《3的倍數(shù)特征》教學反思15篇
作為一位剛到崗的教師,課堂教學是重要的任務之一,借助教學反思可以快速提升我們的教學能力,快來參考教學反思是怎么寫的吧!以下是小編為大家整理的《3的倍數(shù)特征》教學反思,僅供參考,歡迎大家閱讀。
《3的倍數(shù)特征》教學反思1
【初次實踐】
課始,讓學生任意報數(shù),師生比賽誰先判斷出這個數(shù)是不是3的倍數(shù),正當我沉浸在游戲的情境之中,幾個“不識時務者”打亂了課前的預想!袄蠋,我知道其中的秘密,只要把各個數(shù)位上的數(shù)加起來,看看是不是3的倍數(shù)就行了!”“對!在數(shù)學書上就有這句話。”……又有幾個學生偷偷地打開了數(shù)學書!霸趺崔k?”謎底都被學生揭開了。面對這一生成,我沒有死守教案,而是果斷地調整了預設,變“探索”為“驗證”,將結論板書在黑板上,讓學生理解這句話的意思,然后組織學生將百數(shù)表中3的倍數(shù)圈出來,驗證是不是具有這樣的特征,最后進行一系列鞏固練習……
[反思]
課堂上經常會出現(xiàn)類似上述案例中的“超前行為”,即有些學生提前把要探究的新知識和盤托出。我們的習慣做法就是變“探索”為“驗證”,當然有些知識的教學采用這種方式是有效的,然而本課中“驗證”的過程真能取代“探究發(fā)現(xiàn)”的過程嗎?僅僅舉幾個例子試一試,驗證方法單一,思維含量低,學生充其量只能算是執(zhí)行操作命令的“計算器”,又能獲得哪些有益的發(fā)展?如果經常進行這樣的教學,還容易使學生形成浮躁淺薄,不求甚解,甚至只要結論的不良學習風氣。怎么辦,置之不理嗎?如果這樣,不僅沒有尊重學生已有的知識經驗,而且在已經揭開“謎底”的情況下,再試圖引導學生進行猜想、實驗、發(fā)現(xiàn),體驗遭受挫折后取得成功的那種激動,也只能是一種奢望。那么又該如何激發(fā)學生探究的熱情,促使學生進行深入探究呢?
【再次實踐】
。ㄅc第一次教學情況基本相同,有些學生能夠正確地判斷一個數(shù)是不是3的倍數(shù),這時一些學生卻依然感到困惑,我設法將這一困惑激發(fā)出來。)
師:同學們真能干,這么快就知道了3的倍數(shù)的特征,上節(jié)課我們學習了2、5的倍數(shù)的特征只和什么有關?
生:只和一個數(shù)的個位有關。
師:與今天學習的知識比較一下,你有什么疑問嗎?
生1:為什么判斷一個數(shù)是不是3的倍數(shù)只看個位不行?
生2:為什么判斷一個數(shù)是不是2、5的倍數(shù)只看個位,而判斷是不是3的倍數(shù)要看各位上數(shù)的和?
……
師:同學們思考問題確實比較深入,提出了非常有研究價值的問題。那我們先來研究一下2、5的倍數(shù)為什么只和它的個位有關。
。▽W生嘗試探索,教師適時引導學生從簡單數(shù)開始研究,借助小棒或其他方法進行解釋。)
生1:我在擺小棒時發(fā)現(xiàn),十位上擺幾就是幾十,它肯定是2、5的倍數(shù),因此只要看個位擺幾就可以了。
生2:其實不用擺小棒也可以,我們組發(fā)現(xiàn)每個數(shù)都可以拆成一個整十數(shù)加個位數(shù),整十數(shù)當然都是2、5的倍數(shù),所以這個數(shù)的個位是幾就決定了它是否是2、5的倍數(shù)。
師:同學們想到用“拆數(shù)”的方法來研究,是個好辦法。
生3:是否是3的倍數(shù)只看個位就不行了。比如13,雖然個位上是3的倍數(shù),但10卻不是3的倍數(shù);12雖然個位不是3的倍數(shù),但12 = 10 + 2 = 9 + 1 + 2 = 9 + 3,因此只要看十位上余下的數(shù)和個位上的數(shù)合起來是不是3的倍數(shù)就行了。
生4:我也是這樣想的,我還發(fā)現(xiàn)十位上余下的數(shù)正好和十位上的數(shù)字一樣。
生5:(面帶困惑)起初,我也是這樣想的,可是在試三十幾、四十幾時就不行了。余下的數(shù)和十位上的數(shù)不一樣了,比如40除以3只余1,余下的數(shù)就和十位數(shù)字不同。
生(部分):對。
生4:其實40不要拆成39和1,你拆成36和4,余下的數(shù)不就和十位數(shù)字相同了嗎?
生6:也就是說整十數(shù)都可以拆成十位上的數(shù)字和一個3的倍數(shù)的數(shù)。這樣只要看十位上的數(shù)和個位上的和是不是3的倍數(shù)就可以了。
師:同學們確實很厲害!那三位數(shù)、四位數(shù)是不是也有這樣的規(guī)律呢?
