高一數(shù)學教學工作計劃范文合集五篇
日子在彈指一揮間就毫無聲息的流逝,我們的工作又進入新的階段,為了在工作中有更好的成長,不妨坐下來好好寫寫計劃吧。你所接觸過的計劃都是什么樣子的呢?下面是小編精心整理的高一數(shù)學教學工作計劃5篇,歡迎閱讀,希望大家能夠喜歡。
高一數(shù)學教學工作計劃 篇1
教學目標
1通過對冪函數(shù)概念的學習以及對冪函數(shù)圖象和性質(zhì)的歸納與概括,讓學生體驗數(shù)學概念的形成過程,培養(yǎng)學生的抽象概括能力。
2使學生理解并掌握冪函數(shù)的圖象與性質(zhì),并能初步運用所學知識解決有關(guān)問題,培養(yǎng)學生的靈活思維能力。
3培養(yǎng)學生觀察、分析、歸納能力。了解類比法在研究問題中的作用。
教學重點、難點
重點:冪函數(shù)的性質(zhì)及運用
難點:冪函數(shù)圖象和性質(zhì)的發(fā)現(xiàn)過程
教學方法:問題探究法 教具:多媒體
教學過程
一、創(chuàng)設(shè)情景,引入新課
問題1:如果張紅購買了每千克1元的水果w千克,那么她需要付的錢數(shù)p(元)和購買的水果量w(千克)之間有何關(guān)系?
(總結(jié):根據(jù)函數(shù)的定義可知,這里p是w的函數(shù))
問題2:如果正方形的邊長為a,那么正方形的面積 ,這里S是a的函數(shù)。 問題3:如果正方體的邊長為a,那么正方體的體積 ,這里V是a的函數(shù)。 問題4:如果正方形場地面積為S,那么正方形的邊長 ,這里a是S的函數(shù) 問題5:如果某人 s內(nèi)騎車行進了 km,那么他騎車的速度 ,這里v是t的函數(shù)。
以上是我們生活中經(jīng)常遇到的幾個數(shù)學模型,你能發(fā)現(xiàn)以上幾個函數(shù)解析式有什么共同點嗎?(右邊指數(shù)式,且底數(shù)都是變量) 這只是我們生活中常用到的一類函數(shù)的幾個具體代表,如果讓你給他們起一個名字的話,你將會給他們起個什么名字呢?(變量在底數(shù)位置,解析式右邊都是冪的形式)(適當引導:從自變量所處的位置這個角度)(引入新課,書寫課題)
二、新課講解
由學生討論,(教師可提示p=w可看成p=w1)總結(jié),即可得出:p=w, s=a2, a=s , v=t-1都是自變量的若干次冪的形式。
教師指出:我們把這樣的都是自變量的若干次冪的形式的函數(shù)稱為冪函數(shù)。
冪函數(shù)的定義:一般地,我們把形如 的函數(shù)稱為冪函數(shù)(power function),其中 是自變量, 是常數(shù)。 1冪函數(shù)與指數(shù)函數(shù)有什么區(qū)別?(組織學生回顧指數(shù)函數(shù)的概念) 結(jié)論:冪函數(shù)和指數(shù)函數(shù)都是我們高中數(shù)學中研究的兩類重要的基本初等函數(shù),從它們的解析式看有如下區(qū)別: 對冪函數(shù)來說,底數(shù)是自變量,指數(shù)是常數(shù) 對指數(shù)函數(shù)來說,指數(shù)是自變量,底數(shù)是常數(shù) 例1判別下列函數(shù)中有幾個冪函數(shù)?
① y= ②y=2x2 ③y=x ④y=x2+x ⑤y=-x3 ⑥ ⑦ ⑧ ⑨ (由學生獨立思考、回答)
2冪函數(shù)具有哪些性質(zhì)?研究函數(shù)應(yīng)該是哪些方面的內(nèi)容。前面指數(shù)函數(shù)、對數(shù)函數(shù)研究了哪些內(nèi)容?
(學生討論,教師引導。學生回答。)
3冪函數(shù)的定義域是否與對數(shù)函數(shù)、指數(shù)函數(shù)一樣,具有相同的定義域?
