高一數(shù)學(xué)教學(xué)工作計劃合集6篇
日子在彈指一揮間就毫無聲息的流逝,前方等待著我們的是新的機遇和挑戰(zhàn),是時候?qū)懸环菰敿?xì)的計劃了。那么你真正懂得怎么寫好計劃嗎?以下是小編收集整理的高一數(shù)學(xué)教學(xué)工作計劃6篇,僅供參考,大家一起來看看吧。
高一數(shù)學(xué)教學(xué)工作計劃 篇1
本節(jié)課的教學(xué)內(nèi)容,是指數(shù)函數(shù)的概念、性質(zhì)及其簡單應(yīng)用。教學(xué)重點是指數(shù)函數(shù)的圖像與性質(zhì)。
I這是指數(shù)函數(shù)在本章的位置。
指數(shù)函數(shù)是學(xué)生在學(xué)習(xí)了函數(shù)的概念、圖象與性質(zhì)后,學(xué)習(xí)的第一個新的初等函數(shù)。它是一種新的函數(shù)模型,也是應(yīng)用研究函數(shù)的一般方法研究函數(shù)的一次實踐。指數(shù)函數(shù)的學(xué)習(xí),一方面可以進一步深化對函數(shù)概念的理解,另一方面也為研究對數(shù)函數(shù)、冪函數(shù)、三角函數(shù)等初等函數(shù)打下基礎(chǔ)。因此,本節(jié)課的學(xué)習(xí)起著承上啟下的作用,也是學(xué)生體驗數(shù)學(xué)思想與方法應(yīng)用的過程。
指數(shù)函數(shù)模型在貸款利率的計算以及考古中年代的測算等方面有著廣泛地應(yīng)用,與我們的日常生活、生產(chǎn)和科學(xué)研究有著緊密的聯(lián)系,因此,學(xué)習(xí)這部分知識還有著一定的現(xiàn)實意義。
、颍虒W(xué)目標(biāo)設(shè)置
1。學(xué)生能從具體實例中概括指數(shù)函數(shù)典型特征,并用數(shù)學(xué)符號表示,建構(gòu)指數(shù)函數(shù)的概念。
2。學(xué)生通過自主探究,掌握指數(shù)函數(shù)的圖象特征與性質(zhì),能夠利用指數(shù)函數(shù)的性質(zhì)比較兩個冪的大小。
3。學(xué)生運用數(shù)形結(jié)合的思想,經(jīng)歷從特殊到一般、具體到抽象的研究過程,體驗研究函數(shù)的一般方法。
4。在探究活動中,學(xué)生通過獨立思考和合作交流,發(fā)展思維,養(yǎng)成良好思維習(xí)慣,提升自主學(xué)習(xí)能力。
、螅畬W(xué)生學(xué)情分析
授課班級學(xué)生為南京師大附中實驗班學(xué)生。
1。學(xué)生已有認(rèn)知基礎(chǔ)
學(xué)生已經(jīng)學(xué)習(xí)了函數(shù)的概念、圖象與性質(zhì),對函數(shù)有了初步的認(rèn)識。學(xué)生已經(jīng)完成了指數(shù)取值范圍的擴充,具備了進行指數(shù)運算的能力。學(xué)生已有研究一次函數(shù)、二次函數(shù)等初等函數(shù)的直接經(jīng)驗。學(xué)生數(shù)學(xué)基礎(chǔ)與思維能力較好,初步養(yǎng)成了獨立思考、合作交流、反思質(zhì)疑等學(xué)習(xí)習(xí)慣。
2。達(dá)成目標(biāo)所需要的認(rèn)知基礎(chǔ)
學(xué)生需要對研究的目標(biāo)、方法和途徑有初步的認(rèn)識,需要具備較好的歸納、猜想和推理能力。
3。難點及突破策略
難點:1。 對研究函數(shù)的一般方法的認(rèn)識。
2。 自主選擇底數(shù)不當(dāng)導(dǎo)致歸納所得結(jié)論片面。
突破策略:
1。教師引導(dǎo)學(xué)生先明確研究的內(nèi)容與方法,從總體上認(rèn)識研究的目標(biāo)與手段。
2。組織匯報交流活動,展現(xiàn)思維過程,相互評價,相互啟發(fā),促進反思。
3。對猜想進行適當(dāng)?shù)刈C明或說明,合情推理與演繹推理相結(jié)合。
Ⅳ.教學(xué)策略設(shè)計
根據(jù)學(xué)生已有學(xué)習(xí)基礎(chǔ),為提升學(xué)生的學(xué)習(xí)能力,本節(jié)課的教學(xué),采用自主學(xué)習(xí)方式。通過教師引領(lǐng)學(xué)生經(jīng)歷研究函數(shù)及其性質(zhì)的過程,認(rèn)識研究的目標(biāo)與策略,在研究的過程中逐漸完善研究的方法與手段。
學(xué)生的自主學(xué)習(xí),具體落實在三個環(huán)節(jié):
(1)建構(gòu)指數(shù)函數(shù)概念時,學(xué)生自主舉例,歸納特征,并用符號表示,討論底數(shù)的取值范圍,完善概念。
(2)探究指數(shù)函數(shù)圖象特征與性質(zhì)時,學(xué)生自選底數(shù),開展自主研究,并通過匯報交流相互提升。
(3)性質(zhì)應(yīng)用階段,學(xué)生自主舉例說明指數(shù)函數(shù)性質(zhì)的應(yīng)用。
研究函數(shù)的性質(zhì),可以從形和數(shù)兩個方面展開。從圖形直觀和數(shù)量關(guān)系兩個方面,經(jīng)歷從特殊到一般、具體到抽象的過程。借助具體的指數(shù)函數(shù)的圖象,觀察特征,發(fā)現(xiàn)函數(shù)性質(zhì),進而猜想、歸納一般指數(shù)函數(shù)的圖象特征與性質(zhì),并適時應(yīng)用函數(shù)解析式輔以必要的說明和證明。
、酰虒W(xué)過程設(shè)計
1。創(chuàng)設(shè)情境建構(gòu)概念
師:我們已經(jīng)學(xué)習(xí)了函數(shù)的概念、圖象與性質(zhì),大家都知道函數(shù)可以刻畫兩個變量之間的關(guān)系。你能用函數(shù)的觀點分析下面的例子嗎?
