教育的目的是將數(shù)學(xué)運用到實際生活中去,讓學(xué)生深切感受到數(shù)學(xué)是有價值的科學(xué),來源于生活,是其他科學(xué)的基礎(chǔ)。本節(jié)公式中字母的含義對學(xué)生來講很抽象,是本節(jié)的難點,也是學(xué)生運用公式解決實際問題的最大障礙,通過鞏固練習(xí),讓學(xué)生逐步體會,為今后學(xué)習(xí)其他乘法公式做好準備。乘法公式的逆用就是因式分解的重要方法,因此,在本節(jié)補充練習(xí)中,已經(jīng)開始滲透這部分知識,為后面學(xué)習(xí)因式分解做好鋪墊。
但是,我在教本章內(nèi)容時卻始終感到困惑。本以為這一章很簡單,由于教材安排存在一定問題,如將同底數(shù)冪乘法、冪的乘方、積的乘方、單項式乘以單項式、單項式乘以多項式、多項式乘以多項式這么多的內(nèi)容安排在一起,造成學(xué)生沒掌握好、消化好,知識間相互混淆,設(shè)置了障礙。
本章教材編者在此安排不太合理,沒有考慮到學(xué)生的認知規(guī)律,不利于學(xué)生很好掌握,所以,我感覺以后上這章的時候不能按照教材課時安排走。否則還會出現(xiàn)今天的問題。
公式教學(xué)反思2
本節(jié)課的教學(xué)已基本達到了教學(xué)目的。本課的知識要點是經(jīng)歷探索完全平方公式的過程,了解公式的幾何背景,會應(yīng)公式進行簡單的計算。
理解公式的推導(dǎo)過程,了解公式的幾何背景,會應(yīng)用公式進行簡單的計算。并滲透建模、化歸、對稱、數(shù)形結(jié)合、邏輯推理等思想方法。經(jīng)歷探索完全平方公式的過程,培養(yǎng)學(xué)生的發(fā)現(xiàn)能力、求簡意識、應(yīng)用意識、解決問題的能力和創(chuàng)新能力。培養(yǎng)學(xué)生敢于挑戰(zhàn),勇于探索的精神和善于觀察,大膽創(chuàng)新的思想品質(zhì)。作用在于讓其體會公式的發(fā)現(xiàn)和推導(dǎo)過程,理解公式的本質(zhì),并會運用公式進行簡單的計算,理解公式中的字母含義,及公式的應(yīng)用。
針對初一學(xué)生的形象思維大于抽象思維,注意力不能持久等年齡特點,及本節(jié)課實際,采用自主探索、啟發(fā)引導(dǎo)、合作交流展開教學(xué)。引導(dǎo)學(xué)生主動地進行觀察、猜測、驗證和交流,讓不同層次的學(xué)生都能主動參與并都能得到充分的發(fā)展。邊啟發(fā),邊探索,邊歸納,突出以學(xué)生為主體的探索性學(xué)習(xí)的原則。
公式教學(xué)反思3
新課程理念倡導(dǎo)的數(shù)學(xué)課堂教學(xué)設(shè)計必須“以學(xué)生的學(xué)為本”,“以學(xué)生的發(fā)展為本”,即數(shù)學(xué)課堂教學(xué)設(shè)計應(yīng)當(dāng)是人的發(fā)展的“學(xué)程”設(shè)計,而不單純以學(xué)科為中心的“教程”的設(shè)計。
一、教學(xué)目標的反思
本節(jié)課的'教學(xué)設(shè)計意圖:
1、進一步促進學(xué)生數(shù)學(xué)學(xué)習(xí)方式的改善
這是等比數(shù)列的前n項和公式的第一課時,是實踐二期課改中研究型學(xué)習(xí)問題的很好材料,可以落實新課程標準倡導(dǎo)的“提倡積極主動,勇于探索的學(xué)習(xí)方式;強調(diào)本質(zhì),注意適度形式化”的理念,教與學(xué)的重心不只是獲取知識,而是轉(zhuǎn)到學(xué)會思考、學(xué)會學(xué)習(xí)上,教師注意培養(yǎng)學(xué)生以研究的態(tài)度和方式去認真觀察、分析數(shù)學(xué)現(xiàn)象,提出新的問題,發(fā)現(xiàn)事物的內(nèi)在規(guī)律,引導(dǎo)學(xué)生自覺探索,進一步培養(yǎng)學(xué)生的自主學(xué)習(xí)能力。
2、落實二期課改中的三維目標,強調(diào)探究的過程和方法
“知識與技能、過程與方法、情感,態(tài)度與價值”這三維目標是“以學(xué)生的發(fā)展為本”的教育理念在二期課改中的具體體現(xiàn),本節(jié)課是數(shù)學(xué)公式教學(xué)課,所以強調(diào)學(xué)生對認知過程的經(jīng)歷和體驗,重視對實際問題的理解和應(yīng)用推廣,強調(diào)學(xué)生對探究過程和方法的掌握,探究過程包括發(fā)現(xiàn)和提出問題,通過觀察、抽象、概括、類比、歸納等探究方法進行實踐。
