男人天堂日韩,中文字幕18页,天天伊人网,成人性生交大片免费视频

數(shù)學(xué)函數(shù)教學(xué)設(shè)計(jì)

時(shí)間:2023-06-02 11:53:58 賽賽 教學(xué)設(shè)計(jì) 我要投稿

數(shù)學(xué)函數(shù)教學(xué)設(shè)計(jì)(通用12篇)

  作為一名老師,通常需要用到教學(xué)設(shè)計(jì)來(lái)輔助教學(xué),教學(xué)設(shè)計(jì)是一個(gè)系統(tǒng)化規(guī)劃教學(xué)系統(tǒng)的過程。那么問題來(lái)了,教學(xué)設(shè)計(jì)應(yīng)該怎么寫?以下是小編整理的數(shù)學(xué)函數(shù)教學(xué)設(shè)計(jì),僅供參考,大家一起來(lái)看看吧。

數(shù)學(xué)函數(shù)教學(xué)設(shè)計(jì)(通用12篇)

  數(shù)學(xué)函數(shù)教學(xué)設(shè)計(jì) 1

  一、教學(xué)目標(biāo):

  1、知道一次函數(shù)與正比例函數(shù)的定義。

  2、理解掌握一次函數(shù)的圖象的特征和相關(guān)的性質(zhì);

  3、弄清一次函數(shù)與正比例函數(shù)的區(qū)別與聯(lián)系。

  4、掌握直線的平移法則簡(jiǎn)單應(yīng)用。

  5、能應(yīng)用本章的基礎(chǔ)知識(shí)熟練地解決數(shù)學(xué)問題。

  二、教學(xué)重、難點(diǎn):

  重點(diǎn):初步構(gòu)建比較系統(tǒng)的函數(shù)知識(shí)體系。

  難點(diǎn):對(duì)直線的平移法則的理解,體會(huì)數(shù)形結(jié)合思想。

  三、教學(xué)過程:

  1、一次函數(shù)與正比例函數(shù)的定義:

  一次函數(shù):一般地,若y=kx+b(其中k,b為常數(shù)且k≠0),那么y是一次函數(shù)。

  正比例函數(shù):對(duì)于 y=kx+b,當(dāng)b=0, k≠0時(shí),有y=kx,此時(shí)稱y是x的正比例函數(shù),k為正比例系數(shù)。

  2、 一次函數(shù)與正比例函數(shù)的區(qū)別與聯(lián)系:

  (1)從解析式看:y=kx+b(k≠0,b是常數(shù))是一次函數(shù);而y=kx(k≠0,b=0)是正比例函數(shù),顯然正比例函數(shù)是一次函數(shù)的特例,一次函數(shù)是正比例函數(shù)的推廣。

 。2)從圖象看:正比例函數(shù)y=kx(k≠0)的圖象是過原點(diǎn)(0,0)的一條直線;而一次函數(shù)y=kx+b(k≠0)的圖象是過點(diǎn)(0,b)且與y=kx

  平行的一條直線。

  基礎(chǔ)訓(xùn)練:

  1、 寫出一個(gè)圖象經(jīng)過點(diǎn)(1,- 3)的函數(shù)解析式為:_______ 。

  2、直線y = - 2X - 2 不經(jīng)過第 象限,y隨x的增大而_______。

  3、如果P(2,k)在直線y=2x+2上,那么點(diǎn)P到x軸的距離是:________。

  4、已知正比例函數(shù) y =(3k-1)x,若y隨x的增大而增大,則k是:_______ 。

  5、過點(diǎn)(0,2)且與直線y=3x平行的直線是: _________。

  6、若正比例函數(shù)y =(1-2m)x 的圖像過點(diǎn)A(x1,y1)和點(diǎn)B(x2,y2)當(dāng)x1<x2時(shí),y1>y2,則m的.取值范圍是:_____ 。

  7、若y-2與x-2成正比例,當(dāng)x=-2時(shí),y=4,則x=______時(shí),y = -4。

  8、直線y=- 5x+b與直線y=x-3都交y軸上同一點(diǎn),則b的值為_______ 。

  9、已知圓O的半徑為1,過點(diǎn)A(2,0)的直線切圓O于點(diǎn)B,交y軸于點(diǎn)C。

  (1)求線段AB的長(zhǎng)。

 。2)求直線AC的解析式。

  四、教學(xué)反思:

  教師認(rèn)真?zhèn)湔n,查閱資料,搜集有針對(duì)性的訓(xùn)練題,學(xué)生只要課堂上能按照教師的思路去做就很高效了。課堂訓(xùn)練以競(jìng)賽的形式進(jìn)行,似乎有一定的刺激性,但缺少后續(xù)的刺激活動(dòng),學(xué)生沒有保持住持久的緊張狀態(tài)。

  課前先把所有的復(fù)習(xí)任務(wù)都交給學(xué)生完成,教師指導(dǎo)學(xué)生瀏覽教材、查閱資料歸納本章的基本概念、基本性質(zhì)、基本方法,并收集與每個(gè)知識(shí)點(diǎn)相關(guān)的有針對(duì)性的問題,也可以自己編題,同時(shí)要把每一個(gè)問題的答案做出來(lái),盡量要一題多解。再由小組長(zhǎng)組織小組成員匯編,在匯編過程中要去粗取精。課堂就是以小組為單位學(xué)生展示自己的舞臺(tái),在這個(gè)舞臺(tái)上學(xué)生是主角,在這個(gè)舞臺(tái)上學(xué)生可以成果共享,在這個(gè)舞臺(tái)上學(xué)生收獲著自己的收獲。臺(tái)上他們是主角,臺(tái)下他們也是主角。

  從另一個(gè)角度體會(huì)到了減輕學(xué)生負(fù)擔(dān)的深刻含義,不單指減少學(xué)生課后學(xué)習(xí)的時(shí)間,更重要的是提高學(xué)生學(xué)習(xí)的質(zhì)量、效率,我的這節(jié)課失敗之處就是過分的注重了前者,而忽略了實(shí)效性。那么在今后的復(fù)習(xí)課教學(xué)中我要多思多想、多問多聽(問問老師、聽聽學(xué)生的想法),力求在真正減輕學(xué)生負(fù)擔(dān)的基礎(chǔ)上打造高效課堂。

