七年級(jí)數(shù)學(xué)《命題》教學(xué)設(shè)計(jì)范文
作為一位不辭辛勞的人民教師,常常要寫(xiě)一份優(yōu)秀的教學(xué)設(shè)計(jì),借助教學(xué)設(shè)計(jì)可使學(xué)生在單位時(shí)間內(nèi)能夠?qū)W到更多的知識(shí)。一份好的教學(xué)設(shè)計(jì)是什么樣子的呢?下面是小編收集整理的七年級(jí)數(shù)學(xué)《命題》教學(xué)設(shè)計(jì)范文,歡迎大家分享。
教學(xué)建議
(一)教材分析
1、知識(shí)結(jié)構(gòu)
2、重點(diǎn)、難點(diǎn)分析
重點(diǎn):找出命題的題設(shè)和結(jié)論.因?yàn)檎页鲆粋(gè)命題的題設(shè)和結(jié)論,是對(duì)該命題深刻理解的前提,而對(duì)命題理解能力是我們今后研究數(shù)學(xué)必備的能力,也是研究其它學(xué)科能力的基礎(chǔ).
難點(diǎn):找出一個(gè)命題的題設(shè)和結(jié)論.因?yàn)槔斫夂驼莆找粋(gè)命題,一定要分清它的題設(shè)和結(jié)論,所以找出一個(gè)命題的題設(shè)和結(jié)論是十分重要的問(wèn)題.但有些命題的題設(shè)和結(jié)論不明顯.例如,“對(duì)頂角相等”,“等角的余角相等”等.一些沒(méi)有寫(xiě)成“如果……那么……”形式的命題,學(xué)生往往搞不清哪是題設(shè),哪是結(jié)論,又沒(méi)有一個(gè)通用的方法可以套用,所以分清題設(shè)和結(jié)論是教學(xué)的一個(gè)難點(diǎn).
(二)教學(xué)建議
1、教師在教學(xué)過(guò)程中,組織或引導(dǎo)學(xué)生從具體到抽象,結(jié)合學(xué)生熟悉的事例,來(lái)理解命題的概念、找出一個(gè)命題的題設(shè)和結(jié)論,并能判斷一些簡(jiǎn)單命題的真假.
2、命題是數(shù)學(xué)中一個(gè)非常重要的概念,雖然高中階段我們還要學(xué)習(xí),但對(duì)于程度好的A層學(xué)生還要理解:
。1)假命題可分為兩類情況:
、兕}設(shè)只有一種情形,并且結(jié)論是錯(cuò)誤的,例如,“1+3=7”就是一個(gè)錯(cuò)誤的命題.
②題設(shè)有多種情形,其中至少有一種情形的結(jié)論是錯(cuò)誤的.例如,“內(nèi)錯(cuò)角互補(bǔ),兩直線平行”這個(gè)命題的題設(shè)可分為兩種情形:第一種情形是兩個(gè)內(nèi)錯(cuò)角都等于90°,這時(shí)兩直線平行;第二種情形是兩個(gè)內(nèi)錯(cuò)角不都等于90°,這時(shí)兩直線不平行.整體說(shuō)來(lái),這是錯(cuò)誤的命題.
。2)是否是命題:
命題的定義包括兩層涵義:
①命題必須是一個(gè)完整的句子;
、谶@個(gè)句子必須對(duì)某件事情做出肯定或者否定的判斷.即命題是判斷某一件事情的句子.在語(yǔ)法上,這樣的句子叫做陳述句,它由“題設(shè)+結(jié)論”構(gòu)成.
另外也有一些句子不是陳述句,例如,祈使句(也叫做命令句)“過(guò)直線AB外一點(diǎn)作該直線的平行線.”疑問(wèn)句“∠A是否等于∠B?”感嘆句“竟然得到5>9的結(jié)果!”以上三個(gè)句子都不是命題.