學生用“拆數(shù)”的方法繼續(xù)研究三、四位數(shù),發(fā)現(xiàn)和兩位數(shù)一樣,只不過千位、百位上余下的數(shù)要依次加到下一位上進行研究。3的倍數(shù)的特征在學生頭腦中越來越清晰。
師:同學們通過自己的探索,你們不僅發(fā)現(xiàn)了3的倍數(shù)的特征,還弄清了為什么有這樣的特征,F(xiàn)在你還有哪些新的探索想法呢?
生1:我想知道4的倍數(shù)有什么特征?
生2:我知道,應該只要看末兩位就行了,因為整百、整千數(shù)一定都是4的倍數(shù)。
師:你能把學到的方法及時應用,非常棒!
生3:7或9的倍數(shù)有什么特征呢?
……
師:同學們又提出了一些新的、非常有價值的問題,課后可以繼續(xù)進行探索。
[反思]
1. 找準知識間的沖突,激發(fā)探究的愿望。學生剛剛學習了2、5的倍數(shù)的特征,知道只要看一個數(shù)的個位,因此在學習3的倍數(shù)的特征時,自然會把“看個位”這一方法遷移過來。而實際上,3的倍數(shù)的特征,卻要把各個位上的數(shù)加起來研究。于是新舊知識之間的矛盾沖突使學生產生了困惑,“為什么2或5的倍數(shù)只看個位?”“為什么3的倍數(shù)要把各個位上的數(shù)加起來研究?”……學生急于想了解這些為什么,便會自覺地進入到自主探究的狀態(tài)之中。知識不是孤立的,新舊知識有時會存在矛盾沖突,教師如能找準知識間的沖突并巧妙激發(fā)出來,就能激起學生探究的愿望。這樣不僅有利于學生對新知的掌握,有效地將新知納入到原有的認知結構中去,還有利于培養(yǎng)學生深入探究的意識和能力。
2. 激活學習中的困惑,讓探究走向深入。創(chuàng)造和發(fā)現(xiàn)往往是由驚訝和困惑開始。對比兩次教學,第一次教學由于忽視了學習中的困惑,學生對于3的倍數(shù)的特征理解并不透徹,探索的體驗也并不深刻。第二次教學留給學生質疑的時空,巧設沖突,讓學生進行新舊知識的對比,將困惑激發(fā)出來,通過學生間相互啟發(fā)、相互質疑,對問題的思考漸漸完整而清晰。學生不但經歷由困惑到明了的過程,而且思維不斷走向深入,獲得了更有價值的發(fā)現(xiàn),探究能力也得到切實提高。學生在學習中難免會產生困惑,這種困惑有時是學生希望理解更全面、更深刻的表現(xiàn)。面對這些有價值的思考,我們要有敏銳的洞察力,采取恰當?shù)姆椒▽⑵浼せ睿偈固骄炕顒幼呦蛏钊,讓學生獲得更大的發(fā)展。當然,學生在學習中可能產生怎樣的困惑,面對這一困惑又該如何恰當引導,尚需要教師課前精心預設。
3. 溝通知識間的聯(lián)系,讓學生不斷探究。顯然,2、5的倍數(shù)的特征與3的倍數(shù)的特征是相互聯(lián)系的,其研究方法是相通的(都可以通過“拆數(shù)”進行觀察),特征的本質也是相同的。這種研究方法和特征本質的及時溝通,激發(fā)了學生繼續(xù)研究4、7、9……的倍數(shù)的特征的好奇心,促使學生不斷探究,將學習由課內延伸到課外,并在探究過程中建構起對數(shù)的倍數(shù)特征的整體認識,感悟數(shù)學其實就是以一馭萬,以簡馭繁。課堂不是句號,學生的發(fā)展始終是教學的落腳點。我們的教學絕不能僅僅局限于學生對于一堂課知識的掌握,而應著眼于學生對于解決問題方法的感悟,獲得可持續(xù)發(fā)展的動力。
《3的倍數(shù)特征》教學反思2
3的倍數(shù)是在學習了2、5的倍數(shù)特征的基礎上進行學習的,我讓孩子們提前進行了預習,通過授課發(fā)現(xiàn)孩子們的預習沒有達到預想的效果。學生在匯報時能夠圈出3的倍數(shù),而且非常準確,在匯報3的倍數(shù)的方法時,他們大多數(shù)是借助結論得出來的,沒有體現(xiàn)出他們研究的過程。因此,我在課上進行了及時的指導,把孩子們需要匯報的過程進行了詳細的說明。孩子們很快理解了我的意思,立刻進行了新的分工。第一位同學匯報了他們找到的3的倍數(shù),并介紹的找3的倍數(shù)的方法即,用這個數(shù)除以3,看商是不是整數(shù)而且沒有余數(shù)。接下來匯報百數(shù)表中前十個3的倍數(shù),讓大家觀察個位上的數(shù)字,通過觀察發(fā)現(xiàn)3的倍數(shù)個位上是0-9的任意一個數(shù),不能像2、5的倍數(shù)特征只看個位的特殊數(shù)就行了。因此只看個位不能確定是不是3的倍數(shù)。
由于孩子們有了提前的預習,孩子們心目中已經有了結論。因此在這個時候孩子們思考的深度不夠,沒有理解教材的意圖。教師把教材的意圖有意識地進行了滲透,讓學生駐足片刻,把握課堂的結構。