  數(shù)學(xué)函數(shù)教學(xué)設(shè)計(jì) 2

  教學(xué)目標(biāo):

  1、 理解二次函數(shù)的意義;會(huì)用描點(diǎn)法畫出函數(shù)y=ax2的圖象,知道拋物線的有關(guān)概念;

  2、 通過變式教學(xué),培養(yǎng)學(xué)生思維的敏捷性、廣闊性、深刻性;

  3、 通過二次函數(shù)的教學(xué)讓學(xué)生進(jìn)一步體會(huì)研究函數(shù)的一般方法;加深對(duì)于數(shù)形結(jié)合思想認(rèn)識(shí)。

  教學(xué)重點(diǎn):

  二次函數(shù)的意義;會(huì)畫二次函數(shù)圖象。

  教學(xué)難點(diǎn):

  描點(diǎn)法畫二次函數(shù)y=ax2的圖象,數(shù)與形相互聯(lián)系。

  教學(xué)過程設(shè)計(jì):

  一、 創(chuàng)設(shè)情景、建模引入

  我們已學(xué)習(xí)了正比例函數(shù)及一次函數(shù),現(xiàn)在來(lái)看看下面幾個(gè)例子:

  1、寫出圓的半徑是R(CM),它的面積S(CM2)與R的關(guān)系式

  答:S=πR2、 ①

  2、寫出用總長(zhǎng)為60M的籬笆圍成矩形場(chǎng)地,矩形面積S(M2)與矩形一邊長(zhǎng)L(M)之間的關(guān)系

  答:S=L(30-L)=30L-L2 ②

  分析:①②兩個(gè)關(guān)系式中S與R、L之間是否存在函數(shù)關(guān)系?S是否是R、L的一次函數(shù)?

  由于①②兩個(gè)關(guān)系式中S不是R、L的一次函數(shù),那么S是R、L的.什么函數(shù)呢?這樣的函數(shù)大家能不能猜想一下它叫什么函數(shù)呢?

  答:二次函數(shù)。

  這一節(jié)課我們將研究二次函數(shù)的有關(guān)知識(shí)。(板書課題)

  二、 歸納抽象、形成概念

  一般地,如果y=ax2+bx+c(a,b,c是常數(shù),a≠0) ,那么,y叫做x的二次函數(shù)、

  注意:(1)必須a≠0,否則就不是二次函數(shù)了、而b,c兩數(shù)可以是零、(2) 由于二次函數(shù)的解析式是整式的形式,所以x的取值范圍是任意實(shí)數(shù)、

  練習(xí):1、舉例子:請(qǐng)同學(xué)舉一些二次函數(shù)的例子,全班同學(xué)判斷是否正確。

  2、出難題:請(qǐng)同學(xué)給大家出示一個(gè)函數(shù),請(qǐng)同學(xué)判斷是否是二次函數(shù)。

 。ㄈ魧W(xué)生考慮不全,教師給予補(bǔ)充。如: ; ; ; 的形式。)

 。ㄍㄟ^學(xué)生觀察、歸納定義加深對(duì)概念的理解,既培養(yǎng)了學(xué)生的實(shí)踐能力,有培養(yǎng)了學(xué)生的探究精神。并通過開放性的練習(xí)培養(yǎng)學(xué)生思維的發(fā)散性、開放性。題目用了一些人性化的詞語(yǔ),也增添了課堂的趣味性。)

  由前面一次函數(shù)的學(xué)習(xí),我們已經(jīng)知道研究函數(shù)一般應(yīng)按照定義、圖象、性質(zhì)、求解析式幾個(gè)方面進(jìn)行研究。二次函數(shù)我們也會(huì)按照定義、圖象、性質(zhì)、求解析式幾個(gè)方面進(jìn)行研究。

 。ㄔ谶@里指出學(xué)習(xí)函數(shù)的一般方法,旨在及時(shí)進(jìn)行學(xué)法指導(dǎo);并將此方法形成技能,以指導(dǎo)今后的學(xué)習(xí);進(jìn)一步培養(yǎng)終身學(xué)習(xí)的能力。)

  三、 嘗試模仿、鞏固提高

  讓我們先從最簡(jiǎn)單的二次函數(shù)y=ax2入手展開研究

  嘗試:大家知道一次函數(shù)的圖象是一條直線,那么二次函數(shù)的圖象是什么呢?

  請(qǐng)同學(xué)們畫出函數(shù)y=x2的圖象。

 。▽W(xué)生分別畫圖,教師巡視了解情況。)

  數(shù)學(xué)函數(shù)教學(xué)設(shè)計(jì) 3

  教學(xué)目標(biāo)

  1、回顧反比例函數(shù)的概念、通過實(shí)際問題,進(jìn)一步感受用反比例函數(shù)解決實(shí)際問題的過程與方法,體會(huì)反比例函數(shù)是分析、解決實(shí)際問題的一種有效的模型。

  2、歸納總結(jié)反比例函數(shù)的xxx象和性質(zhì),進(jìn)一步體會(huì)形數(shù)結(jié)合的數(shù)學(xué)思想方法。

  教學(xué)過程

  1、回顧、梳理本章的知識(shí):

  如同已經(jīng)學(xué)過的有關(guān)方程、函數(shù)的內(nèi)容一樣,本章內(nèi)容分為3塊:

 。1)從生活到數(shù)學(xué):從問題到反比例函數(shù),即建構(gòu)實(shí)際問題的數(shù)學(xué)模型;

 。2)數(shù)學(xué)研究:反比例函數(shù)的xxx象與性質(zhì);

 。3)用數(shù)學(xué)解決問題:反比例函數(shù)的應(yīng)用。

  2、可以設(shè)計(jì)一組問題,重點(diǎn)歸納、整理反比例函數(shù)的xxx象與性質(zhì),進(jìn)一步感受形數(shù)結(jié)合的數(shù)學(xué)思想方法、例如:

 。1)由形到數(shù)——用待定系數(shù)法求反比例函數(shù)的關(guān)系式;由xxx象的位置或xxx象的部分確定函數(shù)的特征;

 。2)由數(shù)到形――根據(jù)反比例函數(shù)關(guān)系式或反比例函數(shù)的性質(zhì),確定xxx形的位置、趨勢(shì)等;

  (3)形數(shù)結(jié)合——函數(shù)的xxx象與性質(zhì)的`綜合應(yīng)用

  2例如:如xxx,點(diǎn)P是反比例函數(shù)y?上的一點(diǎn),PD垂直x軸于點(diǎn)D,則△xPOD的面積為________

  3、設(shè)計(jì)一個(gè)實(shí)際問題,讓學(xué)生經(jīng)歷“問題情境一建立模型一求解一解釋與應(yīng)用”的基本過程、

  例如:為了預(yù)防“xxx”,某學(xué)校對(duì)教室采用藥薰法進(jìn)行消毒、已知藥物燃燒時(shí)、室內(nèi)每立方米空氣中的含藥量y(mg)與時(shí)間x(min)成正比例,藥物燃燒后,y與x成反比例(如xxx)、現(xiàn)測(cè)得藥物8min燃畢,此時(shí)室內(nèi)空氣中每立方米含藥量為6mg。

 。1)寫出藥物燃燒前、后y與x的函數(shù)關(guān)系式;

  (2)研究表明,當(dāng)空氣中每立方米的含藥量低于1.6mg時(shí),學(xué)生方可進(jìn)教室、那么從消毒開始,至少需要多少時(shí)間,學(xué)生方能進(jìn)入教室?

 。3)研究表明,當(dāng)空氣中每立方米的含藥量不低于3mg且持續(xù)時(shí)間不少于10min時(shí),才能有效滅殺空氣中的病菌,那么這次消毒是否有效?

  數(shù)學(xué)函數(shù)教學(xué)設(shè)計(jì) 4

  教學(xué)目標(biāo)

  1、知識(shí)與技能

  了解函數(shù)的概念,弄清自變量與函數(shù)之間的關(guān)系。

  2、過程與方法

  經(jīng)歷探索函數(shù)概念的過程,感受函數(shù)的模型思想。

  3、情感、態(tài)度與價(jià)值觀

  培養(yǎng)觀察、交流、分析的思想意識(shí),體會(huì)函數(shù)的實(shí)際應(yīng)用價(jià)值。

  重、難點(diǎn)與關(guān)鍵

  1、重點(diǎn):認(rèn)識(shí)函數(shù)的概念。

  2、難點(diǎn):對(duì)函數(shù)中自變量取值范圍的確定。

  3、關(guān)鍵:從實(shí)際出發(fā),由具體到抽象,建立函數(shù)的`模型。

  教學(xué)方法

  采用“情境──探究”的方法,讓學(xué)生從具體的情境中提升函數(shù)的思想方法。

  教學(xué)過程

  一、回顧交流,聚焦問題

  1、變量(P94)中5個(gè)思考題。

  教師提問

  同學(xué)們通過學(xué)習(xí)“變量”這一節(jié)內(nèi)容,對(duì)常量和變量有了一定的認(rèn)識(shí),請(qǐng)同學(xué)們舉出一些現(xiàn)實(shí)生活中變化的實(shí)例,指出其中的常量與變量。

  學(xué)生活動(dòng)思考問題,踴躍發(fā)言。(先歸納出5個(gè)思考題的關(guān)系式,再舉例)

  教師活動(dòng)激發(fā)興趣,鼓勵(lì)學(xué)生聯(lián)想,

  2、在地球某地,溫度T(℃)與高度d(m)的關(guān)系可以挖地用T=10—來(lái)表示(如圖),請(qǐng)你根據(jù)這個(gè)關(guān)系式回答下列問題:

  (1)指出這個(gè)關(guān)系式中的變量和常量。

 。2)填寫下表。

  高度d/m 0,200,400,600,800,1000

  溫度T/℃

 。3)觀察兩個(gè)變量之間的聯(lián)系,當(dāng)其中一個(gè)變量取定一個(gè)值時(shí),另一個(gè)變量就______。

  3、課本P7“觀察”。

  學(xué)生活動(dòng)四人小組互動(dòng)交流,踴躍發(fā)言

  二、討論交流,形成概念

  函數(shù)定義

  一般地,在一個(gè)變化過程中,如果有兩個(gè)變量x與y,并且對(duì)于x的每一個(gè)確定的值,y都有唯一確定的值與其對(duì)應(yīng),那么我們就說x是自變量,y是x的函數(shù)。

  教師活動(dòng)歸納出函數(shù)的定義。強(qiáng)調(diào)在上述活動(dòng)中的關(guān)系式是函數(shù)關(guān)系式。提問學(xué)生,兩個(gè)變量中哪個(gè)是自變量呢?哪個(gè)是這個(gè)自變量的函數(shù)?

  學(xué)生活動(dòng)辨析理解,如:T=10—這個(gè)函數(shù)關(guān)系式中,d是自變量,T是d的函數(shù)等。弄清函數(shù)定義中的問題。

  三、繼續(xù)探究,感知輕重

  課本P8探究題。

  學(xué)生活動(dòng)使用計(jì)算器進(jìn)行探索活動(dòng),回答問題,理解函數(shù)概念。

  (1)y=2x+5,y是x的函數(shù);

  (2)y=2x+1,y是x的函數(shù)。

  四、范例點(diǎn)擊,提高認(rèn)知

  例1一輛汽車的油箱中現(xiàn)有汽油50L,如果不再加油,那么油箱中的油量y(單位:L)隨行駛里程x(單位:km)的增加而減少,平均耗油量為/km。

 。1)寫出表示y與x的函數(shù)關(guān)系的式子。

  (2)指出自變量x的取值范圍。

  (3)汽車行駛200km時(shí),油箱中還有多少汽油?