(學生小組討論,得到結(jié)論。引導學生舉例研究。結(jié)論:冪指數(shù) 不同,定義域并不完全相同,應(yīng)區(qū)別對待。)教師指出:冪函數(shù)y=xn中,當n=0時,其表達式y(tǒng)=x0=1;定義域為(-∞,0)U(0,+∞),特別強調(diào),當x為任何非零實數(shù)時,函數(shù)的值均為1,圖象是從點(0,1)出發(fā),平行于x軸的兩條射線,但點(0,1)要除外。)
例2寫出下列函數(shù)的定義域,并指出它們的奇偶性:①y=x ②y= ③y=x ④y=x
(學生解答,并歸納解決辦法。引導學生與指數(shù)函數(shù)、對數(shù)函數(shù)對照比較。引導學生具體問題具體分析,并作簡單歸納:分數(shù)指數(shù)應(yīng)化成根式,負指數(shù)寫成正數(shù)指數(shù)再寫出定義域。冪函數(shù)的奇偶性也應(yīng)具體分析。)
4上述函數(shù)①y=x ②y= ③y=x ④y=x 的單調(diào)性如何?如何判斷?
(學生思考,引導作圖可得。并加上y=x 和y=x-1圖象)接下來, 在同一坐標系中學生作圖,教師巡視。將學生作圖用實物投影儀演示,指出優(yōu)點和錯誤之處。教師利用幾何畫板演示。見后附圖1
讓學生觀察圖象,看單調(diào)性、以及還有哪些共同點?(學生思考,回答。教師注意學生敘述的嚴密性。)
教師總評:冪函數(shù)的性質(zhì)
(1)所有的冪函數(shù)在(0,+∞)上都有定義,并且圖象都過點(1,1),
(2)如果a>0,則冪函數(shù)的圖象通過原點,并在區(qū)間[0,+∞)上是增函數(shù),
(3)如果a<0,則冪函數(shù)在(0,+∞)上是減函數(shù),在第一區(qū)間內(nèi),當x從右邊趨向于原點時,圖象在y軸右方無限地趨近y軸;當x趨向于+∞,圖象在x軸上方無限地趨近x軸。
5通過觀察例1,在冪函數(shù)y=xa中,當a是(1)正偶數(shù)、(2)正奇數(shù)時,這一類函數(shù)有哪種性質(zhì)?
學生思考,教師講評:(1)在冪函數(shù)y=xa中,當a是正偶數(shù)時,函數(shù)都是偶函數(shù),在第一象限內(nèi)是增函數(shù)。(2)在冪函數(shù)y=xa中,當a是正奇數(shù)時,函數(shù)都是奇函數(shù),在第一象限內(nèi)是增函數(shù)。
例3鞏固練習 寫出下列函數(shù)的定義域,并指出它們的奇偶性和單調(diào)性:①y=x ②y=x ③y=x 。
例4簡單應(yīng)用1:比較下列各組中兩個值的大小,并說明理由:
①0.75 ,0.76 ;
、(-0.95) ,(-0.96) ;
、0.23 ,0.24 ;
、0.31 ,0.31
例5簡單應(yīng)用2:冪函數(shù)y=(m -3m-3)x 在區(qū)間 上是減函數(shù),求m的值。
例6簡單應(yīng)用2:
已知(a+1)<(3-2a) ,試求a的取值范圍。
課堂小結(jié)
今天的學習內(nèi)容和方法有哪些?你有哪些收獲和經(jīng)驗?