師:大家知道細(xì)胞分裂的規(guī)律嗎?(出示情境問題)
[情境問題1]某細(xì)胞分裂時,由一個分裂成2個,2個分裂成4個,4個分裂成8個,……如果細(xì)胞分裂x次,相應(yīng)的細(xì)胞個數(shù)為y,如何描述這兩個變量的關(guān)系?
[情境問題2]某種放射性物質(zhì)不斷變化為其他物質(zhì),每經(jīng)過一年,這種物質(zhì)剩余的質(zhì)量是原來的84%。如果經(jīng)過x年,該物質(zhì)剩余的質(zhì)量為y,如何描述這兩個變量的關(guān)系?
[師生活動]引導(dǎo)學(xué)生分析,找到兩個變量之間的函數(shù)關(guān)系,并得到解析式y(tǒng)=2x和y=0。84x。
師:這樣的函數(shù)你見過嗎?是一次函數(shù)嗎?二次函數(shù)?這樣的函數(shù)有什么特點?你能再舉幾個例子嗎?
〖問題1類似的函數(shù),你能再舉出一些例子嗎?這些函數(shù)有什么共同特點?能否寫成一般形式?
[設(shè)計意圖]通過列舉生活中指數(shù)函數(shù)的具體例子,感受指數(shù)函數(shù)與實際生活的聯(lián)系。引導(dǎo)學(xué)生從具體實例中概括典型特征,初步形成指數(shù)函數(shù)的概念,并用數(shù)學(xué)符號表示。初步得到y(tǒng)=ax這個形式后,引導(dǎo)學(xué)生關(guān)注底數(shù)的取值范圍,完成概念建構(gòu)。指數(shù)范圍擴充到實數(shù)后,關(guān)注x∈R時,y=ax是否始終有意義,因此規(guī)定a>0。a≠1并不是必須的,常函數(shù)在高等數(shù)學(xué)里是基本函數(shù),也有重要的意義。為了使指數(shù)函數(shù)與對數(shù)函數(shù)能構(gòu)成反函數(shù),規(guī)定a≠1。此處不需對此解釋,只要補充說“1的任何次方總是1,所以通常還規(guī)定a≠1”。
[師生活動]學(xué)生舉例,教師引導(dǎo)學(xué)生觀察,其共同特點是自變量在指數(shù)位置,從而初步建立函數(shù)模型y=ax。
[教學(xué)預(yù)設(shè)]學(xué)生能舉出具體的例子——y=3x,y=0。5x…。如出現(xiàn)y=(-2)x最好,更便于引發(fā)對a的討論,但一般不會出現(xiàn)。進而提出這類函數(shù)一般形式y(tǒng)=ax。
、觯毯蠓此蓟仡
一、對于指數(shù)函數(shù)概念的認(rèn)識
指數(shù)函數(shù)是一種函數(shù)模型,其基本特征是自變量在指數(shù)位置。底數(shù)取值范圍有規(guī)定,使得這一模型形式簡單又不失本質(zhì)。不必糾結(jié)于“y=22x是否為指數(shù)函數(shù)”,把重點放在概念的合理性的理解以及體會模型思想。
二、對于培養(yǎng)學(xué)生思維習(xí)慣的考慮
在學(xué)生自主探索的過程中,教師應(yīng)注意培養(yǎng)學(xué)生良好的思維習(xí)慣。實際上,選擇底數(shù)a的數(shù)據(jù)的大小和數(shù)量,需要對指數(shù)函數(shù)的性質(zhì)有預(yù)判;從列表到作圖的過程中,都可以感受到指數(shù)函數(shù)單調(diào)性等性質(zhì);觀察并歸納性質(zhì),既需要特殊到一般的推理模式,也應(yīng)養(yǎng)成有序進行觀察和歸納的良好的思維習(xí)慣。對所歸納的指數(shù)函數(shù)的性質(zhì),應(yīng)根據(jù)學(xué)生已有的知識水平或教學(xué)要求進行證明或合理的說明。學(xué)生不僅學(xué)到了數(shù)學(xué)知識,也初步體驗了研究問題的基本方法。
三、關(guān)于設(shè)計定位的反思
本節(jié)課的教學(xué)設(shè)計,力圖體現(xiàn)因材施教原則。不同的學(xué)情下,教師應(yīng)采用不同的教學(xué)策略。如果學(xué)生基礎(chǔ)相對薄弱,問題的提出可以分層次進行。另外,注意通過“你是怎么想的?”“你同意他的意見嗎?為什么”等問話形式,促使學(xué)生暴露思維過程。
高一數(shù)學(xué)教學(xué)工作計劃 篇2
一、指導(dǎo)思想
準(zhǔn)確把握《教學(xué)大綱》和《考試大綱》的各項基本要求,立足于基礎(chǔ)知識和基本技能的教學(xué),注重滲透數(shù)學(xué)思想和方法。針對學(xué)生實際,不斷研究數(shù)學(xué)教學(xué),改進教法,指導(dǎo)學(xué)法,奠定立足社會所需要的必備的基礎(chǔ)知識、基本技能和基本能力,著力于培養(yǎng)學(xué)生的創(chuàng)新精神,運用數(shù)學(xué)的意識和能力,奠定他們終身學(xué)習(xí)的基礎(chǔ)。
二、教學(xué)建議
1、深入鉆研教材。以教材為核心,深入研究教材中章節(jié)知識的內(nèi)外結(jié)構(gòu),熟練把握知識的邏輯體系,細(xì)致領(lǐng)悟教材改革的精髓,逐步明確教材對教學(xué)形式、內(nèi)容和教學(xué)目標(biāo)的影響。
