高二上冊數(shù)學(xué)算法案例教學(xué)計(jì)劃
【課程分析】:
在前面的兩節(jié)里,我們已經(jīng)學(xué)習(xí)了一些簡單的算法,對算法已經(jīng)有了一個(gè)初步的了解。這節(jié)課的內(nèi)
容是繼續(xù)加深對算法的認(rèn)識,體會算法的思想。這節(jié)課所學(xué)習(xí)的輾轉(zhuǎn)相除法與更相減損術(shù)是第三節(jié)我們所要學(xué)習(xí)的四種算法案例里的第一種。學(xué)生們通過本節(jié)課對中國古代數(shù)學(xué)中的算法案例——輾轉(zhuǎn)相除法與更相減損術(shù)學(xué)習(xí),體會中國古代數(shù)學(xué)對世界數(shù)學(xué)發(fā)展的貢獻(xiàn)。教學(xué)重點(diǎn)是理解輾轉(zhuǎn)相除法與更相減損術(shù)求最大公約數(shù)的'方法。難點(diǎn)是把輾轉(zhuǎn)相除法與更相減損術(shù)的方法轉(zhuǎn)換成程序框圖與程序語言。
【學(xué)情分析】:
在理解最大公約數(shù)的基礎(chǔ)上去發(fā)現(xiàn)輾轉(zhuǎn)相除法與更相減損術(shù)中的數(shù)學(xué)規(guī)律,并能模仿已經(jīng)學(xué)過的程序框
圖與算法語句設(shè)計(jì)出輾轉(zhuǎn)相除法與更相減損術(shù)的程序框圖與算法程序。
【設(shè)計(jì)思路】
采用啟發(fā)式,并遵循循序漸進(jìn)的教學(xué)原則。這有利于學(xué)生掌握從現(xiàn)象到本質(zhì),從已知到未知逐步
形成念的學(xué)習(xí)方法,有利于發(fā)展學(xué)生抽象思維能力和邏輯推理能力。
【學(xué)習(xí)目標(biāo)】
(1)理解輾轉(zhuǎn)相除法與更相減損術(shù)中蘊(yùn)含的數(shù)學(xué)原理,并能根據(jù)這些原理進(jìn)行算法分析。
(2)基本能根據(jù)算法語句與程序框圖的知識設(shè)計(jì)完整的程序框圖并寫出算法程序。
(3)領(lǐng)會數(shù)學(xué)算法與計(jì)算機(jī)處理的結(jié)合方式,初步掌握把數(shù)學(xué)算法轉(zhuǎn)化成計(jì)算機(jī)語言的一般步驟。
【教學(xué)流程】
一、創(chuàng)設(shè)情景,揭示課題
1.教師首先提出問題:在初中,我們已經(jīng)學(xué)過求最大公約數(shù)的知識,你能求出18與30的公約數(shù)嗎?
2.接著教師進(jìn)一步提出問題,我們都是利用找公約數(shù)的方法來求最大公約數(shù),如果公約數(shù)比較大而且根據(jù)我們的觀察又不能得到一些公約數(shù),我們又應(yīng)該怎樣求它們的最大公約數(shù)?比如求8251與6105的最大公約數(shù)?這就是我們這一堂課所要探討的內(nèi)容。
二、研探新知,發(fā)現(xiàn)規(guī)律
1.輾轉(zhuǎn)相除法
例1 求兩個(gè)正數(shù)8251和6105的最大公約數(shù)。
解:8251=6105×1+2146
顯然8251的最大公約數(shù)也必是2146的約數(shù),同樣6105與2146的公約數(shù)也必是8251的約數(shù),所以8251與6105的最大公約數(shù)也是6105與2146的最大公約數(shù)。
6105=2146×2+1813 2146=1813×1+333
1813=333×5+148 333=148×2+37
148=37×4+0
則37為8251與6105的最大公約數(shù)。
以上我們求最大公約數(shù)的方法就是輾轉(zhuǎn)相除法。也叫歐幾里德算法,它是由歐幾里德在公元前300年左右首先提出的。利用輾轉(zhuǎn)相除法求最大公約數(shù)的步驟如下:
第一步:用較大的數(shù)m除以較小的數(shù)n得到一個(gè)商q0和一個(gè)余數(shù)r0;
第二步:若r0=0,則n為m,n的最大公約數(shù);若r0≠0,則用除數(shù)n除以余數(shù)r0得到一個(gè)商q1和一個(gè)余數(shù)r1;
第三步:若r1=0,則r1為m,n的最大公約數(shù);若r1≠0,則用除數(shù)r0除以余數(shù)r1得到一個(gè)商q2和一個(gè)余數(shù)r2;
依次計(jì)算直至rn=0,此時(shí)所得到的rn-1即為所求的最大公約數(shù)。
(1)輾轉(zhuǎn)相除法的程序框圖及程序
程序框圖:(略)
程序:(當(dāng)循環(huán)結(jié)構(gòu)) 直到型結(jié)構(gòu)見書37面。
INPUT “m=”;m
INPUT “n=”;n
IF m
m=n
n=x
END IF
r=m MOD n
WHILE r<>0
r=m MOD n
m=n
n=r
WEND
PRINT m
END
練習(xí):利用輾轉(zhuǎn)相除法求兩數(shù)4081與20723的最大公約數(shù)(答案:53)
2.更相減損術(shù)
我國早期也有解決求最大公約數(shù)問題的算法,就是更相減損術(shù)。
更相減損術(shù)求最大公約數(shù)的步驟如下:可半者半之,不可半者,副置分母·子之?dāng)?shù),以少減多,更相減損,求其等也,以等數(shù)約之。
翻譯出來為:
第一步:任意給出兩個(gè)正數(shù);判斷它們是否都是偶數(shù)。若是,用2約簡;若不是,執(zhí)行第二步。 第二步:以較大的數(shù)減去較小的數(shù),接著把較小的數(shù)與所得的差比較,并以大數(shù)減小數(shù)。繼續(xù)這個(gè)操作,直到所得的數(shù)相等為止,則這個(gè)數(shù)(等數(shù))就是所求的最大公約數(shù)。
例2 用更相減損術(shù)求98與63的最大公約數(shù).
解:由于63不是偶數(shù),把98和63以大數(shù)減小數(shù),并輾轉(zhuǎn)相減,即:98-63=35
63-35=28
35-28=7
28-7=21
21-7=14
14-7=7
所以,98與63的最大公約數(shù)是7。
練習(xí):用更相減損術(shù)求兩個(gè)正數(shù)84與72的最大公約數(shù)。(答案:12)
三、對比歸納,得出結(jié)論
3.比較輾轉(zhuǎn)相除法與更相減損術(shù)的區(qū)別
(1)都是求最大公約數(shù)的方法,計(jì)算上輾轉(zhuǎn)相除法以除法為主,更相減損術(shù)以減法為主,計(jì)算次數(shù)上輾轉(zhuǎn)相除法計(jì)算次數(shù)相對較少,特別當(dāng)兩個(gè)數(shù)字大小區(qū)別較大時(shí)計(jì)算次數(shù)的區(qū)別較明顯。
(2)從結(jié)果體現(xiàn)形式來看,輾轉(zhuǎn)相除法體現(xiàn)結(jié)果是以相除余數(shù)為0則得到,而更相減損術(shù)則以減數(shù)與差相等而得到
【高二上冊數(shù)學(xué)算法案例教學(xué)計(jì)劃】相關(guān)文章:
高二數(shù)學(xué)《算法初步》與案例教學(xué)計(jì)劃05-08
人教版高二數(shù)學(xué)上學(xué)期算法與案例教學(xué)計(jì)劃模板05-20
高二數(shù)學(xué)上冊算法與程序框圖教學(xué)計(jì)劃07-10
高二數(shù)學(xué)算法教學(xué)計(jì)劃安排06-05
人教版高二數(shù)學(xué)上冊算法與程序框圖教學(xué)計(jì)劃06-12
蘇教版高二上冊數(shù)學(xué)基本算法語句教學(xué)計(jì)劃06-13
高二數(shù)學(xué)算法與程序框圖教學(xué)計(jì)劃的范例06-05