  教師活動(dòng)講例,啟發(fā)引導(dǎo)學(xué)生共同解決上述例1。

  五、隨堂練習(xí),鞏固深化

  課本P99練習(xí)。

  六、課堂總結(jié),發(fā)展?jié)撃?/p>

  1、用數(shù)學(xué)式子表示函數(shù)的方法叫做表達(dá)式法(解析式法),它只是函數(shù)表示法的一種。

  2、求函數(shù)的自變量取值范圍的方法。

 。1)要使函數(shù)的表達(dá)式有意義;

 。2)對(duì)實(shí)際問題中的函數(shù)關(guān)系,要使實(shí)際問題有意義。

  3、把所給自變量的值代入函數(shù)表達(dá)式中,就可以求出相應(yīng)的函數(shù)值。

  七、布置作業(yè),專題突

  課本P106習(xí)題14。1第1,2,3,4題。

  數(shù)學(xué)函數(shù)教學(xué)設(shè)計(jì) 5

  教學(xué)目標(biāo)

  1、經(jīng)歷一般規(guī)律的探索過程,發(fā)展學(xué)生的抽象思維能力。

  2、理解一次函數(shù)和正比例函數(shù)的概念,能根據(jù)所給條件寫出簡(jiǎn)單的一次函數(shù)表達(dá)式,發(fā)展學(xué)生的數(shù)學(xué)應(yīng)用能力。

  教學(xué)重點(diǎn)

  1、一次函數(shù)、正比例函數(shù)的概念及兩者之間的關(guān)系。

  2、會(huì)根據(jù)已知信息寫出一次函數(shù)的表達(dá)式。教學(xué)難點(diǎn)一次函數(shù)知識(shí)的'運(yùn)用教學(xué)方法教師引導(dǎo)學(xué)生自學(xué)法教具準(zhǔn)備彈簧一根、

  課件教學(xué)過程

  一、創(chuàng)設(shè)問題情境,引入新課

  1、簡(jiǎn)單復(fù)習(xí)函數(shù)的概念(設(shè)在某一變化過程中有兩個(gè)變量X和Y,如果,那么我們稱Y是X的函數(shù),其中X是自變量,Y是因變量)

  2、演示彈簧在力的作用下發(fā)生形變現(xiàn)象,提出問題:在彈簧長(zhǎng)度發(fā)生變化過程中,彈簧的長(zhǎng)度是哪個(gè)變量的函數(shù)?為什么?

  3、汽車勻速行駛途中,油箱中的剩余油量與什么有關(guān)系?這其中有函數(shù)嗎?

  二、新課學(xué)習(xí)

  1、做一做。讓學(xué)生做書上157頁(yè)上面兩個(gè)題目,使學(xué)生在探索一般規(guī)律的過程中,發(fā)展抽象思維能力。

  2、一次函數(shù)、正比例函數(shù)的概念學(xué)習(xí)討論:剛才寫出的兩個(gè)關(guān)系式y(tǒng)=3+0.5x、y=100—0.18x在形式上有什么相同之處?

  讓學(xué)生分析出他們的共同點(diǎn):

  ①左邊都是因變量,右邊都是含自變量的代數(shù)式;

  ②自變量X與因變量Y的次數(shù)都是1;

 、蹚男问缴峡矗问蕉紴閥=kx+b,K,b為常數(shù)。

  問:從自變量的次數(shù)上看,這樣的函數(shù)大家認(rèn)為可以取個(gè)什么名字?引導(dǎo)學(xué)生歸納出一次函數(shù)的概念:若兩個(gè)變量x,y間的關(guān)系可以表示成y=kx+b(k,b為常數(shù),k≠0)的形式,則稱y是x的一次函數(shù)(x是自變量,y是因變量)。

  問:一次函數(shù)y=kx+b中,k可以為0嗎?b可以為0嗎?引導(dǎo)學(xué)生得出正比例函數(shù)的概念。

  并接著引導(dǎo)學(xué)生比較一次函數(shù)與正比例函數(shù)的關(guān)系(用集合的方法比較):一次函包括正比例函數(shù),正比例函數(shù)是一次函數(shù)的特殊情況。

  3、例題學(xué)習(xí)

  例題1是考察學(xué)生對(duì)一次函數(shù)與正比例函數(shù)概念的理解,學(xué)生直接進(jìn)行口答。

  例題2是培養(yǎng)學(xué)生根據(jù)題意列出簡(jiǎn)單一次函數(shù)關(guān)系式及利用一次函數(shù)解決實(shí)際問題的能力。其中第三問嚴(yán)格地講應(yīng)先判斷出工資的范圍是800

  三、隨堂練習(xí)

  1、找出下面的一次函數(shù),并指出其中K、b的值。若不是一次函數(shù),請(qǐng)說明理由。

  A、y= +x B、y=—0。8x C、y=0。3+2x2 D、y=6—

  2、已知函數(shù)y=(m+1)x+(m2—1),當(dāng)m,y是x的一次函數(shù);當(dāng)m,y是x的正比例函數(shù)。

  四、拓展應(yīng)用

  學(xué)校組織部分學(xué)生去井崗山體驗(yàn)革命歷史。出行方面準(zhǔn)備從甲、乙兩家旅行社中選擇一家代辦,已知兩家旅行社報(bào)價(jià)相同,都是每人200元。不過,甲旅行社開出的團(tuán)體(15人以上)優(yōu)惠辦法是返還現(xiàn)金500元作為門票費(fèi),乙旅行社的團(tuán)體優(yōu)惠是,所有人員費(fèi)用均打9折。設(shè)學(xué)生人數(shù)為x人,兩家旅行社的收費(fèi)分別為y甲、y乙,解答下列問題:

 。1)分別寫出兩家旅行社收費(fèi)y(元)與學(xué)生人數(shù)x(人)之間的函數(shù)關(guān)系式;該關(guān)系式是什么函數(shù)?(y甲=200x—500,y乙=180x)

 。2)如果學(xué)生為20人,分別計(jì)算兩家旅行社收費(fèi)。到哪家合算?(y甲=200×20—500=3500(元);y乙=180×20=3600(元);

  y甲< y乙,所以到甲旅行社合算。)