1、 冪函數(shù)的概念及其指數(shù)函數(shù)表達式的區(qū)別 2、 常見冪函數(shù)的圖象和冪函數(shù)的性質(zhì)。
布置作業(yè):
課本p.73 2、3、4、思考5
高一數(shù)學教學工作計劃 篇2
一、教材分析(結(jié)構(gòu)系統(tǒng)、單元內(nèi)容、重難點)
必修5第一章:解三角形;重點是正弦定理與余弦定理;難點是正弦定理與余弦定理的應(yīng)用;第二章:數(shù)列;重點是等差數(shù)列與等比數(shù)列的前n項的和;難點是等差數(shù)列與等比數(shù)列前n項的和與應(yīng)用;第三章:不等式;重點是一元二次不等式及其解法、二元一次不等式(組)與簡單的線性規(guī)劃問題、基本不等式;難點是二元一次不等式(組)與簡單的線性規(guī)劃問題及應(yīng)用;
必修2第一章:空間幾何體;重點是空間幾何體的三視圖和直觀圖及表面積與體積;難點是空間幾何體的三視圖;第二章:點、直線、平面之間的位置關(guān)系;重點與難點都是直線與平面平行及垂直的判定及其性質(zhì);第三章:直線與方程;重點是直線的傾斜角與斜率及直線方程;難點是如何選擇恰當?shù)闹本方程求解題目;第四章:圓與方程;重點是圓的方程及直線與圓的位置關(guān)系;難點是直線與圓的位置關(guān)系;
二、學生分析(雙基智能水平、學習態(tài)度、方法、紀律)
較去年而言,今年的學生的素質(zhì)有了比較大的提高,學生的基礎(chǔ)知識水平與基本學習方法比較扎實,大部分的學生對學習都有很大的興趣,學習紀律比較自覺。
三、教學目的要求
1.通過對任意三角形邊長和角度關(guān)系的探索,掌握正弦定理、余弦定理,并能解決一些簡單的三角形度量問題和與測量及幾何計算有關(guān)的實際問題。
2.通過日常生活中的實例,了解數(shù)列的概念和幾種簡單的表示方法,了解數(shù)列是一種特殊的函數(shù);理解等差數(shù)列、等比數(shù)列的概念,探索并掌握2種數(shù)列的通項公式與前n項和的公式,能用有關(guān)的知識解決相應(yīng)的問題。
3.理解不等式(組)對于刻畫不等關(guān)系的意義和價值;掌握求解一元二次不等式的基本方法,并能解決一些實際問題;能用一元二次不等式組表示平面區(qū)域,并嘗試解決簡單的二元線性規(guī)劃問題。
4.幾何學研究現(xiàn)實世界中物體的形狀、大小與位置的學科。直觀感知、操作確認、思辨論證、度量計算是認識和探索幾何圖形及其性質(zhì)的`方法。先從對空間幾何體的整體觀察入手,認識空間圖形及其直觀圖的畫法;再以長方體為載體,直觀認識和理解空間中點、直線、平面之間的位置關(guān)系,并利用數(shù)學語言表述有關(guān)平行、垂直的性質(zhì)與判定,對某些結(jié)論進行論證。另外了解一些簡單幾何體的表面積與體積的計算方法。在解析幾何初步中,在平面直角坐標系中建立直線和圓的代數(shù)方程,運用代數(shù)方法研究它們的幾何性質(zhì)及其相互關(guān)系,了解空間直角坐標系。體會數(shù)形結(jié)合的思想,初步形成用代數(shù)方法解決幾何問題的能力。
四、完成教學任務(wù)和提高教學質(zhì)量的具體措施
積極做好集體備課工作,達到內(nèi)容統(tǒng)一、進度統(tǒng)一、目標統(tǒng)一、例題統(tǒng)一、習題統(tǒng)一、資料統(tǒng)一;上好每一節(jié)課,及時對學生的思想進行觀察與指導;課后進行有效的輔導;進行有效的課堂反思。
五、教學進度
周次 課、章、節(jié) 教學內(nèi)容 備注
1 1.1,1.2 解三角形
2 1.2 解三角形
3 2.1,2.2 數(shù)列的概念與簡單表示法,等差數(shù)列
4 2.3 等差數(shù)列的前n項和
5 2.4,2.5 等比數(shù)列及前n項和
6 2.5 考試
7 3.1,3.2 不等關(guān)系與不等式,一元二次不等式及其解法
8 3.3,3.4 二元一次不等式(組)與簡單線性規(guī)劃問題,基本不等式
9 考試,復習
10 期中考試
11 1.1,1.2 空間幾何體的結(jié)構(gòu),三視圖,直觀圖
12 1.3 空間幾何體的表面積與體積
13 2.1,2.2 空間點、直線、平面的位置關(guān)系,直線、平面平行的判定及其性質(zhì)
14 2.3 直線、平面的判定及其性質(zhì)
15 3.1,3.2 直線的傾斜角與斜率,直線方程
16 3.3 直線的交點坐標與距離公式
17 4.1,4.2 圓的方程,直線、圓的位置關(guān)系
18 4.3 空間直角坐標系
19 復習
20 考試
高一數(shù)學教學工作計劃 篇3
教學分析
課本從學生熟悉的集合(自然數(shù)的集合、有理數(shù)的集合等)出發(fā),通過類比實數(shù)間的大小關(guān)系引入集合間的關(guān)系,同時,結(jié)合相關(guān)內(nèi)容介紹子集等概念.在安排這部分內(nèi)容時,課本注重體現(xiàn)邏輯思考的方法,如類比等.