第三個環(huán)節(jié),孩子們發(fā)現(xiàn)斜著看每個數(shù)的各位逐漸加一,十位逐漸減一,因此個位上的數(shù)字和十位上的數(shù)字之和不變,而且都是3的倍數(shù)。讓孩子試著總結結論:兩位數(shù)個位上和十位上的數(shù)字之和是3的倍數(shù),那么這個數(shù)也是3的倍數(shù)。
第四個環(huán)節(jié),其實并不是把3的倍數(shù)特征總結出來了就完成任務了。這個結論只是通過觀察百數(shù)表得出的關于兩位數(shù)的結論,兩位數(shù)滿足這個特征,是不是所有的數(shù)都適用呢?于是讓孩子試著寫一個三位數(shù)、四位數(shù)而且是3的倍數(shù),然后用這個結論進行驗證,看是否符合。孩子們先試著寫幾個3的倍數(shù),老師羅列到黑板上,然后分別用用各個數(shù)位之和相加的方法和除以3是否有余數(shù)的方法進行驗證。驗證的結果是肯定的,因此得出的結論適合所有的數(shù)。
到這里孩子們對于3的倍數(shù)特征已經理解的很透徹了,做起練習來也顯得得心應手。孩子體驗了結論得出的過程,每一個環(huán)節(jié)的設計都有他的意圖,在每個環(huán)節(jié)孩子都有思考,有思維的碰撞,這才是教材的意圖,才是真正的數(shù)學課。
《3的倍數(shù)特征》教學反思3
《3的倍數(shù)的特征》的教學是五下數(shù)學第二單元“因數(shù)與倍數(shù)”中一個知識點,是在學生已認識倍數(shù)和因數(shù)、2和5倍數(shù)的特征的基礎上進行教學的。由于2、5的倍數(shù)的特征從數(shù)的表面的特點就可以很容易看出——根據個位數(shù)的特點就可以判斷出來。但是3的倍數(shù)的特征卻不能只從個位上的數(shù)來判斷,必須把其他各位上的數(shù)相加,看所得的和是否為3的倍數(shù)來判斷,學生理解起來有一定的困難。因而在《3的倍數(shù)的特征》的開始階段我復習了2、5的倍數(shù)的特征之后就讓學生猜一猜什么樣的數(shù)是3的倍數(shù),學生自然而然地會將“2。5的倍數(shù)的特征”遷移到“3的倍數(shù)特征的問題中, 得出:個位上是3、6、9的數(shù)是3的倍數(shù),后被學生補充到“個位上是0—9的任何一個數(shù)字都有可能是3的倍數(shù),”其特征不明顯,也就是說3的倍數(shù)和一個數(shù)的個位數(shù)沒有關系,因此要從另外的角度來觀察和思考。
在問題情境中讓學生產生認知沖突,萌發(fā)疑問,激發(fā)強烈的探究欲望。接著提供給每位學生一張百數(shù)表,讓他們圈出所有3的倍數(shù),拋出問題:把 3 的倍數(shù)的各位上的數(shù)相加,看看你有什么發(fā)現(xiàn),引導學生換角度思考3的倍數(shù)特征 。學生在經歷了猜測、分析、判斷、驗證、概括、等一系列的數(shù)學活動后感悟和理解了3的倍數(shù)的特征,引導學生真正發(fā)現(xiàn):3的倍數(shù)各位上數(shù)的和一定是3的倍數(shù);不是3的倍數(shù)各位上數(shù)的和一定不是3的倍數(shù)。從而,使學生明確3的倍數(shù)的特征,然后進行練習與拓展。這樣的探究學習比我們老師直接教給他們答案要扎實許多,之后的知識應用學生就相應比較靈活和自如,效果較好。
這節(jié)課結束后,我感覺最大的缺憾之處在最后的拓展練習上,由于自己事先練習下水沒有做足,所以誤導了學生。題目如下:“從3、0、4、5這四個數(shù)中,選出兩個數(shù)字組成一個兩位數(shù),分別滿足以下條件:1、是3的倍數(shù)。2、同時是2和3的倍數(shù)。3、同時是3和5的倍數(shù)。4、同時是2、3和5的倍數(shù)!睂W生問要寫幾個時,我回答如果數(shù)量很多至少寫3個。呵呵,其實此題不需要如此考慮,因為它們的數(shù)量都有限。
希望以后自己的教學會更扎實起來。
《3的倍數(shù)特征》教學反思4
《3 的倍數(shù)和特征》一課是在學生自主探究2、5的倍數(shù)的特征的基礎上進一步學習,我從學生的已有基礎出發(fā),把復習和導入有機結合起來,通過2、5的倍數(shù)特征的復習,設置了“陷阱”,引導學生進行猜想3的倍數(shù)的特征可能是什么,從而引發(fā)認知沖突,激發(fā)學生的求知欲望,經歷新知的產生過程。
一、引發(fā)猜想,產生沖突。
前一課時,學生在發(fā)現(xiàn)2、5的倍數(shù)特征時,都是從個位上研究起的,所以在復習舊知時,我也特意強調了這一點。接下來我引導學生猜想3 的倍數(shù)特征是什么時,不少學生知識遷移,提出:個位上是3、6、9的數(shù)應該是3 的倍數(shù);3 的倍數(shù)都是奇數(shù)。提出猜想,當然需要驗證,很快就有學生在觀察百數(shù)表后提出問題:個位上是3、6、9的數(shù)只是有些是3的位數(shù),有些不是3的倍數(shù);有些偶數(shù)也是3的倍數(shù),而有些奇數(shù)卻不是3 的倍數(shù)。學生的第一猜想被自己否決了。既然沒有這么明顯的特征,那么在百數(shù)表里找出3的倍數(shù),不少學生就開始了繁雜的計算,這個環(huán)節(jié)我給了他們時間慢慢去算,用意在于體會這種計算的不方便,從而去想有沒有更好的方法去判斷一個數(shù)是否是3 的倍數(shù)。