(3)命題的.組成
每個(gè)命題都是由題設(shè)、結(jié)論兩部分組成.題設(shè)是已知事項(xiàng);結(jié)論是由已知事項(xiàng)推出的事項(xiàng).命題常寫(xiě)成“如果…,那么…”的形式.具有這種形式的命題中,用“如果”開(kāi)始的部分是題設(shè),用“那么”開(kāi)始的部分是結(jié)論.
有些命題,沒(méi)有寫(xiě)成“如果…,那么…”的形式,題設(shè)和結(jié)論不明顯.對(duì)于這樣的命題,要經(jīng)過(guò)分折才能找出題設(shè)和結(jié)論,也可以將它們改寫(xiě)成“如果…那么…”的形式.
另外命題的題設(shè)(條件)部分,有時(shí)也可用“已知……”或者“若……”等形式表述;命題的結(jié)論部分,有時(shí)也可用“求證……”或“則……”等形式表述.
教學(xué)設(shè)計(jì)示例:
教學(xué)目標(biāo)
1.使學(xué)生對(duì)命題、真命題、假命題等概念有所理解.
2.使學(xué)生理解幾何命題的組成,能夠區(qū)分命題的題設(shè)和結(jié)論兩部分,并能將命題改寫(xiě)成“如果……,那么……”的形式.
3.會(huì)判斷一些命題的真假.
教學(xué)重點(diǎn)和難點(diǎn)
本節(jié)的重點(diǎn)和難點(diǎn)是:找出一個(gè)命題的題設(shè)和結(jié)論.
教學(xué)過(guò)程設(shè)計(jì)
一、分析語(yǔ)句,理解命題
1.教師讓學(xué)生隨意說(shuō)一句完整的話,每個(gè)小組可以派一名同學(xué)說(shuō),如:
。1)我是中國(guó)人。
(2)我家住在北京。
。3)你吃飯了嗎?
。4)兩條直線平行,內(nèi)錯(cuò)角相等。
。5)畫(huà)一個(gè)45°的角。
。6)平角與周角一定不相等。
2.找出哪些是判斷某一件事情的句子?
學(xué)生答:(1),(2),(4),(6)。
3.教師給出命題的概念,并舉例。
命題:判斷一件事情中,每句話都判斷什么事情.所謂判斷,就是肯定一個(gè)事物是什么或不是什么,不能含混不清.在數(shù)學(xué)課中,只研究數(shù)學(xué)命題,請(qǐng)學(xué)生舉幾個(gè)數(shù)學(xué)命題的例子,每組再選一個(gè)同學(xué)說(shuō).(不要讓說(shuō)過(guò)的再說(shuō))
如:的句子,叫做命題,分析(3),(5)為什么不是命題.
教師分析以上命題
。1)對(duì)頂角相等。
。2)等角的余角相等。
(3)一條射線把一個(gè)角分成兩個(gè)相等的角,這條射線一定是這個(gè)角的平分線。
。4)如果a>0,b>0,那么a+b>0。
(5)當(dāng)a>0時(shí),|a|=a。
。6)小于直角的角一定是銳角。
在學(xué)生舉例的基礎(chǔ)上,教師有意說(shuō)出以下兩個(gè)例子,并問(wèn)這是不是命題。
。7)a>0,b>0,a+b=0。
。8)2與3的和是4。
有些學(xué)生可能給與否定,這時(shí)教師再與學(xué)生共同回憶命題的定義,加以肯定,先不要給出假命題的概念,而是從“判斷”的角度來(lái)加深對(duì)命題這一概念的理解。
4.分析命題的構(gòu)成,改寫(xiě)命題的形式。
例兩條直線平行,同位角相等.
。╨)分析此命題的構(gòu)成,前一部分是后一部分成立的條件,后一部分是在前一部分條件下所得的結(jié)論.已知事項(xiàng)為“題設(shè)”,由已知推出的事項(xiàng)為“結(jié)論”。
(2)改寫(xiě)命題的形式。
由于題設(shè)是條件,可以寫(xiě)成“如果……”的形式,結(jié)論寫(xiě)成“那么……”的形式,所以上述命題可以改寫(xiě)成“如果兩條平行線被第三條直線所截,那么同位角相等!