在此基礎(chǔ)上,根據(jù)本班學(xué)生是區(qū)重點學(xué)校學(xué)生,學(xué)習(xí)勤懇,平時好提問,敢于交流與表達自己想法,故本節(jié)課制定了如下教學(xué)目標:
(1)通過歷史典故引出等比數(shù)列求和問題,并在問題解決的過程中自主探索等比數(shù)列的前n項和公式的求法。
。2)經(jīng)歷等比數(shù)列的前n項和公式的推導(dǎo)過程,了解推導(dǎo)公式所用的方法,掌握等比數(shù)列的前n項和公式,并能進行簡單應(yīng)用。
二、教材的分析和反思:
本節(jié)課是《等比數(shù)列的前n項和公式》的第一課時,之前學(xué)生已經(jīng)掌握了數(shù)列的基本概念、等差與等比數(shù)列的通項公式及等差數(shù)列的前n項和公式,對于本節(jié)課所需的知識點和探究方法都有了一定的儲備,新教材內(nèi)容是給出了情景問題:印度國王獎賞國際象棋發(fā)明者的故事,通過求棋盤上的麥?倲(shù)這個問題的解決,體會由多到少的錯位相減法的數(shù)學(xué)思想,并將其類比推廣到一般的等比數(shù)列的前n項和的求法,最后通過一些例題幫助學(xué)生鞏固與掌握。
公式教學(xué)反思4
平方差公式的教學(xué)已經(jīng)是好幾次了,舊教材總是定向于代數(shù)方法,新課程理念同幾何意義探究,這也是對教學(xué)者的一次挑戰(zhàn),通過教學(xué),我從中領(lǐng)會到它所蘊含的新的教學(xué)理念,新的教學(xué)方式和方法。
1、在教學(xué)設(shè)計時應(yīng)提供充分探索與交流的空間,使學(xué)生進一步經(jīng)歷觀察,實驗、猜測、推理、交流、反思等活動,我在設(shè)計中讓學(xué)生從計算花圃面積入手,要求學(xué)生找出不同的計算方法,學(xué)生欣然接受了挑戰(zhàn),通過交流,給出了兩種方法,繼而通過觀察發(fā)現(xiàn)了面積的求法與乘法公式之間的吻合,激發(fā)了學(xué)生學(xué)習(xí)興趣的同時也激活了學(xué)生的思維,所以這個探究過程是很有效的。
2、我知道培養(yǎng)學(xué)生數(shù)形結(jié)合思想方法和能力的重要性,通過幾何意義說明平方差方式的探究過程,學(xué)生可以切實感受到兩者之間的聯(lián)系,學(xué)會一些探究的基本方法與思路,并體會到數(shù)學(xué)證明的靈巧間法與和諧美是很有必要的。
3、加強師生之間的活動也是必要的。在活動中,通過我的組織、引導(dǎo)和鼓勵下,學(xué)生不斷地思考和探究,并積極地進行交流,使活動有序進行,我始終以平等、欣賞、尊重的態(tài)度參與到學(xué)生活動中,營造出了一個和諧,寬松的教學(xué)環(huán)境。
公式教學(xué)反思5
有人曾說“課堂教學(xué)總是一門帶著遺憾的藝術(shù)”,作為一名教師,我對此也頗有感慨。面對新的理念,新的結(jié)構(gòu),新的形式,新的體系,在課堂教學(xué)中,教師是否能最大限度地發(fā)揮主導(dǎo)作用,直接影響和制約著學(xué)生主體作用的發(fā)揮。以下我就談?wù)勗诒竟?jié)課中的幾點反思:
一、設(shè)疑導(dǎo)思,探索公式
教師的主導(dǎo)作用首先體現(xiàn)在培養(yǎng)學(xué)生的學(xué)習(xí)興趣方面。因為教師是課堂心理環(huán)境的直接創(chuàng)造者,教師“導(dǎo)入”的情境、語言、方法直接影響學(xué)生的學(xué)習(xí)興趣及其探索知識的欲望。由于我校學(xué)生的基礎(chǔ)都不是很好,所以本課采用學(xué)生剛學(xué)過的“多項式乘法法則”來吸引學(xué)生的注意力,提高學(xué)生的學(xué)習(xí)興趣,從而使其端正學(xué)習(xí)態(tài)度全神貫注地投入到學(xué)習(xí)的整個過程中。
二、激活主題,理解公式
教師的主導(dǎo)作用還應(yīng)體現(xiàn)在積極進行學(xué)法研究,加強學(xué)法指導(dǎo)。本節(jié)課中,先用圖形的面積來對公式作出直觀的理解,再用口訣來概括公式,使學(xué)生對公式的理解更加形象生動;最后通過例題讓學(xué)生按公式對號入座,進一步理解公式中的a和b既可以表示數(shù)也可以表示字母,既可以表示單項式也可以表示多項式。采用由直觀到抽象,由抽象到形象,由形象到具體,層層遞進,由淺入深,深入淺出的辦法,使學(xué)生對完全平方公式有一個充分理解的過程。