二、自主探究,建構特征
找3 的倍數(shù)的特征是本節(jié)課的難點,我處理這個難點時力求體現(xiàn)學生是學習的主體,教師只是教學活動的組織者、指導者、參與者。整節(jié)課中,始終為學生創(chuàng)造寬松的學習氛圍,讓學生自主探索并掌握找一個3的倍數(shù)的特征的方法,引導學生在充分的動口、動手、動腦中自主獲取知識。
在完成100以內的數(shù)表中找出所有3 的倍數(shù)后,我引導學生觀察發(fā)現(xiàn)3的倍數(shù)的個位可以是0~9中任何一個數(shù)字,要判斷一個數(shù)是不是3的倍數(shù)不能和判斷2、5的倍數(shù)一樣只看個位,打破了學生的認知平衡,然后我提出到底什么樣的數(shù)才是3的倍數(shù)這一問題。這個問題的解決需要借助計數(shù)器,于是我給學生準備了簡易計數(shù)器,讓學生多次撥數(shù)后,觀察算珠的個數(shù)有什么共同的特點。反應比較快的學生就有了發(fā)現(xiàn):所用的算珠個數(shù)都是3 的倍數(shù)。在學生提出這個猜想后,全班學生再一次進行驗證第二個猜想,這個驗證也是在突破難點,學生在驗證中掌握難點。同時,我也讓學生對比了之前所用的方法,體驗這個新方法的快捷與簡便,讓學生的印象更深刻。這個教學環(huán)節(jié)在教師的引導下克服困難,解決了力所能及的問題,達到了新的平衡,開發(fā)了學生的創(chuàng)新潛能。
在教學過程中讓學生自主探索,雖然用了很多時間,但我認為學生探索的比較充分,學生的收獲會更多。
三、鞏固內化,拓展提高。
在上述教學過程中,雖然每個同學只操作了一兩次,但是通過學生之間的合作交流,在教師的引導下,學生經歷了一個典型的.通過不完全 歸納的方法得出規(guī)律的過程。學生在這一過程中的體驗,無論是方法層面,還是思想層面均將對后繼的學習產生深刻的影響。
在初步感知3 的倍數(shù)的特征后,我提出了問題:一個數(shù),在計數(shù)器上撥出它,所用數(shù)珠的顆數(shù)是3的倍數(shù),它就是3的倍數(shù),對嗎?你是否認為我們研究出的結論對所有的數(shù)都適用呢?這兩個問題的提出,意義在于通過“更大的數(shù)”和“任意找”兩方面,使學生深切體驗了不完全歸納法的這一要義,同時也培養(yǎng)了學生縝密思考問題的意識和習慣。
《3的倍數(shù)特征》教學反思5
《3的倍數(shù)的特征》是學生在學習過2.5倍數(shù)特征之后的又一內容,因為2.5的倍數(shù)的特征僅僅體現(xiàn)在個位上的數(shù),比較明顯,容易理解。而3的倍數(shù)的特征,不能只從個位上的數(shù)來判斷,必須把其他各位上的數(shù)相加,看所得的和是否為3的倍數(shù)來判斷,學生理解起來有一定的困難。我決定在這節(jié)課中突出學生的自主探索,使學生猜想——觀察——再觀察——動手試驗的過程中,概括歸納出了3的倍數(shù)特征。
1、找準知識沖突激發(fā)探索愿望。
找準備知識中沖紛激發(fā)探索,在第一環(huán)節(jié)中我先讓學生復習2.5的倍數(shù)特征并對一些數(shù)據做出了判斷而后我們“誰來猜測一下3的倍數(shù)特征”激發(fā)學生探究的愿望。由于學生剛剛復習了2.5倍數(shù)的特征,知道只要看一個數(shù)的個位,因此在學習3的倍數(shù)特征時,自然會把“看個位”這一方法遷移過來。但實際上,卻不是這樣,于是新舊知識間的矛盾沖突使學生產生了困惑,有了新舊知識的矛盾沖突,就能激發(fā)起學生探究的愿望,這樣不反有利于學生對新知識的掌握,有效的將新知識納入到原有的認知結構中去,還有利于培養(yǎng)學生深入探究的意識和能力。
2、激發(fā)學習中的困惑,讓探究走向深入。
找準知識之間的沖突并巧妙激發(fā)出來,這是一節(jié)課的出彩之處,而我從孩子們的學號為入重點,讓孩子們判斷自己的學號是否是3的倍數(shù),并再次探究3的倍數(shù)特征,并且發(fā)現(xiàn)3的倍數(shù)和數(shù)字排列順序的有關系。但和這個數(shù)的個位上的數(shù)字有關。使之所探究的問題是漸漸完整而清晰,而后我又組織孩子們用擺小棒的方法來探究和驗證,這種層層遞進環(huán)環(huán)相扣的方法,促使探究活動走向深入,讓學生獲得更大的發(fā)展。
3、課后反思使之完美。