2、準(zhǔn)確把握新大綱。新大綱修改了部分內(nèi)容的教學(xué)要求層次,準(zhǔn)確把握新大綱對知識點的基本要求,防止自覺不自覺地對教材加深加寬。同時,在整體上,要重視數(shù)學(xué)應(yīng)用;重視數(shù)學(xué)思想方法的滲透。如增加閱讀材料(開闊學(xué)生的視野),以拓寬知識的廣度來求得知識的深度。
3、樹立以學(xué)生為主體的教育觀念。學(xué)生的發(fā)展是課程實施的出發(fā)點和歸宿,教師必須面向全體學(xué)生因材施教,以學(xué)生為主體,構(gòu)建新的認(rèn)識體系,營造有利于學(xué)生學(xué)習(xí)的氛圍。
4、發(fā)揮教材的多種教學(xué)功能。用好章頭圖,激發(fā)學(xué)生的學(xué)習(xí)興趣;發(fā)揮閱讀材料的功能,培養(yǎng)學(xué)生用數(shù)學(xué)的意識;組織好研究性課題的教學(xué),讓學(xué)生感受社會生活之所需;小結(jié)和復(fù)習(xí)是培養(yǎng)學(xué)生自學(xué)的好材料。
5、落實課外活動的內(nèi)容。組織和加強數(shù)學(xué)興趣小組的活動內(nèi)容。
三、教學(xué)內(nèi)容
第一章集合與函數(shù)概念
1.通過實例,了解集合的含義,體會元素與集合的屬于關(guān)系。
2.能選擇自然語言、圖形語言、集合語言(列舉法或描述法)描述不同的具體問題,感受集合語言的意義和作用。
3.理解集合之間包含與相等的含義,能識別給定集合的子集。
4.在具體情境中,了解全集與空集的含義。
5.理解兩個集合的并集與交集的含義,會求兩個簡單集合的并集與交集。
6.理解在給定集合中一個子集的補集的含義,會求給定子集的補集。
7.能使用Venn圖表達(dá)集合的關(guān)系及運算,體會直觀圖示對理解抽象概念的作用。
8.通過豐富實例,進一步體會函數(shù)是描述變量之間的依賴關(guān)系的重要數(shù)學(xué)模型,在此基礎(chǔ)上學(xué)習(xí)用集合與對應(yīng)的語言來刻畫函數(shù),體會對應(yīng)關(guān)系在刻畫函數(shù)概念中的作用;了解構(gòu)成函數(shù)的要素,會求一些簡單函數(shù)的定義域和值域;了解映射的概念。
9.在實際情境中,會根據(jù)不同的需要選擇恰當(dāng)?shù)姆椒ǎㄈ鐖D像法、列表法、解析法)表示函數(shù)。
10.通過具體實例,了解簡單的分段函數(shù),并能簡單應(yīng)用。
11.通過已學(xué)過的函數(shù)特別是二次函數(shù),理解函數(shù)的單調(diào)性、最大(小)值及其幾何意義;結(jié)合具體函數(shù),了解奇偶性的含義。
12.學(xué)會運用函數(shù)圖象理解和研究函數(shù)的性質(zhì)。
課時分配(14課時)
1.1.1 | 集合的含義與表示 | 約1課時 | 9月1日 |
1.1.2 | 集合間的基本關(guān)系 | 約1課時 | 9月4日 | | 9月12日 |
1.1.3 | 集合的基本運算 | 約2課時 | |
小結(jié)與復(fù)習(xí) | 約1課時 | ||
1.2.1 | 函數(shù)的概念 | 約2課時 | |
1.2.2 | 函數(shù)的表示法 | 約2課時 | 9月13日 | | 9月25日 |
1.3.1 | 單調(diào)性與最大(小)值 | 約2課時 | |
1.3.2 | 奇偶性 | 約1課時 | |
小結(jié)與復(fù)習(xí) | 約2課時 |
第二章基本初等函數(shù)(I)
1.通過具體實例,了解指數(shù)函數(shù)模型的實際背景。
2.理解有理指數(shù)冪的含義,通過具體實例了解實數(shù)指數(shù)冪的意義,掌握冪的運算。
3。理解指數(shù)函數(shù)的概念和意義,能借助計算器或計算機畫出具體指數(shù)函數(shù)的圖象,探索并理解指數(shù)函數(shù)的單調(diào)性與特殊點。
4.在解決簡單實際問題過程中,體會指數(shù)函數(shù)是一類重要的函數(shù)模型。
5。理解對數(shù)的概念及其運算性質(zhì),知道用換底公式能將一般對數(shù)轉(zhuǎn)化成自然對數(shù)或常用對數(shù);通過閱讀材料,了解對數(shù)的發(fā)現(xiàn)歷史以及其對簡化運算的作用。
6。通過具體實例,直觀了解對數(shù)函數(shù)模型所刻畫的數(shù)量關(guān)系,初步理解對數(shù)函數(shù)的概念,體會對數(shù)函數(shù)是一類重要的函數(shù)模型;能借助計算器或計算機畫出具體對數(shù)函數(shù)的圖象,探索并了解對數(shù)函數(shù)的單調(diào)性和特殊點。
7.通過實例,了解冪函數(shù)的概念;結(jié)合函數(shù)的圖象,了解它們的變化情況。
課時分配(15課時)
2.1.1 | 引言、指數(shù)與指數(shù)冪的運算 | 約3課時 | 9月27日30日 |
2.1.2 | 指數(shù)函數(shù)及其性質(zhì) | 約3課時 | 10月8日10日 |
2.2.1 | 對數(shù)與對數(shù)運算 | 約3課時 | 10月11日14日 |
2.2.2 | 對數(shù)函數(shù)及其性質(zhì) | 約3課時 | 10月15日18日 |