 。3)在什么情況下,選擇乙旅行社?(依題意得,y甲— y乙>0,即(200x—500)—180x>0,解不等式得,x>25,所以當(dāng)學(xué)生多于25人時(shí),到乙旅行社合算。)

  五、課堂小結(jié)

  讓學(xué)生歸納本節(jié)課學(xué)習(xí)內(nèi)容:

  1、一次函數(shù)、正比例函數(shù)概念以及它們之間的關(guān)系。

  2、會(huì)根據(jù)已知信息寫出一次函數(shù)的關(guān)系式。

  六、作業(yè)讀一讀:

  中國(guó)古代漏刻必做題:161頁(yè)習(xí)題6.2第1、2、3題選

  做題:161頁(yè)試一試

  數(shù)學(xué)函數(shù)教學(xué)設(shè)計(jì) 6

  一、教學(xué)類型

  新知課

  二、教學(xué)目標(biāo)

  1、理解指數(shù)函數(shù)的定義,初步掌握指數(shù)函數(shù)的定義域,值域及其奇偶性。

  2、通過對(duì)指數(shù)函數(shù)的研究,使學(xué)生能把握函數(shù)研究的基本方法,激發(fā)學(xué)生的學(xué)習(xí)興趣。

  三、教學(xué)重點(diǎn)和難點(diǎn)

  重點(diǎn):理解指數(shù)函數(shù)的定義,把握?qǐng)D象和性質(zhì)。

  難點(diǎn):認(rèn)識(shí)底數(shù)對(duì)函數(shù)值影響的`認(rèn)識(shí)。

  四、教學(xué)用具

  投影儀

  五、教學(xué)方法

  啟發(fā)討論研究式

  六、教學(xué)過程

  1)引入新課

  我們前面學(xué)習(xí)了指數(shù)運(yùn)算,在此基礎(chǔ)上,今天我們要來(lái)研究一類新的常見函數(shù)———————指數(shù)函數(shù)。指數(shù)函數(shù)(板書)

  這類函數(shù)之所以重點(diǎn)介紹的原因就是它是實(shí)際生活中的一種需要。比如我們看下面的問題:

  問題1:某種細(xì)胞分裂時(shí),由1個(gè)分裂成2個(gè),2個(gè)分裂成4個(gè),……一個(gè)這樣的細(xì)胞分裂次后,得到的細(xì)胞分裂的個(gè)數(shù)與之間,構(gòu)成一個(gè)函數(shù)關(guān)系,能寫出與之間的函數(shù)關(guān)系式嗎?

  問題2:有一根1米長(zhǎng)的繩子,第一次剪去繩長(zhǎng)一半,第二次再剪去剩余繩子的一半,……剪了次后繩子剩余的長(zhǎng)度為米,試寫出與之間的函數(shù)關(guān)系。

  1、定義:形如的函數(shù)稱為指數(shù)函數(shù)。(板書)

  教師在給出定義之后再對(duì)定義作幾點(diǎn)說明。

  2、幾點(diǎn)說明(板書)

 。1)關(guān)于對(duì)的規(guī)定:

  (2)關(guān)于指數(shù)函數(shù)的定義域(板書)

 。3)關(guān)于是否是指數(shù)函數(shù)的判斷(板書)剛才分別認(rèn)識(shí)了指數(shù)函數(shù)中底數(shù),指數(shù)的要求,下面我們從整體的角度來(lái)認(rèn)識(shí)一下,根據(jù)定義我們知道什么樣的函數(shù)是指數(shù)函數(shù),請(qǐng)看下面函數(shù)是否是指數(shù)函數(shù)。學(xué)生回答并說明理由,教師根據(jù)情況作點(diǎn)評(píng),指出只有(1)和(3)是指數(shù)函數(shù),其中(3)可以寫成,也是指數(shù)圖象。最后提醒學(xué)生指數(shù)函數(shù)的定義是形式定義,就必須在形式上一摸一樣才行,然后把問題引向深入,有了定義域和初步研究的函數(shù)的性質(zhì),此時(shí)研究的關(guān)鍵在于畫出它的圖象,再細(xì)致歸納性質(zhì)。

  3、歸納性質(zhì)。

  數(shù)學(xué)函數(shù)教學(xué)設(shè)計(jì) 7

  一、教學(xué)目標(biāo):

  知識(shí)與技能:理解指數(shù)函數(shù)的概念,能夠判斷指數(shù)函數(shù)。

  過程與方法:通過觀察,分析、歸納、總結(jié)、自主建構(gòu)指數(shù)函數(shù)的概念。領(lǐng)會(huì)從特殊到一般的數(shù)學(xué)思想方法,從而培養(yǎng)學(xué)生發(fā)現(xiàn)、分析、解決問題的能力。

  情感態(tài)度與價(jià)值觀:在指數(shù)函數(shù)的學(xué)習(xí)過程中,體驗(yàn)數(shù)學(xué)的科學(xué)價(jià)值和應(yīng)用價(jià)值,培養(yǎng)學(xué)生善于觀察、勇于探索的良好習(xí)慣和嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度。

  二、教學(xué)重點(diǎn)、難點(diǎn):

  教學(xué)重點(diǎn):指數(shù)函數(shù)的概念,判斷指數(shù)函數(shù)。教學(xué)難點(diǎn):對(duì)底數(shù)的分類。

  三、學(xué)情分析:

  學(xué)生已經(jīng)學(xué)習(xí)了函數(shù)的知識(shí),指數(shù)函數(shù)是函數(shù)知識(shí)中重要的一部分內(nèi)容,學(xué)生若能將其與學(xué)過的正比例函數(shù)、一次函數(shù)、二次函數(shù)進(jìn)行對(duì)比著去理解指數(shù)函數(shù)的概念、性質(zhì)、圖象,則一定能從中發(fā)現(xiàn)指數(shù)函數(shù)的本質(zhì),所以對(duì)已經(jīng)熟悉掌握函數(shù)的學(xué)生來(lái)說,學(xué)習(xí)本課并不是太難。學(xué)生通過對(duì)高中數(shù)學(xué)中函數(shù)的學(xué)習(xí),對(duì)解決一些數(shù)學(xué)問題有一定的能力。通過教師啟發(fā)式引導(dǎo),學(xué)生自主探究完成本節(jié)課的學(xué)習(xí)。高一學(xué)生的認(rèn)知水平從形象向抽象、從特殊向一般過渡,思維能力的提高是一個(gè)轉(zhuǎn)折期,但是,學(xué)生的自主意識(shí)強(qiáng),有主動(dòng)學(xué)習(xí)的愿望與能力。有好奇心、好勝心、進(jìn)取心,富有激情、思維活躍。

  四、教學(xué)內(nèi)容分析

  本節(jié)課是《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書·數(shù)學(xué)(1)》(人教B版)第二章第一節(jié)第二課()《指數(shù)函數(shù)及其性質(zhì)》。根據(jù)我所任教的學(xué)生的實(shí)際情況,我將《指數(shù)函數(shù)及其性質(zhì)》劃分為三節(jié)課(探究指數(shù)函數(shù)的概念,圖象及其性質(zhì),指數(shù)函數(shù)及其性質(zhì)的應(yīng)用),這是第一節(jié)課“探究指數(shù)函數(shù)的概念”。指數(shù)函數(shù)是重要的基本初等函數(shù)之一,作為常見函數(shù),它不僅是今后學(xué)習(xí)對(duì)數(shù)函數(shù)和冪函數(shù)的基礎(chǔ),同時(shí)在生活及生產(chǎn)實(shí)際中有著廣泛的應(yīng)用,所以指數(shù)函數(shù)應(yīng)重點(diǎn)研究。函數(shù)及其圖象在高中數(shù)學(xué)中占有很重要的位置。如何突破這個(gè)即重要又抽象的內(nèi)容,其實(shí)質(zhì)就是將抽象的符號(hào)語(yǔ)言與直觀的圖象語(yǔ)言有機(jī)的結(jié)合起來(lái),通過具有一定思考價(jià)值的問題,激發(fā)學(xué)生的求知欲望――持久的好奇心。我們知道,函數(shù)的'表示法有三種:列表法、圖象法、解析法,以往的函數(shù)的學(xué)習(xí)大多只關(guān)注到圖象的作用,這其實(shí)只是借助了圖象的直觀性,只是從一個(gè)角度看函數(shù),是片面的。本節(jié)課,主要是讓學(xué)生學(xué)會(huì)如何去發(fā)現(xiàn)研究心的函數(shù),為后面學(xué)習(xí)對(duì)數(shù)函數(shù)、冪函數(shù)做出鋪墊。

  五、教學(xué)過程:

 。ㄒ唬﹦(chuàng)設(shè)情景

  問題1:某種細(xì)胞分裂時(shí),由1個(gè)分裂成2個(gè),2個(gè)分裂成4個(gè),……一個(gè)這樣的細(xì)胞分裂x次后,得到的細(xì)胞分裂的個(gè)數(shù)y與x之間,構(gòu)成一個(gè)函數(shù)關(guān)系,能寫出x與y之間的函數(shù)關(guān)系式嗎?

  問題2:《莊子·天下篇》中寫道:“一尺之棰,日取其半,萬(wàn)世不竭!闭(qǐng)你寫出截取x次后,木棰剩余量y關(guān)于x的函數(shù)關(guān)系式?

 。ǘ⿲(dǎo)入新課

  引導(dǎo)學(xué)生觀察,兩個(gè)函數(shù)中,有什么共同特征?

  (三)新課講授指數(shù)函數(shù)的定義

 。ㄋ模╈柟膛c練習(xí)例題:

  (五)課堂小結(jié)

 。┎贾米鳂I(yè)

  數(shù)學(xué)函數(shù)教學(xué)設(shè)計(jì) 8

  教學(xué)目標(biāo):

  1、進(jìn)一步理解函數(shù)的概念,能從簡(jiǎn)單的實(shí)際事例中,抽象出函數(shù)關(guān)系,列出函數(shù)解析式;

  2、使學(xué)生分清常量與變量,并能確定自變量的取值范圍。

  3、會(huì)求函數(shù)值,并體會(huì)自變量與函數(shù)值間的對(duì)應(yīng)關(guān)系。

  4、使學(xué)生掌握解析式為只含有一個(gè)自變量的簡(jiǎn)單的整式、分式、二次根式的函數(shù)的自變量的取值范圍的求法。

  5、通過函數(shù)的教學(xué)使學(xué)生體會(huì)到事物是相互聯(lián)系的。是有規(guī)律地運(yùn)動(dòng)變化著的。

  教學(xué)重點(diǎn):

  了解函數(shù)的意義,會(huì)求自變量的取值范圍及求函數(shù)值。

  教學(xué)難點(diǎn)

  函數(shù)概念的'抽象性。

  教學(xué)過程:

 。ㄒ唬┮胄抡n:

  上一節(jié)課我們講了函數(shù)的概念:一般地,設(shè)在一個(gè)變化過程中有兩個(gè)變量x、y,如果對(duì)于x的每一個(gè)值,y都有唯一的值與它對(duì)應(yīng),那么就說x是自變量,y是x的函數(shù)。

  生活中有很多實(shí)例反映了函數(shù)關(guān)系,你能舉出一個(gè),并指出式中的自變量與函數(shù)嗎?