這節(jié)課結束后,我感覺最大的缺憾之處,最后點選了的倍數(shù)特征時,應放手讓孩子們多說,說透,這樣更有助于鍛煉孩子的概括歸納能力。而老練習題方面,也應形式面多樣化,如用卡片練習判斷,或通過打手勢的方法或先聽老師——這樣效率更高,課堂氛圍好,課堂不是同步,學生的發(fā)展始終是教學的落腳點。我們的教學應著眼于學生對解決問題方法的感悟,這樣才可獲得可持續(xù)發(fā)展的動力。
《3的倍數(shù)特征》教學反思6
《2、5、3倍數(shù)的特征練習課》是一堂練習課,本節(jié)課是在學生已經學習了2,5,3倍數(shù)的特征的基礎上進行教學的。為以后學習分數(shù),特別是約分、通分,需要以因數(shù)倍數(shù)的知識的概念為基礎,到進一步掌握公因數(shù)、最大公因數(shù)和公倍數(shù)、最小公倍數(shù)的概念,需要用到質數(shù)、合數(shù)的概念,而最基礎的就是掌握2,5,3的倍數(shù)的特征。從開始學習2,5的倍數(shù)特征僅僅體現(xiàn)在個位數(shù)上,到學習3的倍數(shù)特征時從只看個位轉向考察各位上的數(shù)相加的和,學生已經有了思路上的轉變,思維的轉折,觀察角度的改變,以此讓學生自主探索4的倍數(shù)特征,但由于與2,5,3的倍數(shù)特征又有些許不同,對學生依然有一定難度。
如果只是單一的做習題,勢必有學生會感到枯燥無味,這樣子學生的學習效果難以保障,對教師的功底與教學策略有很大的挑戰(zhàn)。因此課堂伊始,我直接開門見山式的先對前面學習的知識進行復習梳理,接著利用學生感興趣也是正在使用著的工具——“手機”的鎖屏密碼為線索,通過提示讓學生解密碼的方式激發(fā)學生的學習興趣,然后以破解后的密碼1080,導出本節(jié)課我們要重點探究的4的倍數(shù)特征。讓學生帶著趣味,自主的去探索。由于有了前面探索2,5,3倍數(shù)特征的基礎在,所以在探索4的倍數(shù)特征時放手讓學生通過操作,觀察,思考從而有所發(fā)現(xiàn),體驗探索的樂趣。接著通過計數(shù)器,讓學生明白判斷4的倍數(shù)特征背后的原理。最后在練習鞏固中,逐漸熟練應用所學知識,感知數(shù)學知識和我們的生活緊密聯(lián)系。如何讓練習課不僅僅只是做練習,讓學生能在練習中獲得對知識的理解以及思維上實質的提升,仍然值得我在好好的去思考探索。
《3的倍數(shù)特征》教學反思7
3的倍數(shù)的特征的教學與2、5倍數(shù)的特征難度上有不同,因為2、5的倍數(shù)的特征從數(shù)的表面的特點就可以很容易看出(根據個位數(shù)的特點就可以判斷出來),但是3的倍數(shù)的特征卻不能從表面去判斷,因而我特設以下環(huán)節(jié)突破重難點預習題。
1、給出一些數(shù)讓學生先判斷哪些數(shù)是3的倍數(shù)。并讓學生說一說你是怎么判斷的?
2、從以上的3的倍數(shù)進行思考:
(1)、3的倍數(shù)與它個位上的數(shù)有關系嗎?
。2)、 3的倍數(shù)的各位上的數(shù)的和都是3的倍數(shù)嗎?
新課時讓學生從上面的練習中去發(fā)現(xiàn)了什么,從而歸納3的倍數(shù)的特征:一個數(shù)的各個數(shù)位上的數(shù)字和是3的倍數(shù),這個數(shù)就是3的倍數(shù)
然后再讓每個同學任意寫一個3的倍數(shù),再看看這個數(shù)的各個數(shù)位上的數(shù)的和是不是3的倍數(shù)。要求學生說出方法和思路。
經過以上這些活動后學生都能對一個數(shù)是不是3的倍數(shù)進行簡單的判斷。特別是學生對3的倍數(shù)特征的判斷大多數(shù)的學生能先求出各個數(shù)位的數(shù)字之和是不是3的倍數(shù),然后再進行判斷,效果很好。
《3的倍數(shù)特征》教學反思8
心理學原理表明,新異的刺激可以引起學生的注意和興趣。在教學中,根據不同的教材和要求,采取不同的教學方法,能夠引起學生學習的興趣,有利于創(chuàng)設良好的課堂氣氛。
教學3的倍數(shù)特征這一課時,教師組織學生進行下列鞏固練習:
下列數(shù)中3的倍數(shù)有:()
1435451003328767488
學生利用3的倍數(shù)的特征一下子就回答了上面的問題,得到了老師的肯定。這時我接著說:“我們來一場老師、學生打擂臺怎么樣?看誰說的3的倍數(shù)的數(shù)最多,我們看誰能考倒老師!边@時同學們興趣盎然,紛紛出題來考老師。
生:42
師:111
生:78
師:57
生:81
師:20xx
生:6891
…………
這時師故意出錯:369041
學生馬上發(fā)現(xiàn)了這個數(shù)不是3的倍數(shù),師問:“你能不能改一改其中的某個數(shù)字使它成為3的倍數(shù)!