值得注意的問題:在集合間的關(guān)系教學中,建議重視使用Venn圖,這有助于學生通過體會直觀圖示來理解抽象概念;隨著學習的深入,集合符號越來越多,建議教學時引導學生區(qū)分一些容易混淆的關(guān)系和符號,例如∈與?的區(qū)別.
三維目標
1.理解集合之間包含與相等的含義,能識別給定集合的子集,能判斷給定集合間的關(guān)系,提高利用類比發(fā)現(xiàn)新結(jié)論的能力.
2.在具體情境中,了解空集的含義,掌握并能使用Venn圖表達集合的關(guān)系,加強學生從具體到抽象的思維能力,樹立數(shù)形結(jié)合的思想.
重點難點
教學重點:理解集合間包含與相等的含義.
教學難點:理解空集的含義.
課時安排
1課時
教學過程
導入新課
思路1.實數(shù)有相等、大小關(guān)系,如5=5,5<7 5="">3等等,類比實數(shù)之間的關(guān)系,你會想到集合之間有什么關(guān)系呢?(讓學生自由發(fā)言,教師不要急于作出判斷,而是繼續(xù)引導學生)
欲知誰正確,讓我們一起來觀察、研探.
思路2.復習元素與集合的關(guān)系——屬于與不屬于的關(guān)系,填空:(1)0N;(2)2Q;(3)-1.5R.
類比實數(shù)的大小關(guān)系,如5<7,2≤2,試想集合間是否有類似的“大小”關(guān)系呢?(答案:(1)∈;(2)?;(3)∈)
推進新課
提出問題
(1)觀察下面幾個例子:
、貯={1,2,3},B={1,2,3,4,5};
、谠O(shè)A為國興中學高一(3)班男生的全體組成的集合,B為這個班學生的全體組成的集合;
、墼O(shè)C={x|x是兩條邊相等的三角形},D={x|x是等腰三角形};
、蹺={2,4,6},F(xiàn)={6,4,2}.
你能發(fā)現(xiàn)兩個集合間有什么關(guān)系嗎?
(2)例子①中集合A是集合B的子集,例子④中集合E是集合F的子集,同樣是子集,有什么區(qū)別?
(3)結(jié)合例子④,類比實數(shù)中的結(jié)論:“若a≤b,且b≤a,則a=b”,在集合中,你發(fā)現(xiàn)了什么結(jié)論?
(4)按升國旗時,每個班的同學都聚集在一起站在旗桿附近指定的區(qū)域內(nèi),從樓頂向下看,每位同學是哪個班的,一目了然.試想一下,根據(jù)從樓頂向下看的,要想直觀表示集合,聯(lián)想集合還能用什么表示?
(5)試用Venn圖表示例子①中集合A和集合B.
(6)已知A?B,試用Venn圖表示集合A和B的關(guān)系.
(7)任何方程的解都能組成集合,那么x2+1=0的實數(shù)根也能組成集合,你能用Venn圖表示這個集合嗎?
(8)一座房子內(nèi)沒有任何東西,我們稱為這座房子是空房子,那么一個集合沒有任何元素,應(yīng)該如何命名呢?
(9)與實數(shù)中的結(jié)論“若a≥b,且b≥c,則a≥c”相類比,在集合中,你能得出什么結(jié)論?
活動:教師從以下方面引導學生:
(1)觀察兩個集合間元素的特點.