2.3 | 冪函數(shù) | 約1課時 | 10月19日24日 |
小結(jié) | 約2課時 |
第三章函數(shù)的應(yīng)用
1。結(jié)合二次函數(shù)的圖象,判斷一元二次方程根的存在性及根的個數(shù),從而了解函數(shù)的零點與方程根的聯(lián)系。
根據(jù)具體函數(shù)的圖象,能夠借助計算器用二分法求相應(yīng)方程的近似解,了解這種方法是求方程近似解的常用方法。
2。利用計算工具,比較指數(shù)函數(shù)、對數(shù)函數(shù)以及冪函數(shù)增長差異;結(jié)合實例體會直線上升、指數(shù)爆炸、對數(shù)增長等不同函數(shù)類型增長的含義。
3。收集一些社會生活中普遍使用的函數(shù)模型(指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)、分段函數(shù)等)的實例,了解函數(shù)模型的廣泛應(yīng)用。
4。根據(jù)某個主題,收集17世紀(jì)前后發(fā)生的一些對數(shù)學(xué)發(fā)展起重大作用的歷史事件和人物(開普勒、伽利略、笛卡兒、牛頓、萊布尼茨、歐拉等)的有關(guān)資料或現(xiàn)實生活中的函數(shù)實例,采取小組合作的方式寫一篇有關(guān)函數(shù)概念的形成、發(fā)展或應(yīng)用的文章,在班級中進行交流。
課時分配(8課時)
3.1.1 | 方程的根與函數(shù)的零點 | 約1課時 | 10月25日 |
3.1.2 | 用二分法求方程的近似解 | 約2課時 | 10月26日27日 |
3.2.1 | 幾類不同增長的函數(shù)模型 | 約2課時 | 10月30日 | 11月3日 |
3.2.2 | 函數(shù)模型的應(yīng)用實例 | 約2課時 | |
小結(jié) | 約1課時 |
考生只要在全面復(fù)習(xí)的基礎(chǔ)上,抓住重點、難點、易錯點,各個擊破,夯實基礎(chǔ),規(guī)范答題,一定會穩(wěn)中求進,取得優(yōu)異的成績。
高一數(shù)學(xué)教學(xué)工作計劃 篇3
教學(xué)分析
課本從學(xué)生熟悉的集合(自然數(shù)的集合、有理數(shù)的集合等)出發(fā),通過類比實數(shù)間的大小關(guān)系引入集合間的關(guān)系,同時,結(jié)合相關(guān)內(nèi)容介紹子集等概念.在安排這部分內(nèi)容時,課本注重體現(xiàn)邏輯思考的方法,如類比等.
值得注意的問題:在集合間的關(guān)系教學(xué)中,建議重視使用Venn圖,這有助于學(xué)生通過體會直觀圖示來理解抽象概念;隨著學(xué)習(xí)的深入,集合符號越來越多,建議教學(xué)時引導(dǎo)學(xué)生區(qū)分一些容易混淆的關(guān)系和符號,例如∈與?的區(qū)別.
三維目標(biāo)
1.理解集合之間包含與相等的含義,能識別給定集合的子集,能判斷給定集合間的關(guān)系,提高利用類比發(fā)現(xiàn)新結(jié)論的能力.
2.在具體情境中,了解空集的含義,掌握并能使用Venn圖表達(dá)集合的關(guān)系,加強學(xué)生從具體到抽象的思維能力,樹立數(shù)形結(jié)合的思想.
重點難點
教學(xué)重點:理解集合間包含與相等的含義.
教學(xué)難點:理解空集的含義.
課時安排
1課時
教學(xué)過程
導(dǎo)入新課
思路1.實數(shù)有相等、大小關(guān)系,如5=5,5<7 5="">3等等,類比實數(shù)之間的關(guān)系,你會想到集合之間有什么關(guān)系呢?(讓學(xué)生自由發(fā)言,教師不要急于作出判斷,而是繼續(xù)引導(dǎo)學(xué)生)
欲知誰正確,讓我們一起來觀察、研探.
思路2.復(fù)習(xí)元素與集合的關(guān)系——屬于與不屬于的關(guān)系,填空:(1)0N;(2)2Q;(3)-1.5R.
類比實數(shù)的大小關(guān)系,如5<7,2≤2,試想集合間是否有類似的“大小”關(guān)系呢?(答案:(1)∈;(2)?;(3)∈)
推進新課
提出問題
(1)觀察下面幾個例子:
①A={1,2,3},B={1,2,3,4,5};
、谠O(shè)A為國興中學(xué)高一(3)班男生的全體組成的集合,B為這個班學(xué)生的全體組成的集合;
、墼O(shè)C={x|x是兩條邊相等的三角形},D={x|x是等腰三角形};
、蹺={2,4,6},F(xiàn)={6,4,2}.
你能發(fā)現(xiàn)兩個集合間有什么關(guān)系嗎?
(2)例子①中集合A是集合B的子集,例子④中集合E是集合F的子集,同樣是子集,有什么區(qū)別?
(3)結(jié)合例子④,類比實數(shù)中的結(jié)論:“若a≤b,且b≤a,則a=b”,在集合中,你發(fā)現(xiàn)了什么結(jié)論?
(4)按升國旗時,每個班的同學(xué)都聚集在一起站在旗桿附近指定的區(qū)域內(nèi),從樓頂向下看,每位同學(xué)是哪個班的,一目了然.試想一下,根據(jù)從樓頂向下看的,要想直觀表示集合,聯(lián)想集合還能用什么表示?