生:“可以將1改為2!
生:“可以將4改為5!
生:“可以將1改為5!
生:“可以將1改為8。”
生:“可以將4改為2”
生:“可以將4改為8”
學生回答完后,我及時提問:“你們?yōu)槭裁床桓钠渲械?、6、9和0呢?”學生通過思考回答:“因為0、6、3、9每一個數(shù)都是3的倍數(shù),所以只要改4和1這兩個數(shù)就行了!边@時我及時指出:“判斷一個數(shù)是不是3的倍數(shù)可以用篩選法來判斷,在各數(shù)位的數(shù)字中先篩去3的倍數(shù)或和為3的倍數(shù)的數(shù)字,若余下的數(shù)字之和是3的倍數(shù),原數(shù)就是3的倍數(shù),否則就不是!边@時我逐漸地出示下列這組數(shù)要求學生馬上判斷是否3的倍數(shù)。
56
561
5617
56178
561784
5617849
…………
這個鞏固練習,有效地調動了學生的積極性,不斷激起學生認知的內驅力,使學生在探索的過程中,主動學習、主動探索,帶來了內心的滿足感。
《3的倍數(shù)特征》教學反思9
《3的倍數(shù)的特征》是學生在學習過2.5倍數(shù)特征之后的又一內容,因為2.5的倍數(shù)的特征僅僅體現(xiàn)在個位上的數(shù),比較明顯,容易理解。而3的倍數(shù)的特征,不能只從個位上的數(shù)來判斷,必須把其他各位上的數(shù)相加,看所得的和是否為3的倍數(shù)來判斷,學生理解起來有一定的困難。我決定在這節(jié)課中突出學生的自主探索,使學生猜想——觀察——再觀察——動手試驗的過程中,概括歸納出了3的倍數(shù)特征。
我從學生的已有認知出發(fā),引導學生先進行合理的猜想,進而引發(fā)學生從不同的角度驗證自己的猜想,通過驗證,學生自我否定了自己的猜想。此時學生處于“不憤不啟”的最佳的學習狀態(tài),他們迫切想知道3的倍數(shù)的特征究竟是什么?這樣來調動學生學習的欲望,增強學生主動探究意識,有利于后面的探究學習。他們還認為在我們實際生活中,當你解決一個新問題時,一般沒有人告訴你解決這個問題會碰到什么困難。你只有碰到問題后,在解決問題的過程中方才清楚還需要哪些知識,然后,你要在原來的知識庫中去提取并靈活地應用原有的知識。
新課堂呼喚“自主、合作、探究”,而真探究必然伴隨大量差錯的生成,學生總會出現(xiàn)各種各樣的錯誤,我們的課堂教學不應該有意識地去避免學生犯錯誤。因為課堂是學生出錯的地方,出錯是學生的權利,學生的錯誤是勞動的成果,關鍵是要看我們教師如何看待學生的錯誤,有個教育專家說得好:“課堂上的錯誤是教學的巨大財富”。因此,我們教師在課堂中要有沉著冷靜的心理、海納百川的境界和從容應變的機智,給學生一個出錯的機會和權利。
《3的倍數(shù)特征》教學反思10
3的倍數(shù)的特征比較隱蔽,學生一般想不到從“各位上數(shù)的和”去研究,本課注重引導學生經歷探索的過程。上課開始先讓學生回顧舊知,2的倍數(shù)和5的倍數(shù)有什么特征,學生們發(fā)現(xiàn)都只要看一個數(shù)個位上的數(shù)就行了,于是很順地設下了陷阱:同學們,那猜猜看3的倍數(shù)有什么特征呢?猜測是一種常用的數(shù)學思考方法,讓學生猜測3的倍數(shù)有什么特征,能較好地調動學生的學習積極性。由于受2的倍數(shù)和5的倍數(shù)的特征的影響,有學生很自然猜測到:“個位上是0,3,6,9的數(shù)一定是3的倍數(shù)”,還有學生猜測:“各位上的數(shù)字加起來是3,6,9一定是3的倍數(shù)”,能想到這點應該說是了不起的。本課到這里都很順利,因為完全在我的預設之中。
下面進入驗證環(huán)節(jié),先學生判斷自己的學號是不是3的倍數(shù),再在這些學號中挑出個位上是0,3,6,9的數(shù),通過交流這些數(shù)不一定都是3的倍數(shù)。學生初步發(fā)現(xiàn)了3的倍數(shù)的特征與2和5的倍數(shù)不同,不表現(xiàn)在數(shù)的個位上,那3的倍數(shù)究竟與什么有關系呢。于是進入到動手操作環(huán)節(jié),在此基礎上,利用計數(shù)器轉移探索的方向,讓學生用3顆算珠在計數(shù)器上任意擺數(shù),得出結果:擺出的數(shù)都是3的倍數(shù),到這里有幾個學生顯得很興奮。隨后用5顆算珠實驗,發(fā)現(xiàn)擺出的數(shù)都不是3的倍數(shù),到這里學生中已經有一些議論,他們都有了發(fā)現(xiàn)。為了讓更多的學生看出其中的神奇,我將自主權交給了學生們,自己選擇算珠的顆數(shù)進行了第三次實驗,然后板書出每組的實驗結果,從結果的數(shù)據中,學生們都很興奮地發(fā)現(xiàn)了所用算珠的顆數(shù)是3顆,6顆,9顆,撥出的數(shù)都是3的倍數(shù),每個數(shù)所用算珠的顆數(shù),也是每個數(shù)各位上數(shù)的和。把算珠顆數(shù)抽象成各位上數(shù)的和,是理解3的倍數(shù)特征的關鍵。