三、組織交流,應(yīng)用公式
由于學(xué)生所處的文化環(huán)境、知識基礎(chǔ)和自身的思維方式不同,將導(dǎo)致不同的學(xué)習(xí)結(jié)果,即使是思維反映很靈敏的學(xué)生,在有些時刻也會遇到一些思維障礙。本節(jié)課在學(xué)生練習(xí)過程中,要仔細觀察學(xué)生探索活動的情緒表現(xiàn),從學(xué)生的言語、表情、眼神、手勢和體態(tài)等方面觀察他們的內(nèi)心活動,分析他們的思維狀態(tài)和概念水平,捕捉各種思維現(xiàn)象,隨時調(diào)整教學(xué)過程,讓學(xué)生自己去反思、糾錯,而教師則在關(guān)鍵時刻引導(dǎo)或者作出恰當(dāng)?shù)狞c撥。教師的主導(dǎo)作用還應(yīng)體現(xiàn)在及時發(fā)現(xiàn)學(xué)生思維發(fā)展中出現(xiàn)的錯誤后有針對地指導(dǎo)、引導(dǎo)學(xué)生進行討論和探究。尤其是對(—2a—5)2的應(yīng)用可以看成〔(—2a)+(—5)〕2對應(yīng)(a+b)2,也可以看成〔(—2a)—5〕2對應(yīng)(a—b)2;更可以看成〔—(2a+5)〕2=(2a+5)2;而對于(a+b+c)2的應(yīng)用,可以用多項式乘法法則(a+b+c)(a+b+c),也可以用完全平方公式,看成〔(a+b)+c〕2,也可以看成〔a+(b+c)〕2,不管是什么形式,最后結(jié)果是一樣的。這樣通過變式練習(xí),從而使學(xué)生多角度、全方面地對完全平方公式進行充分認識,完全平方公式中的a和b可以表示單項式也可以表示多項式,完全平方公式可以看成一個公式也可以看成兩個公式,增加學(xué)生對完全平方公式應(yīng)用的靈活性,要讓不同的學(xué)生得到不同的發(fā)展。
以上三點是掌握任何公式必備的條件,但是在掌握以上三點,我們要高瞻遠矚,對課本中的教材必須要看的更深也更廣,所以我就在學(xué)生對乘法公式的基礎(chǔ)知識掌握的還不錯的基礎(chǔ)上,專門提出了今天的內(nèi)容,可以說是帶點專題性質(zhì)也可以說是課本知識的一種延續(xù),讓學(xué)生還要注意乘法公式的逆用,不僅要掌握乘法公式的正向應(yīng)用,還要注意掌握公式的逆向應(yīng)用,乘法公式均可逆用,特別是完全平方公式的逆用就是配方,配方是一種很重要的數(shù)學(xué)思想方法,它的應(yīng)用非常廣泛。還要注意乘法公式的變形,要善于對公式變形的應(yīng)用,在解題中充分體現(xiàn)應(yīng)用公式的思維靈活性和廣泛性。同學(xué)們在運用公式時,不應(yīng)拘泥于公式的形式而要深刻理解、靈活運用。
公式教學(xué)反思6
本節(jié)課采用情景—探究的方式,以猜想、實驗、論證為主要探究方式,得出平方差公式,應(yīng)用逆向思維的方向,演繹出平方差公式,對公式的應(yīng)用首先提醒學(xué)生要注意其特征,其次要做好式子的變形,把問題轉(zhuǎn)化成能夠應(yīng)用公式的方面上來,應(yīng)用公式法因式分解的過程,實際上就是轉(zhuǎn)化和化歸的過程。在解決認識平方差公式的結(jié)構(gòu)時候,重點突出學(xué)生自我思想的形成,能夠充分地不公式用自己的語言來敘述,在整個教學(xué)設(shè)計中,教師只作為了一個點撥者和引路人。然后應(yīng)用有梯度的典型例題加以鞏固,在學(xué)生頭腦中形成一個清晰完整的數(shù)學(xué)模型,使學(xué)生在今后的練習(xí)中游刃有余。
不足之處:
教學(xué)中時間把握還是不足,在設(shè)計的題目中不怎么合理,應(yīng)按題目的難度從易到難。
有些題目的歸納可放手給學(xué)生討論后由學(xué)生說出,而不是教師代替。小組評價做的不夠,沒有足夠的小組的活動,沒有小組的競賽。
教學(xué)語言還太隨意,數(shù)學(xué)的語言應(yīng)該嚴謹。在語調(diào)上應(yīng)該有所變化。
【公式教學(xué)反思(精選6篇)】相關(guān)文章:
誘導(dǎo)公式教學(xué)反思04-26
倍角公式教學(xué)反思04-27
倍角公式教學(xué)反思05-06
《乘法公式》教學(xué)反思12篇04-22
《守株待兔》教學(xué)反思精選03-16
《離騷》教學(xué)反思精選10-30
《平方差公式》優(yōu)質(zhì)教學(xué)設(shè)計03-15
《看花燈》教學(xué)反思【精選】03-25