(5)試用Venn圖表示例子①中集合A和集合B.
(6)已知A?B,試用Venn圖表示集合A和B的關(guān)系.
(7)任何方程的解都能組成集合,那么x2+1=0的實數(shù)根也能組成集合,你能用Venn圖表示這個集合嗎?
(8)一座房子內(nèi)沒有任何東西,我們稱為這座房子是空房子,那么一個集合沒有任何元素,應(yīng)該如何命名呢?
(9)與實數(shù)中的結(jié)論“若a≥b,且b≥c,則a≥c”相類比,在集合中,你能得出什么結(jié)論?
活動:教師從以下方面引導(dǎo)學(xué)生:
(1)觀察兩個集合間元素的特點.
(2)從它們含有的元素間的關(guān)系來考慮.規(guī)定:如果A B,但存在x∈B,且x A,我們稱集合A是集合B的真子集,記作A B(或B A).
(3)實數(shù)中的“≤”類比集合中的 .
(4)把指定位置看成是由封閉曲線圍成的,學(xué)生看成集合中的元素,從樓頂看到的就是把集合中的元素放在封閉曲線內(nèi).教師指出:為了直觀地表示集合間的關(guān)系,我們常用平面上封閉曲線的內(nèi)部代表集合,這種圖稱為Venn圖.
(5)封閉曲線可以是矩形也可以是橢圓等等,沒有限制.
(6)分類討論:當(dāng)A B時,A B或A=B.
(7)方程x2+1=0沒有實數(shù)解.
(8)空集記為 ,并規(guī)定:空集是任何集合的子集,即 A;空集是任何非空集合的真子集,即 A(A≠ ).
(9)類比子集.
討論結(jié)果:
(1)①集合A中的元素都在集合B中;
、诩螦中的元素都在集合B中;
③集合C中的元素都在集合D中;
、芗螮中的元素都在集合F中.
可以發(fā)現(xiàn):對于任意兩個集合A,B有下列關(guān)系:集合A中的元素都在集合B中;或集合B中的元素都在集合A中.
(2)例子①中A B,但有一個元素4∈B,且4 A;而例子②中集合E和集合F中的元素完全相同.
(3)若A B,且B A,則A=B.
(4)可以把集合中元素寫在一個封閉曲線的內(nèi)部來表示集合.
(5)如圖1121所示表示集合A,如圖1122所示表示集合B.
圖1-1-2-1 圖1-1-2-2
(6)如圖1-1-2-3和圖1-1-2-4所示.
圖1-1-2-3 圖1-1-2-4
(7)不能.因為方程x2+1=0沒有實數(shù)解.
(8)空集.
高一數(shù)學(xué)教學(xué)工作計劃 篇4
平面上的直線就是由平面直角坐標(biāo)系中的一個二元一次方程所表示的圖形 。
教學(xué)目標(biāo)
(1)掌握由一點和斜率導(dǎo)出直線方程的方法,掌握直線方程的點斜式、兩點式和直線方程的一般式,并能根據(jù)條件熟練地求出直線的方程.
(2)理解直線方程幾種形式之間的內(nèi)在聯(lián)系,能在整體上把握直線的方程.
(3)掌握直線方程各種形式之間的互化.
(4)通過直線方程一般式的教學(xué)培養(yǎng)學(xué)生全面、系統(tǒng)、周密地分析、討論問題的能力.
(5)通過直線方程特殊式與一般式轉(zhuǎn)化的教學(xué),培養(yǎng)學(xué)生靈活的思維品質(zhì)和辯證唯物主義觀點.
(6)進一步理解直線方程的概念,理解直線斜率的意義和解析幾何的思想方法.
教學(xué)建議
1.教材分析
(1)知識結(jié)構(gòu)
由直線方程的概念和直線斜率的概念導(dǎo)出直線方程的點斜式;由直線方程的點斜式分別導(dǎo)出直線方程的斜截式和兩點式;再由兩點式導(dǎo)出截距式;最后都可以轉(zhuǎn)化歸結(jié)為直線的一般式;同時一般式也可以轉(zhuǎn)化成特殊式.
(2)重點、難點分析
、俦竟(jié)的重點是直線方程的點斜式、兩點式、一般式,以及根據(jù)具體條件求出直線的方程.
解析幾何有兩項根本性的任務(wù):一個是求曲線的方程;另一個就是用方程研究曲線.本節(jié)內(nèi)容就是求直線的方程,因此是非常重要的內(nèi)容,它對以后學(xué)習(xí)用方程討論直線起著直接的作用,同時也對曲線方程的學(xué)習(xí)起著重要的作用.
直線的點斜式方程是平面解析幾何中所求出的第一個方程,是后面幾種特殊形式的源頭.學(xué)生對點斜式學(xué)習(xí)的效果將直接影響后繼知識的學(xué)習(xí).
、诒竟(jié)的難點是直線方程特殊形式的限制條件,直線方程的整體結(jié)構(gòu),直線與二元一次方程的關(guān)系證明.
2.教法建議
(1)教材中求直線方程采取先特殊后一般的思路,特殊形式的方程幾何特征明顯,但局限性強;一般形式的方程無任何限制,但幾何特征不明顯.教學(xué)中各部分知識之間過渡要自然流暢,不生硬.
(2)直線方程的一般式反映了直線方程各種形式之間的統(tǒng)一性,教學(xué)中應(yīng)充分揭示直線方程本質(zhì)屬性,建立二元一次方程與直線的對應(yīng)關(guān)系,為繼續(xù)學(xué)習(xí)曲線方程打下基礎(chǔ).