“試一試”是教學的第三步,如果一個數(shù)不是3的倍數(shù),那么這個數(shù)各位數(shù)的和不是3的倍數(shù)。利用反例進一步證實3的倍數(shù)的特征,體現(xiàn)了數(shù)學的嚴謹性和數(shù)學結論的確定性?上г谶@一點上,我很倉促地指著黑板上算珠顆數(shù)是4顆,5顆,7顆,8顆時,所擺出的數(shù)都不是3的倍數(shù),直接告訴了學生,而沒有讓學生自己舉出反例。隨后設計了一系列習題,使學生得到鞏固提高。
整節(jié)課只能說順利地走了下來,對于教者我來說從中發(fā)現(xiàn)了自己教學上的不足之處,在今后的教學中,我將不斷學習,及時總結,虛心請教,以進一步提高自己的教學業(yè)務水平。
《3的倍數(shù)特征》教學反思11
《3的倍數(shù)的特征》是學生在學習過2和5倍數(shù)特征之后的又一內容,因為2和5的倍數(shù)的特征僅僅體現(xiàn)在個位上的數(shù),比較明顯,容易理解。而3的倍數(shù)的特征,不能只從個位上的數(shù)來判斷,必須把其他各位上的數(shù)相加,看所得的和是否為3的倍數(shù)來判斷,學生理解起來有一定的困難。我決定在這節(jié)課中突出學生的自主探索,使學生猜想——觀察——再觀察——動手試驗的過程中,概括歸納出3的倍數(shù)特征。
但上課的過程中,學生并沒有按照我想的思路去進行,一個學生在我沒有預想的前提下說出了3的倍數(shù)的特征,所以我準備讓四人小組去合作交流發(fā)現(xiàn)3的倍數(shù)的特征也沒有進行。只是讓學生兩人去再說一說剛才那個學生的發(fā)現(xiàn),加以理解,鞏固。
這節(jié)課結束后,我感覺以下方面做得不好。
1、備課不充分。自己在備課時沒有好好的去備學生,沒有做好多方面的預設;
2、在觀察百數(shù)表到后面總結3的倍數(shù)特征時,都應放手讓孩子們多說,說透,這樣更有助于鍛煉孩子的概括歸納能力。老師不要著急,學生能說出的盡量讓學生說,多放手,相信學生。
《3的倍數(shù)特征》教學反思12
《3的倍數(shù)的特征》是學生在學習過2.5倍數(shù)特征之后的又一內容,因為2.5的倍數(shù)的特征僅僅體現(xiàn)在個位上的數(shù),比較明顯,容易理解。而3的倍數(shù)的特征,不能只從個位上的數(shù)來判斷,必須把其他各位上的數(shù)相加,看所得的和是否為3的倍數(shù)來判斷,學生理解起來有一定的困難。我決定在這節(jié)課中突出學生的自主探索,使學生猜想——觀察——再觀察——動手試驗的過程中,概括歸納出了3的倍數(shù)特征。
一、猜想:讓學生回顧舊知,2的倍數(shù)和5的倍數(shù)有什么特征,學生們發(fā)現(xiàn)都只要看一個數(shù)個位上的數(shù)就行了,于是很順地設下了陷阱:同學們,那猜猜看3的倍數(shù)有什么特征呢?由于受2的倍數(shù)和5的倍數(shù)的特征的影響,有學生很自然猜測到:“個位上是0,3,6,9的數(shù)一定是3的倍數(shù)”。
二、驗證::先讓學生在百數(shù)圖中找找看,顯然像13、16、19等等的數(shù)不是3的倍數(shù),學生初步發(fā)現(xiàn)了3的倍數(shù)的特征與2和5的倍數(shù)不同,不表現(xiàn)在數(shù)的個位上,那3的倍數(shù)究竟與什么有關系呢。
三、探究:在此基礎上,讓學生在百數(shù)圖中找出3的倍數(shù)的數(shù),如果把這些3的倍數(shù)的個位數(shù)字和十位數(shù)字進行調換,它還是3的倍數(shù)嗎?(讓學生動手驗證)
12→2115→5118→8124→4227→72
我們發(fā)現(xiàn)調換位置后還是3的倍數(shù),那3的倍數(shù)有什么奧妙呢?
如果把3的倍數(shù)的各位上的數(shù)相加,它們的和是3的倍數(shù)。
四、驗證:下面各數(shù),哪些數(shù)是3的倍數(shù)呢?