(2)從它們含有的元素間的關(guān)系來考慮.規(guī)定:如果A B,但存在x∈B,且x A,我們稱集合A是集合B的真子集,記作A B(或B A).
(3)實數(shù)中的“≤”類比集合中的 .
(4)把指定位置看成是由封閉曲線圍成的,學生看成集合中的元素,從樓頂看到的就是把集合中的元素放在封閉曲線內(nèi).教師指出:為了直觀地表示集合間的關(guān)系,我們常用平面上封閉曲線的內(nèi)部代表集合,這種圖稱為Venn圖.
(5)封閉曲線可以是矩形也可以是橢圓等等,沒有限制.
(6)分類討論:當A B時,A B或A=B.
(7)方程x2+1=0沒有實數(shù)解.
(8)空集記為 ,并規(guī)定:空集是任何集合的子集,即 A;空集是任何非空集合的真子集,即 A(A≠ ).
(9)類比子集.
討論結(jié)果:
(1)①集合A中的元素都在集合B中;
、诩螦中的元素都在集合B中;
、奂螩中的元素都在集合D中;
④集合E中的元素都在集合F中.
可以發(fā)現(xiàn):對于任意兩個集合A,B有下列關(guān)系:集合A中的元素都在集合B中;或集合B中的元素都在集合A中.
(2)例子①中A B,但有一個元素4∈B,且4 A;而例子②中集合E和集合F中的元素完全相同.
(3)若A B,且B A,則A=B.
(4)可以把集合中元素寫在一個封閉曲線的內(nèi)部來表示集合.
(5)如圖1121所示表示集合A,如圖1122所示表示集合B.
圖1-1-2-1 圖1-1-2-2
(6)如圖1-1-2-3和圖1-1-2-4所示.
圖1-1-2-3 圖1-1-2-4
(7)不能.因為方程x2+1=0沒有實數(shù)解.
(8)空集.
高一數(shù)學教學工作計劃 篇4
本學期擔任高一(9)(10)兩班的數(shù)學教學工作,兩班學生共有120人,初中的基礎(chǔ)參差不齊,但兩個班的學生整體水平不高;部分學生學習習慣不好,很多學生不能正確評價自己,這給教學工作帶來了一定的難度,為把本學期教學工作做好,制定如下教學工作計劃。
一、指導思想:
使學生在九年義務(wù)教育數(shù)學課程的基礎(chǔ)上,進一步提高作為未來公民所必要的數(shù)學素養(yǎng),以滿足個人發(fā)展與社會進步的需要。具體目標如下。
1.獲得必要的數(shù)學基礎(chǔ)知識和基本技能,理解基本的數(shù)學概念、數(shù)學結(jié)論的本質(zhì),了解概念、結(jié)論等產(chǎn)生的背景、應(yīng)用,體會其中所蘊涵的數(shù)學思想和方法,以及它們在后續(xù)學習中的作用。通過不同形式的自主學習、探究活動,體驗數(shù)學發(fā)現(xiàn)和創(chuàng)造的歷程。
2.提高空間想像、抽象概括、推理論證、運算求解、數(shù)據(jù)處理等基本能力。
3.提高數(shù)學地提出、分析和解決問題(包括簡單的實際問題)的能力,數(shù)學表達和交流的能力,發(fā)展獨立獲取數(shù)學知識的能力。
4.發(fā)展數(shù)學應(yīng)用意識和創(chuàng)新意識,力求對現(xiàn)實世界中蘊涵的一些數(shù)學模式進行思考和作出判斷。
5.提高學習數(shù)學的興趣,樹立學好數(shù)學的信心,形成鍥而不舍的鉆研精神和科學態(tài)度。
6.具有一定的數(shù)學視野,逐步認識數(shù)學的科學價值、應(yīng)用價值和文化價值,形成批判性的思維習慣,崇尚數(shù)學的理性精神,體會數(shù)學的美學意義,從而進一步樹立辯證唯物主義和歷史唯物主義世界觀。
二、教學目標.