請(qǐng)同學(xué)們將下列命題寫(xiě)成“如果……,那么……”的形式,例:
、賹(duì)頂角相等。
如果兩個(gè)角是對(duì)頂角,那么它們相等。
②兩條直線平行,內(nèi)錯(cuò)角相等。
如果兩條直線平行,那么內(nèi)錯(cuò)角相等。
③等角的補(bǔ)角相等。
如果兩個(gè)角是等角,那么它們的補(bǔ)角相等。(注意不僅僅限于兩個(gè)角,如果多個(gè)角相等,它們的補(bǔ)角也相等。)
以上三個(gè)命題的改寫(xiě)由學(xué)生進(jìn)行,對(duì)(2)要更改為“如果兩條平行線被第三條直線所截,那么內(nèi)錯(cuò)角相等!
提示學(xué)生注意:題設(shè)的條件要全面、準(zhǔn)確.如果條件不止一個(gè)時(shí),要一一列出。
如:兩條直線相交,有一個(gè)角是直角,則這兩條直線互相垂直,可改寫(xiě)為:
“如果兩條直線相交,而且有一個(gè)角是直角,那么這兩條直線互相垂直!
二、分析命題,理解真、假命題
1.讓學(xué)生分析兩個(gè)命題的不同之處。
(l)若a>0,b>0,則a+b>0
。2)若a>0,b>0,則a+b<0
相同之處:都是命題.為什么?都是對(duì)a>0,b>0時(shí),a+b的和的正負(fù),做出判斷,都有題設(shè)和結(jié)論。
不同之處:(1)中的結(jié)論是正確的,(2)中的結(jié)論是錯(cuò)誤的。
教師及時(shí)指出:同學(xué)們發(fā)現(xiàn)了命題的兩種情況。結(jié)論是正確的或結(jié)論是錯(cuò)誤的,那么我們就有了對(duì)命題的一種分類:真命題和假命題。
2.給出真、假命題定義
真命題:如果題設(shè)成立,那么結(jié)論一定成立,這樣的命題,叫做真命題。
假命題:如果題設(shè)成立,結(jié)論不成立,這樣的命題都是錯(cuò)誤的命題,叫做假命題。
注意:
。1)真命題中的“一定成立”不能有一個(gè)例外,如命題:“a≥0,b>0,則ab>0”。顯然當(dāng)a=0時(shí),ab>0不成立,所以該題是假命題,不是真命題。
。2)假命題中“結(jié)論不成立”是指“不能保證結(jié)論總是正確”,如:“a的倒數(shù)一定是”,顯然當(dāng)a=0時(shí)命題不正確,所以也是假命題。
。3)注意命題與假命題的區(qū)別.如:“延長(zhǎng)直線AB”.這本身不是命題.也更不是假命題。
。4)命題是一個(gè)判斷,判斷的結(jié)果就有對(duì)錯(cuò)之分.因此就要引入真假命題,強(qiáng)調(diào)真假命題的大前提,首先是命題。
3.運(yùn)用概念,判斷真假命題。
例請(qǐng)判斷以下命題的真假。
。1)若ab>0,則a>0,b>0。
。2)兩條直線相交,只有一個(gè)交點(diǎn)。
。3)如果n是整數(shù),那么2n是偶數(shù)。
。4)如果兩個(gè)角不是對(duì)頂角,那么它們不相等。
(5)直角是平角的一半。
解:(l)(4)都是假命題,(2)(3)(5)是真命題.
4.介紹一個(gè)不辨真?zhèn)蔚拿}.