  1、學(xué)校計(jì)劃組織一次春游,學(xué)生每人交30元,求總金額y(元)與學(xué)生數(shù)n(個(gè))的關(guān)系。

  2、為迎接新年,班委會(huì)計(jì)劃購(gòu)買100元的小禮物送給同學(xué),求所能購(gòu)買的總數(shù)n(個(gè))與單價(jià)(a)元的關(guān)系。

  解:1、y=30n

  y是函數(shù),n是自變量

  2、 ,n是函數(shù),a是自變量。

 。ǘ┲v授新課

  剛才所舉例子中的函數(shù),都是利用數(shù)學(xué)式子即解析式表示的。這種用數(shù)學(xué)式子表示函數(shù)時(shí),要考慮自變量的取值必須使解析式有意義。如第一題中的學(xué)生數(shù)n必須是正整數(shù)。

 。ǘ┬〗Y(jié):

  這節(jié)課,我們進(jìn)一步地研究了有關(guān)函數(shù)的概念。在研究函數(shù)關(guān)系時(shí)首先要考慮自變量的取值范圍。因此,要求大家能掌握解析式含有一個(gè)自變量的簡(jiǎn)單的整式、分式、二次根式的函數(shù)的自變量取值范圍的求法,并能求出其相應(yīng)的函數(shù)值。另外,對(duì)于反映實(shí)際問題的函數(shù)關(guān)系,要具體問題具體分析。

  作業(yè):習(xí)題13。2A組2、3、5

  數(shù)學(xué)函數(shù)教學(xué)設(shè)計(jì) 9

  教學(xué)目標(biāo)

  1、經(jīng)歷用三種方式表示變量之間二次函數(shù)關(guān)系的過程,體會(huì)三種方式之間的聯(lián)系與各自不同的特點(diǎn)

  2、能夠分析和表示變量之間的二次函數(shù)關(guān)系,并解決用二次函數(shù)所表示的問題

  3、能夠根據(jù)二次函數(shù)的不同表示方式,從不同的側(cè)面對(duì)函數(shù)性質(zhì)進(jìn)行研究

  教學(xué)重點(diǎn)和難點(diǎn)

  重點(diǎn):用三種方式表示變量之間二次函數(shù)關(guān)系

  難點(diǎn):根據(jù)二次函數(shù)的不同表示方式,從不同的側(cè)面對(duì)函數(shù)性質(zhì)進(jìn)行研究

  教學(xué)過程設(shè)計(jì)

  一、從學(xué)生原有的認(rèn)知結(jié)構(gòu)提出問題

  這節(jié)課,我們來(lái)學(xué)習(xí)二次函數(shù)的三種表達(dá)方式。

  二、師生共同研究形成概念

  1、用函數(shù)表達(dá)式表示

  做一做書本P56矩形的周長(zhǎng)與邊長(zhǎng)、面積的關(guān)系

  鼓勵(lì)學(xué)生間的互相交流,一定要讓學(xué)生理解周長(zhǎng)與邊長(zhǎng)、面積的關(guān)系。

  比較全面、完整、簡(jiǎn)單地表示出變量之間的關(guān)系

  2、用表格表示

  做一做書本P56填表

  由于運(yùn)算量比較大,學(xué)生的運(yùn)算能力又一般,因此,建議把這個(gè)表格的一部分?jǐn)?shù)據(jù)先給出來(lái),讓學(xué)生完成未完成的部分空格。

  表格表示可以清楚、直接地表示出變量之間的數(shù)值對(duì)應(yīng)關(guān)系

  3、用圖象表示

  議一議書本P56議一議

  關(guān)于自變量的問題,學(xué)生往往比較難理解,講解時(shí),可適當(dāng)多花時(shí)間講解。

  可以直觀地表示出函數(shù)的變化過程和變化趨勢(shì)

  做一做書本P57

  4、三種方法對(duì)比

  議一議書本P58議一議

  函數(shù)的表格表示可以清楚、直接地表示出變量之間的數(shù)值對(duì)應(yīng)關(guān)系;函數(shù)的圖象表示可以直觀地表示出函數(shù)的'變化過程和變化趨勢(shì);函數(shù)的表達(dá)式可以比較全面、完整、簡(jiǎn)單地表示出變量之間的關(guān)系。這三種表示方式積壓自有各自的優(yōu)點(diǎn),它們服務(wù)于不同的需要。

  在對(duì)三種表示方式進(jìn)行比較時(shí),學(xué)生的看法可能多種多樣。只要他們的想法有一定的道理,教師就應(yīng)予以肯定和鼓勵(lì)。

  數(shù)學(xué)函數(shù)教學(xué)設(shè)計(jì) 10

  一、教學(xué)目標(biāo)

  (一)知識(shí)教學(xué)點(diǎn)

  知道一次函數(shù)的圖象是直線,了解直線方程的概念,掌握直線的傾斜角和斜率的概念以及直線的斜率公式。

  (二)能力訓(xùn)練點(diǎn)

  通過對(duì)研究直線方程的必要性的分析,培養(yǎng)學(xué)生分析、提出問題的能力;通過建立直線上的點(diǎn)與直線的方程的解的一一對(duì)應(yīng)關(guān)系、方程和直線的對(duì)應(yīng)關(guān)系,培養(yǎng)學(xué)生的知識(shí)轉(zhuǎn)化、遷移能力。

  (三)學(xué)科滲透點(diǎn)

  分析問題、提出問題的思維品質(zhì),事物之間相互聯(lián)系、互相轉(zhuǎn)化的辯證唯物主義思想。

  二、教材分析

  1、重點(diǎn):通過對(duì)一次函數(shù)的研究,學(xué)生對(duì)直線的方程已有所了解,要對(duì)進(jìn)一步研究直線方程的內(nèi)容進(jìn)行介紹,以激發(fā)學(xué)生學(xué)習(xí)這一部分知識(shí)的興趣;直線的傾斜角和斜率是反映直線相對(duì)于x軸正方向的傾斜程度的,是研究?jī)蓷l直線位置關(guān)系的重要依據(jù),要正確理解概念;斜率公式要在熟練運(yùn)用上多下功夫。

  2、難點(diǎn):一次函數(shù)與其圖象的對(duì)應(yīng)關(guān)系、直線方程與直線的對(duì)應(yīng)關(guān)系是難點(diǎn)。由于以后還要專門研究曲線與方程,對(duì)這一點(diǎn)只需一般介紹就可以了。

  3、疑點(diǎn):是否有繼續(xù)研究直線方程的必要?