(一)情意目標
(1)通過分析問題的方法的教學,培養(yǎng)學生的學習的興趣。
(2)提供生活背景,通過數(shù)學建模,讓學生體會數(shù)學就在身邊,培養(yǎng)學數(shù)學用數(shù)學的意識。(3)在探究函數(shù)、等差數(shù)列、等比數(shù)列的性質(zhì),體驗獲得數(shù)學規(guī)律的艱辛和樂趣,在分組研究合作學習中學會交流、相互評價,提高學生的合作意識
(4)基于情意目標,調(diào)控教學流程,堅定學習信念和學習信心。
(5)還時空給學生、還課堂給學生、還探索和發(fā)現(xiàn)權(quán)給學生,給予學生自主探索與合作交流的機會,在發(fā)展他們思維能力的同時,發(fā)展他們的數(shù)學情感、學好數(shù)學的自信心和追求數(shù)學的科學精神。
(6)讓學生體驗“發(fā)現(xiàn)——挫折——矛盾——頓悟——新的發(fā)現(xiàn)”這一科學發(fā)現(xiàn)歷程法。
(二)能力要求培養(yǎng)學生記憶能力。
(1)通過定義、命題的總體結(jié)構(gòu)教學,揭示其本質(zhì)特點和相互關(guān)系,培養(yǎng)對數(shù)學本質(zhì)問題的背景事實及具體數(shù)據(jù)的記憶。
(3)通過揭示立體集合、函數(shù)、數(shù)列有關(guān)概念、公式和圖形的對應(yīng)關(guān)系,培養(yǎng)記憶能力。
2、培養(yǎng)學生的運算能力。
(1)通過概率的訓練,培養(yǎng)學生的運算能力。
(2)加強對概念、公式、法則的明確性和靈活性的教學,培養(yǎng)學生的運算能力。
(3)通過函數(shù)、數(shù)列的教學,提高學生是運算過程具有明晰性、合理性、簡捷性能力。
(4)通過一題多解、一題多變培養(yǎng)正確、迅速與合理、靈活的運算能力,促使知識間的滲透和遷移。
(5)利用數(shù)形結(jié)合,另辟蹊徑,提高學生運算能力。
三、學生在數(shù)學學習上存在的主要問題
我校高一學生在數(shù)學學習上存在不少問題,這些問題主要表現(xiàn)在以下方面:
1、進一步學習條件不具備.高中數(shù)學與初中數(shù)學相比,知識的深度、廣度,能力要求都是一次飛躍.這就要求必須掌握基礎(chǔ)知識與技能為進一步學習作好準備。高中數(shù)學很多地方難度大、方法新、分析能力要求高.如二次函數(shù)在閉區(qū)間上的最值問題,函數(shù)值域的求法,實根分布與參變量方程,三角公式的變形與靈活運用,空間概念的形成,排列組合應(yīng)用題及實際應(yīng)用問題等.客觀上這些觀點就是分化點,有的內(nèi)容還是高初中教材都不講的脫節(jié)內(nèi)容,如不采取補救措施,查缺補漏,分化是不可避免的。
2、被動學習.許多同學進入高中后,還像初中那樣,有很強的依賴心理,跟隨老師慣性運轉(zhuǎn),沒有掌握學習主動權(quán).表現(xiàn)在不定計劃,坐等上課,課前沒有預習,對老師要上課的內(nèi)容不了解,上課忙于記筆記,沒聽到“門道”,沒有真正理解所學內(nèi)容。不知道或不明確學習數(shù)學應(yīng)具有哪些學習方法和學習策略;老師上課一般都要講清知識的來龍去脈,剖析概念的內(nèi)涵,分析重點難點,突出思想方法.而一部分同學上課沒能專心聽課,對要點沒聽到或聽不全,筆記記了一大本,問題也有一大堆,課后又不能及時鞏固、總結(jié)、尋找知識間的聯(lián)系,只是趕做作業(yè),亂套題型,對概念、法則、公式、定理一知半解,機械模仿,死記硬背.也有的晚上加班加點,白天無精打采,或是上課根本不聽,自己另搞一套,結(jié)果是事倍功半,收效甚微。
高一數(shù)學教學工作計劃 篇5
一、指導思想:
本學期以提高教學質(zhì)量為目標,以培養(yǎng)學生學習興趣,增強學生學習能力為中心,以學生課后訓練為重點,以加強優(yōu)化課堂教學為手段,努力提高思想素質(zhì)和業(yè)務(wù)能力,抓好基礎(chǔ)知識教學,著重培養(yǎng)學生思維能力,全面提高數(shù)學成績,為下學期的成人高考作好充分的準備。
二、教學目標:
(一)知識目標:
本學期學習三角函數(shù)和平面向量這兩章內(nèi)容。按照讓學生知書中基本內(nèi)容、讓學生會練書中的練習題、讓學生能獨立做作業(yè)題、讓基礎(chǔ)好點的能做章后總復習題的學習目標要求,以每周四節(jié)課教學進度,在期中考試前學習完三角函數(shù),期中考試之后學習平面向量,讓學生掌握更多的數(shù)學知識,豐富學生的數(shù)學思想。
(二)情感目標
(1)加強高中數(shù)學知識與初中知識的聯(lián)系,注意知識的連貫性,提高學生對數(shù)學的認知水平,培養(yǎng)學生的學習的興趣。
(2)提供生活背景,通過數(shù)學建模,讓學生體會數(shù)學就在身邊,培養(yǎng)學數(shù)學用數(shù)學的意識。
(3)教學中加強知識形成的探究,讓學生體驗獲得數(shù)學規(guī)律的艱辛和樂趣,在學習中學會合作、學會交流、學會評價,提高學生的學習趣味性,感受學習中的成功樂趣。
(4)加強對學生的認識和了解,充分滿足學生的學習愿景,采用切實可行的教學方式,堅定學生的學習信念和學習信心,培養(yǎng)學生良好的學習習慣,增強學習的主動性,努力學習,提高成績。
(5)加強對學生的學習方法的指導,培養(yǎng)學生自主探索與合作交流的學習興趣,積累和發(fā)展他們的數(shù)學情感,積極訓練,發(fā)展思維能力。(三)能力目標
1、培養(yǎng)學生記憶能力。
(1)通過定義、命題的總體結(jié)構(gòu)教學,揭示其本質(zhì)特點和相互關(guān)系,培養(yǎng)對數(shù)學本質(zhì)問題的背景事實及具體數(shù)據(jù)的記憶。
(2)通過揭示三角函數(shù)有關(guān)概念、公式和圖形的對應(yīng)關(guān)系,培養(yǎng)記憶能力。
2、培養(yǎng)學生的運算能力。
(1)通過三角、向量等題型的訓練,培養(yǎng)學生的運算能力。
(2)加強對概念、公式、法則的明確性和靈活性的教學,培養(yǎng)學生的運算能力。
(3)通過一題多解、一題多變培養(yǎng)正確、迅速與合理、靈活的運算能力,促使知識間的滲透和遷移,培養(yǎng)學生思維的靈活性。
3、培養(yǎng)學生的理解能力
(1)利用數(shù)形結(jié)合,加強知識間的連通和邏輯關(guān)系的認識,加深知識的理解。
(2加強習題練習,提高對書本知識的認知和理解,促進學生運用所學的知識,提高學生的理解能力。
三、具體措施
1.期中考前上好三角函數(shù),期中考后完成好平面向量
2.抓好數(shù)學補差,培優(yōu)活動。
3.立足于教材。
4.要求學生完成課后練習及每一章課后習課
5、還繼續(xù)學習了《課堂教學論》,《現(xiàn)代教育技術(shù)》,努力學習多媒體課件的制作。
6、繼續(xù)認真開展教學研討活動,經(jīng)常聽課交流,認真評課,共同商討教材等。
7、課外活動課的時間,培優(yōu)補差,抓好課后輔導,提高學生成績。時間定于周三、周四。
【高一數(shù)學教學工作計劃】相關(guān)文章:
數(shù)學高一教學工作計劃01-26
數(shù)學高一教學工作計劃06-30
上學期高一數(shù)學教學的工作計劃10-17
高一數(shù)學教學個人工作計劃07-29
高一數(shù)學的教學工作計劃04-01
高一數(shù)學教學工作計劃11-12
高一數(shù)學教學工作計劃01-11
高一數(shù)學教學工作計劃12-12
高一數(shù)學教學工作計劃11-11