“每一個(gè)大于4的偶數(shù)都可以表示成兩個(gè)質(zhì)數(shù)之和”。(即著名的哥德巴赫猜想)
我們可以舉出很多數(shù)字,說(shuō)明這個(gè)結(jié)論是正確的,而且至今沒(méi)有人舉出一個(gè)反例,但也沒(méi)有一個(gè)人能證明它對(duì)一切大于4的偶數(shù)正確.我國(guó)著名的數(shù)學(xué)家陳景潤(rùn),已證明了“每一個(gè)大于4的偶數(shù)都可以表示成一個(gè)質(zhì)數(shù)與兩個(gè)質(zhì)數(shù)之積的和”.即已經(jīng)證明了“1+2”,離“1+1”只差“一步之遙”.所以這個(gè)命題的真假還不能做最好的判定。
5.怎樣辨別一個(gè)命題的真假。
。╨)實(shí)際生活問(wèn)題,實(shí)踐是檢驗(yàn)真理的唯一標(biāo)準(zhǔn)。
(2)數(shù)學(xué)中判定一個(gè)命題是真命題,要經(jīng)過(guò)證明。
(3)要判斷一個(gè)命題是假命題,只需舉一個(gè)反例即可。
三、總結(jié)
師生共同回憶本節(jié)的學(xué)習(xí)內(nèi)容。
1.什么叫命題?真命題?假命題?
2.命題是由哪兩部分構(gòu)成的?
3.怎樣將命題寫(xiě)成“如果……,那么……”的形式。
4.初步會(huì)判斷真假命題.
教師提示應(yīng)注意的問(wèn)題:
1.命題與真、假命題的關(guān)系。
2.抓住命題的兩部分構(gòu)成,判斷一些語(yǔ)句是否為命題。
3.命題中的題設(shè)條件,有兩個(gè)或兩個(gè)以上,寫(xiě)“如果”時(shí)應(yīng)寫(xiě)全面。
4.判斷假命題,只需舉一個(gè)反例,而判斷真命題,數(shù)學(xué)問(wèn)題要經(jīng)過(guò)證明。
四、作業(yè)
1.選用課本習(xí)題。
2.以下供參選用。
。1)指出下列語(yǔ)句中的命題.
、傥覑(ài)祖國(guó)。
、谥本沒(méi)有端點(diǎn)。
③作∠AOB的平分線OE。
④兩條直線平行,一定沒(méi)有交點(diǎn)。
、菽鼙5整除的數(shù),末位一定是0。
⑥奇數(shù)不能被2整除。
⑦學(xué)習(xí)幾何不難。
(2)找出下列各句中的真命題。
、偃鬭=b,則a2=b2。
、谶B結(jié)A,B兩點(diǎn),得到線段AB。
③不是正數(shù),就不會(huì)大于零。
、90°的角一定是直角。
、莘彩窍嗟鹊慕嵌际侵苯。
。3)將下列命題寫(xiě)成“如果……,那么……”的形式。
、賰蓷l直線平行,同旁內(nèi)角互補(bǔ)。
、谌鬭2=b2,則a=b。
、弁(hào)兩數(shù)相加,符號(hào)不變。
、芘紨(shù)都能被2整除。
⑤兩個(gè)單項(xiàng)式的和是多項(xiàng)式。
【七年級(jí)數(shù)學(xué)《命題》教學(xué)設(shè)計(jì)范文】相關(guān)文章:
七年級(jí)數(shù)學(xué)教學(xué)設(shè)計(jì)01-17
數(shù)學(xué)必修四教學(xué)設(shè)計(jì)范文01-04
初中數(shù)學(xué)教學(xué)設(shè)計(jì)03-08
初中數(shù)學(xué)教學(xué)設(shè)計(jì)03-03
幼兒數(shù)學(xué)教學(xué)設(shè)計(jì)02-15
七年級(jí)數(shù)學(xué)教學(xué)設(shè)計(jì)(通用9篇)03-29
小學(xué)數(shù)學(xué)方程教學(xué)設(shè)計(jì)12-30
數(shù)學(xué)圖形教學(xué)設(shè)計(jì)案例02-15