2105421612992319876
小結:從上面可知,一個數(shù)各位上的數(shù)字之和如果是3的倍數(shù),那么這個數(shù)就是3的倍數(shù)。這樣結論的得出水到渠成。
《3的倍數(shù)特征》教學反思13
1.以學生原有認知為基礎,激發(fā)學生的探究欲望。教師利用學生剛學完“2、5的倍數(shù)的特征”產生的負遷移,直接拋出問題,激活了學生的原有認知,學生自然而然地會將“2、5的倍數(shù)的特征”遷移到解決“3的倍數(shù)特征”的問題,產生認知沖突,萌發(fā)疑問,激發(fā)強烈的探究欲望。本案例中,學生很快進入問題情境,猜測、否定、反思、觀察、討論,大部分學生漸漸進入了探究者的角色。
2.以問題為中心組織學生展開探究活動。在上面案例中,教師注意突出學生的主體地位,教師依據學生年齡特征和認知水平設計具有探索性的問題,引導學生緊緊圍繞“3的倍數(shù)有什么特征”這個問題來開展學習活動,指導學生圍繞問題展開探究活動,并不斷組織師生之間、生生之間的交流和討論,逐步發(fā)現(xiàn)、歸納規(guī)律、得出結論,培養(yǎng)了學生的探索意識和分析、概括、驗證、判斷等能力。
《3的倍數(shù)特征》教學反思14
3的倍數(shù)的特征比較隱蔽,學生一般想不到從“各位上數(shù)的和”去研究。上課開始先讓學生回顧舊知:2的倍數(shù)和5的倍數(shù)有什么特征?學生們發(fā)現(xiàn)都只要看一個數(shù)個位上的數(shù)就行了,于是很順利地設下了陷阱:“同學們,那猜猜看3的倍數(shù)有什么特征呢?猜測是一種常用的數(shù)學思考方法,讓學生猜測3的倍數(shù)有什么特征,能較好地調動學生的學習積極性。由于受2的倍數(shù)和5的倍數(shù)的特征的影響,有學生很自然猜測到“個位上是0,3,6,9的數(shù)一定是3的倍數(shù)”,還有學生猜測“個位上的數(shù)字加起來是3,6,9一定是3的倍數(shù)”,能想到這點應該說是了不起的。本課到這里都很順利,因為完全在我的預設之中。
下面進入驗證環(huán)節(jié),先讓學生判斷自己的學號是不是3的倍數(shù),再在這些學號中挑出個位上是0,3,6,9的數(shù),通過交流,學生發(fā)現(xiàn)這些數(shù)不一定是3的倍數(shù)。學生初步發(fā)現(xiàn)了3的倍數(shù)的特征與2和5的倍數(shù)不同,不表現(xiàn)在數(shù)的個位上,那3的倍數(shù)究竟與什么有關系呢?于是進入到動手操作環(huán)節(jié)。在此基礎上,抽象成各位上數(shù)的和,是理解3的倍數(shù)特征的關鍵。
“試一試”是數(shù)學的第三步,如果一個數(shù)不是3的倍數(shù),那么這個數(shù)各位數(shù)的和不是3的倍數(shù),利用反例進一步證實3的倍數(shù)的特征,體現(xiàn)了數(shù)學的嚴謹性和數(shù)學結論的確定性。隨后設計了一系列習題,使學生得到鞏固提高。
《3的倍數(shù)特征》教學反思15
今天我教學了3的倍數(shù)的特征,我首先復習2、5的倍數(shù)的特征,然后我出示了幾個不同的四位數(shù),問生:誰能很快判斷出哪些是3的倍數(shù)?想知道有什么竅門嗎?這們引入課題很順當,學生也很有興趣。下面,我先讓學生寫出50以內3的倍數(shù),再觀察:3的倍數(shù)有什么特點?學生一時很難發(fā)現(xiàn),仍從個位上的數(shù)去觀察,但馬上被其他同學否定,當時我心里有點擔心怎么看不來呢?,我啟發(fā)學生再看看個位和十位上的數(shù),通過交流后,在部分學生馬上發(fā)現(xiàn)把每個數(shù)的數(shù)字加起來的和除以3都是正好除的,我讓學生用這個發(fā)現(xiàn)對書上第76頁的表格100以內的數(shù)進行驗證一下,學生驗證后我又讓學生從100以外的數(shù)來驗證。從而得出了3的倍數(shù)的特征。再通過用1、2、6可以寫成哪些三位數(shù)?這些三位數(shù)是3的倍數(shù)嗎?由此有什么發(fā)現(xiàn)?讓學生進一步明白3的倍數(shù)跟數(shù)字的位置沒有關系,只跟各位上數(shù)的和有關系。這樣學生在完成想想做做第5題時學生思考時就不會漏寫了。最后,通過后面的練習,我覺得在教學某些知識時,最好老師不要輕易下結論,只有讓他們自己在反復實踐中自己得出結論,才能牢固地掌握知識。
【《3的倍數(shù)特征》教學反思】相關文章:
《3的倍數(shù)的特征》的教學反思12-15
《3的倍數(shù)的特征》教學反思11-10
3的倍數(shù)特征的教學反思02-03
3的倍數(shù)特征教學反思01-23
《3的倍數(shù)的特征》教學反思02-22
《3的倍數(shù)特征》的教學反思11-19
《3的倍數(shù)特征》教學反思11-03
“3的倍數(shù)的特征”教學反思11-19
3的倍數(shù)特征教學反思07-12