直線一般式方程都是字母系數(shù),在揭示這一概念深刻內(nèi)涵時,還需要進行正反兩方面的分析論證.教學(xué)中應(yīng)重點分析思路,還應(yīng)抓住這一有利時使學(xué)生學(xué)會嚴(yán)謹(jǐn)科學(xué)的分類討論方法,從而培養(yǎng)學(xué)生全面、系統(tǒng)、辯證、周密地分析、討論問題的能力,特別是培養(yǎng)學(xué)生邏輯思維能力,同時培養(yǎng)學(xué)生辯證唯物主義觀點
(3)在強調(diào)幾種形式互化時要向?qū)W生充分揭示各種形式的特點,它們的幾何特征,參數(shù)的意義等,使學(xué)生明白為什么要轉(zhuǎn)化,并加深對各種形式的理解.
(4)教學(xué)中要使學(xué)生明白兩個獨立條件確定一條直線,如兩個點、一個點和一個方向或其他兩個獨立條件.兩點確定一條直線,這是學(xué)生很早就接觸的幾何公理,然而在解析幾何,平面向量等理論中,直線或向量的方向是極其重要的要素,解析幾何中刻畫直線方向的量化形式就是斜率.因此,直線方程的兩點式和點斜式在直線方程的幾種形式中占有很重要的地位,而已知兩點可以求得斜率,所以點斜式又可推出兩點式(斜截式和截距式僅是它們的特例),因此點斜式最重要.教學(xué)中應(yīng)突出點斜式、兩點式和一般式三個教學(xué)高潮.
求直線方程需要兩個獨立的條件,要依不同的幾何條件選用不同形式的方程.根據(jù)兩個條件運用待定系數(shù)法和方程思想求直線方程.
(5)注意正確理解截距的概念,截距不是距離,截距是直線(也是曲線)與坐標(biāo)軸交點的相應(yīng)坐標(biāo),它是有向線段的數(shù)量,因而是一個實數(shù);距離是線段的長度,是一個正實數(shù)(或非負(fù)實數(shù)).
(6)本節(jié)中有不少與函數(shù)、不等式、三角函數(shù)有關(guān)的問題,是函數(shù)、不等式、三角與直線的重要知識交匯點之一,教學(xué)中要適當(dāng)選擇一些有關(guān)的問題指導(dǎo)學(xué)生練習(xí),培養(yǎng)學(xué)生的綜合能力.
(7)直線方程的理論在其他學(xué)科和生產(chǎn)生活實際中有大量的應(yīng)用.教學(xué)中注意聯(lián)系實際和其它學(xué)科,教師要注意引導(dǎo),增強學(xué)生用數(shù)學(xué)的意識和能力.
(8)本節(jié)不少內(nèi)容可安排學(xué)生自學(xué)和討論,還要適當(dāng)增加練習(xí),使學(xué)生能更好地掌握,而不是僅停留在觀念上.
高一數(shù)學(xué)教學(xué)工作計劃 篇5
教材分析:
解不等式是不等式學(xué)習(xí)的.主要內(nèi)容,是中學(xué)數(shù)學(xué)的一項重要技能。主要類型有:一元一次不等式或不等式組的解法,一元二次不等式或不等式組的解法。其中,一次不等式的解法是基礎(chǔ),初中已經(jīng)學(xué)習(xí),二次不等式是重點,也是學(xué)習(xí)的難點。作為數(shù)學(xué)重要的工具及方法,經(jīng)常運用于其它數(shù)學(xué)知識之中。一元二次不等式的解法主要有二種,課本上介紹的是“數(shù)形結(jié)合”方法,這種方法將二次函數(shù),二次方程結(jié)合為一體,并且借助“圖形”直觀地得出答案,充分展現(xiàn)了數(shù)學(xué)知識之間的內(nèi)在聯(lián)系,另外也展現(xiàn)了“數(shù)形結(jié)合”思想方法的巨大魅力。然而,個人認(rèn)為,還有一種更加自然的方法,將二次不等式轉(zhuǎn)化為一次不等式組的方法,這種方法思路自然,同時也體現(xiàn)了“轉(zhuǎn)化”思想,難度也不大,應(yīng)該更加符合學(xué)生的實際思維及思路。
學(xué)情分析:
初中已經(jīng)學(xué)習(xí)了一元一次不等式(或組)的解法,積累了一定的解題經(jīng)驗。同時,對于二次方程,二次函數(shù)等相關(guān)知識學(xué)生均較為熟悉。然而,根據(jù)自己的調(diào)查,一少部分學(xué)生對于一元一次不等式及不等式組的解法都表現(xiàn)出一定程度的陌生。進而,可以先從復(fù)習(xí)簡單的一次不等式及不等式組入手加以展開教學(xué)。
學(xué)生心理方面,學(xué)習(xí)積極性較高,對數(shù)學(xué)的學(xué)習(xí)興趣、信心也比較理想,有較強的學(xué)習(xí)動機——考上大學(xué),盡管是外在的誘因。
教學(xué)目標(biāo):
、僦R與技能
熟練掌握一元一次不等式及不等式組的解法,初步學(xué)會兩種方法求出一元二次不等式的解集
、谶^程與方法
經(jīng)歷不等式求解的探索及發(fā)現(xiàn)過程,體驗“數(shù)形結(jié)合及轉(zhuǎn)化”思想的魅力,掌握方法,學(xué)會學(xué)習(xí)
、矍楦小B(tài)度及價值觀
在上述過程中,體驗成功,激發(fā)了對數(shù)學(xué)學(xué)習(xí)的興趣及信心,發(fā)展了對數(shù)學(xué)學(xué)習(xí)的積極情感,增強了學(xué)習(xí)的內(nèi)在動機
教學(xué)重點:
一元二次不等式的解法
教學(xué)難點:
解法的探索及發(fā)現(xiàn),關(guān)鍵在于“識圖能力”
反思:
今天的課堂,這個難點突破欠缺力量,主要緣于自己備課時對難點考慮不到位,進而缺乏必要的設(shè)計。在課堂上,就難點特別與個別差生進行了交流,并且給予了幫助及指導(dǎo)。在指導(dǎo)過程中,我找出了他們困難的二個環(huán)節(jié):
首先,對平面曲線上點的橫坐標(biāo)與縱座標(biāo)之間的對應(yīng)關(guān)系表現(xiàn)陌生,進而對它們的取值變化情況感到費解。
其次,是差生的思維能力尚處于“經(jīng)驗思維”,辯證思維能力薄弱,進而對運動中的點的坐標(biāo)取值范圍只能是“一籌莫展”。
在了解情況后,遵循“最近發(fā)展區(qū)”原理,以問題串的形式給差生提供必要的幫助后,差生也順利度過了難關(guān)。由此足以說明,從知識的角度而言,“沒有教不好的學(xué)生,只有不會教的教師:這句話還是相當(dāng)有道理的。當(dāng)然,這一切的前提就是對學(xué)生“學(xué)情”的掌握。美國著名心理學(xué)家、結(jié)構(gòu)主義學(xué)派的代表人布魯納也有類似觀點:給我一打健康的兒童,我可以教會他任何任何學(xué)科任何年齡段的任何知識。
教學(xué)程序:
一、復(fù)習(xí)一元一次不等式及不等式組的解法
以題組形式設(shè)計習(xí)題
、2x+3>7
、诓坏仁浇M
、踑x>b
二、創(chuàng)設(shè)二次不等式的生活背景實例,引入課題
采用課本上的實例,有關(guān)網(wǎng)絡(luò)收費問題
三、一元二次不等式的解法探索
(1)
在教師的啟發(fā)引導(dǎo)下,從特殊到一般,學(xué)生經(jīng)歷“轉(zhuǎn)化”方法的探索及發(fā)現(xiàn)過程。
由于這種方法課本沒有給出,進而課堂上不作為重點,重在引導(dǎo)學(xué)生自行歸納、體驗及總結(jié)“轉(zhuǎn)化”思想,最后以課外思考題的形式設(shè)計相應(yīng)習(xí)題。
(2)
采取啟發(fā)式教學(xué),師生共同經(jīng)歷“數(shù)形結(jié)合”方法的探索及發(fā)現(xiàn)過程,引導(dǎo)學(xué)生歸納出主要的解題步驟。今天的課堂上,這些解題步驟全部由學(xué)生的語言組織并完成,并撰寫在黑板上,教師沒有作任何干涉。我一直認(rèn)為,只有學(xué)生自己親身體驗的知識才是有意義的知識,盡管這些知識不完整,語言或許不規(guī)范,思維或許不嚴(yán)密。
之后,從特殊到一般,研究一般的二元一次不等式的解法。由于經(jīng)歷了前面的解題過程,這個環(huán)節(jié)全部放手讓學(xué)生完成,鼓勵他們通過或獨立或合作的方式解決學(xué)習(xí)任務(wù),完成課本上的表格。
反思:根據(jù)課堂反饋,二個班級大約有70%的同學(xué)能夠勝任這個任務(wù)。于是,在大多數(shù)學(xué)生完成的基礎(chǔ)上,我又進行了一次講解,特別加強了對“識圖”環(huán)節(jié)的講解力度,力求突破難點。
四、練習(xí)環(huán)節(jié)
可以說,即使到了高三,仍然有不少同學(xué)對于一元二次不等式解法的困惑。因此,熟練掌握二次不等式的解法,既是重點,也是難點。從學(xué)習(xí)類型看,這節(jié)課顯然屬于技能課,對于技能的學(xué)習(xí)及掌握,關(guān)鍵是強化練習(xí),“力求熟能生巧”,達(dá)到自動化的水平。
課本上,配置了不少練習(xí)題。對于練習(xí),我采取多種方式,或叫學(xué)生上黑板板書,借助學(xué)生練習(xí)規(guī)范解題格式;或者口答,說解題思路及答案;或者下面獨立練習(xí)。
五、課堂小結(jié)
知識,思想、方法及感悟等
六、課后作業(yè)
、僮鳂I(yè)設(shè)計:分成A、B兩層,難度不一,讓學(xué)生自主選擇,均來源于課本上的A組或B組
、谡n外思考題:
1比較兩種解題方法即“轉(zhuǎn)化及數(shù)形結(jié)合”方法的優(yōu)劣,以及它們之間的異同
2已知不等式mx^2-(m-2)x+m>0的解集為R,求m的取值范圍
變式一:戓將R改為空集,此時結(jié)論如何
變式二:仿上,自己改編條件,并解之。
反思:課外思考題的設(shè)計,可以提升課堂容量,深化課堂知識,提高課堂思維含量,為優(yōu)生服務(wù),發(fā)展學(xué)生的思維能力,激發(fā)他們的學(xué)習(xí)興趣。同時,加強變式教學(xué),可以充分拓展習(xí)題的潛在價值,期望實現(xiàn)“舉一反三”的目標(biāo)。
高一數(shù)學(xué)教學(xué)工作計劃 篇6
一、 指導(dǎo)思想
使學(xué)生在九年義務(wù)教育數(shù)學(xué)課程的基礎(chǔ)上,進一步提高作為未來公民所必要的數(shù)學(xué)素養(yǎng),以滿足個人發(fā)展和社會進步的需要。具體目標(biāo)如下:
1.突出數(shù)學(xué)基礎(chǔ)知識、基本技能、基本思想方法的培養(yǎng)
對數(shù)學(xué)基礎(chǔ)知識和基本技能的培養(yǎng),要貼近教學(xué)實際,既注意全面,又突出重點,注重知識內(nèi)在聯(lián)系以及中學(xué)數(shù)學(xué)中所蘊涵的數(shù)學(xué)思想方法的培養(yǎng)。
2.重視數(shù)學(xué)基本能力的培養(yǎng)
數(shù)學(xué)基本能力主要包括空間想象、抽象概括、推理論證、運算求解、數(shù)據(jù)處理這幾方面的能力。根據(jù)高一上學(xué)期的內(nèi)容,側(cè)重以下幾個方面:
。1)運算求解能力是思維能力和運算技能的結(jié)合,主要包括數(shù)的計算、估算和近似計算,式子的組合變形與分解變形,以及能夠針對問題探究運算方向、選擇運算公式、確定運算程序等。
。2)抽象概括能力的培養(yǎng)要求是:能夠通過對實例的探究發(fā)現(xiàn)研究對象的本質(zhì);能夠從給定的信息材料中概括出一些結(jié)論,并用于解決問題或做出新的判斷。
。3)推理論證能力的培養(yǎng)要求是:能夠根據(jù)已知的事實和已經(jīng)獲得的正確的數(shù)學(xué)命題,運用演繹推理,論證某一數(shù)學(xué)命題的真假性。
。4)數(shù)據(jù)處理能力是指會收集、整理、分析數(shù)據(jù),能夠從大量數(shù)據(jù)中提取對研究問題有用的信息并做出判斷,以解決給定的實際問題。
3.注重數(shù)學(xué)的應(yīng)用意識和創(chuàng)新意識的培養(yǎng)
培養(yǎng)數(shù)學(xué)的應(yīng)用意識,要求能夠運用所學(xué)的數(shù)學(xué)知識、思想和方法,構(gòu)造數(shù)學(xué)模型,將一些簡單的實際問題轉(zhuǎn)化為數(shù)學(xué)問題,并加以解決。培養(yǎng)學(xué)生的創(chuàng)新意識,鼓勵學(xué)生創(chuàng)造性地解決問題。
4.提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,樹立學(xué)好數(shù)學(xué)的信心,形成鍥而不舍的鉆研精神和科學(xué)態(tài)度。逐步認(rèn)識數(shù)學(xué)的科學(xué)價值、應(yīng)用價值和文化價值,崇尚數(shù)學(xué)的理性精神,體會數(shù)學(xué)的美學(xué)意義,形成批判性的思維習(xí)慣,從而進一步樹立辯證唯物主義和歷史唯物主義世界觀。
二、 教材特點
高一上使用的是人教版《必修1》和《必修4》,這套教材在堅持我國數(shù)學(xué)教育優(yōu)良傳統(tǒng)的前提下,認(rèn)真處理繼承、借鑒、發(fā)展、創(chuàng)新的關(guān)系,體現(xiàn)了基礎(chǔ)性、時代性、典型性和可接受性等,具有如下特點:
1. 親和力:以生動活潑的呈現(xiàn)方式,激發(fā)學(xué)習(xí)興趣和美感,每章配有優(yōu)美的章頭圖和詩一般的引言和富有哲理的數(shù)學(xué)家名言。
2. 問題性:每節(jié)圍繞問題展開,設(shè)置問題情景,培養(yǎng)問題意識,以問題為切入點,形成問題鏈,來組織課堂教學(xué)
3. 思想性和應(yīng)用性:通過不同數(shù)學(xué)內(nèi)容的聯(lián)系和啟發(fā),強調(diào)類比、推廣、化歸和特殊化等思想方法的運用,學(xué)習(xí)數(shù)學(xué)地思考問題的方式,提高數(shù)學(xué)思維能力,培養(yǎng)理性精神;取材具有時代感、現(xiàn)實感,加強數(shù)學(xué)活動,發(fā)展應(yīng)用意識。
4. 可操作性:教材編寫體例就是以一堂課的全過程展開,易于學(xué)生自學(xué)、教師編寫教案,大致一節(jié)內(nèi)容占三頁。
三、 學(xué)情分析
基本狀況:本年級共14個行政班級,其中2個實驗班,12個普通班。學(xué)生數(shù)共840人,由于初高中分別進行了課改,高中教材與初中教材銜接度遠(yuǎn)遠(yuǎn)不夠,需在新授的同時適時補充一些內(nèi)容,因此時間上略緊。同時,因其底子薄弱,教學(xué)時必須注重基礎(chǔ),夯實每個知識點。
四、 教學(xué)措施
1.加強自我學(xué)習(xí),特別是兩個綱領(lǐng)性文件——《普通高中數(shù)學(xué)課程標(biāo)準(zhǔn)》,《普通高中數(shù)學(xué)考試大綱》,準(zhǔn)確把握教學(xué)要求,提高教學(xué)效率,不做無用功;
2.加強集體備課,發(fā)動全組同志,確定階段主講人,集思廣益,討論優(yōu)化教學(xué)方案;平行班級統(tǒng)一進度,統(tǒng)一要求,統(tǒng)一作業(yè),統(tǒng)一考試;
3.認(rèn)真貫徹教學(xué)六認(rèn)真的要求,精心組織教學(xué),保護學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性,重視數(shù)學(xué)學(xué)習(xí)能力培養(yǎng);
4.加強銜接教學(xué),適量打破模塊式教學(xué),使學(xué)生得到和諧的發(fā)展。
五、 教學(xué)進度
【高一數(shù)學(xué)教學(xué)工作計劃】相關(guān)文章:
數(shù)學(xué)高一教學(xué)工作計劃01-26
關(guān)于高一數(shù)學(xué)教學(xué)的工作計劃10-15
數(shù)學(xué)高一教學(xué)工作計劃06-30
高一數(shù)學(xué)教學(xué)工作計劃01-11
高一數(shù)學(xué)教學(xué)工作計劃11-12
高一數(shù)學(xué)的教學(xué)工作計劃04-01
上學(xué)期高一數(shù)學(xué)教學(xué)的工作計劃10-17
高一數(shù)學(xué)教學(xué)個人工作計劃07-29