  三、活動(dòng)設(shè)計(jì)

  啟發(fā)、思考、問答、討論、練習(xí)。

  四、教學(xué)過程

  (一)復(fù)習(xí)一次函數(shù)及其圖象

  已知一次函數(shù)y=2x+1,試判斷點(diǎn)A(1,2)和點(diǎn)B(2,1)是否在函數(shù)圖象上。初中我們是這樣解答的:

  ∵A(1,2)的坐標(biāo)滿足函數(shù)式

  ∴點(diǎn)A在函數(shù)圖象上。

  ∵B(2,1)的坐標(biāo)不滿足函數(shù)式,∴點(diǎn)B不在函數(shù)圖象上。

  現(xiàn)在我們問:這樣解答的理論依據(jù)是什么?(這個(gè)問題是本課的難點(diǎn),要給足夠的時(shí)間讓學(xué)生思考、體會(huì)。)討論作答:判斷點(diǎn)A在函數(shù)圖象上的理論依據(jù)是:滿足函數(shù)關(guān)系式的點(diǎn)都在函數(shù)的圖象上;判斷點(diǎn)B不在函數(shù)圖象上的理論依據(jù)是:函數(shù)圖象上的點(diǎn)的坐標(biāo)應(yīng)滿足函數(shù)關(guān)系式。簡(jiǎn)言之,就是函數(shù)圖象上的點(diǎn)與滿足函數(shù)式的有序數(shù)對(duì)具有一一對(duì)應(yīng)關(guān)系。

  (二)直線的方程

  引導(dǎo)學(xué)生思考:直角坐標(biāo)平面內(nèi),一次函數(shù)的圖象都是直線嗎?直線都是一次函數(shù)的圖象嗎?

  一次函數(shù)的圖象是直線,直線不一定是一次函數(shù)的圖象,如直線x=a連函數(shù)都不是。一次函數(shù)y=kx+b,x=a都可以看作二元一次方程,這個(gè)方程的解和它所表示的直線上的點(diǎn)一一對(duì)應(yīng)。

  以一個(gè)方程的解為坐標(biāo)的點(diǎn)都是某條直線上的點(diǎn);反之,這條直線上的點(diǎn)的坐標(biāo)都是這個(gè)方程的解。這時(shí),這個(gè)方程就叫做這條直線的方程;這條直線就叫做這個(gè)方程的直線。

  上面的定義可簡(jiǎn)言之:(方程)有一個(gè)解(直線上)就有一個(gè)點(diǎn);(直線上)有一個(gè)點(diǎn)(方程)就有一個(gè)解,即方程的解與直線上的點(diǎn)是一一對(duì)應(yīng)的。

  顯然,直線的方程是比一次函數(shù)包含對(duì)象更廣泛的'一個(gè)概念。

  (三)進(jìn)一步研究直線方程的必要性

  通過研究一次函數(shù),我們對(duì)直線的方程已有了一些了解,但有些問題還沒有完全解決,如y=kx+b中k的幾何含意、已知直線上一點(diǎn)和直線的方向怎樣求直線的方程、怎樣通過直線的方程來(lái)研究?jī)蓷l直線的位置關(guān)系等都有待于我們繼續(xù)研究。

  (四)直線的傾斜角

  一條直線l向上的方向與x軸的正方向所成的最小正角,叫做這條直線的傾斜角,如圖1-21中的α。特別地,當(dāng)直線l和x軸平行時(shí),我們規(guī)定它的傾斜角為0°,因此,傾斜角的取值范圍是0°≤α<180°。

  直線傾斜角角的定義有下面三個(gè)要點(diǎn):

  (1)以x軸正向作為參考方向(始邊);

  (2)直線向上的方向作為終邊;

  (3)最小正角。

  按照這個(gè)定義不難看出:直線與傾角是多對(duì)一的映射關(guān)系。

  (五)直線的斜率

  傾斜角不是90°的直線。它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示,即

  直線與斜率之間的對(duì)應(yīng)不是映射,因?yàn)榇怪庇趚軸的直線沒有斜率。

  (六)過兩點(diǎn)的直線的斜率公式

  在坐標(biāo)平面上,已知兩點(diǎn)P1(x1,y1)、P2(x2,y2),由于兩點(diǎn)可以確定一條直線,直線P1P2就是確定的。當(dāng)x1≠x2時(shí),直線的傾角不等于90°時(shí),這條直線的斜率也是確定的。怎樣用P2和P1的坐標(biāo)來(lái)表示這條直線的斜率?

  P2分別向x軸作垂線P1M1、P2M2,再作P1Q⊥P2M,垂足分別是M1、M2、Q。那么:

  α=∠QP1P2(圖1-22甲)或α=π-∠P2P1Q(圖1-22乙)

  綜上所述,我們得到經(jīng)過點(diǎn)P1(x1,y1)、P2(x2,y2)兩點(diǎn)的直線的斜率公式:

  對(duì)于上面的斜率公式要注意下面四點(diǎn):(1)當(dāng)x1=x2時(shí),公式右邊無(wú)意義,直線的斜率不存在,傾斜角為90°;

  (2)k與P1、P2的順序無(wú)關(guān);

  (3)以后求斜率可不通過傾斜角而由直線上兩點(diǎn)的坐標(biāo)直接求得;

  (4)求直線的傾斜角可由直線上兩點(diǎn)的坐標(biāo)先求斜率得到。

  (七)例題

  例1如圖1-23,直線l1的傾斜角α1=30°,直線l2⊥l1,求l1、l2的斜率。

  ∵l2的傾斜角α2=90°+30°=120°,

  本例題是用來(lái)復(fù)習(xí)鞏固直線的傾斜角和斜率以及它們之間的關(guān)系的,可由學(xué)生課堂練習(xí),學(xué)生演板。

  例2求經(jīng)過A(-2,0)、B(-5,3)兩點(diǎn)的直線的斜率和傾斜角。

  ∴tgα=-1!0°≤α<180°,∴α=135°。

  因此,這條直線的斜率是-1,傾斜角是135°。

  講此例題時(shí),要進(jìn)一步強(qiáng)調(diào)k與P1P2的順序無(wú)關(guān),直線的斜率和傾斜角可通過直線上的兩點(diǎn)的坐標(biāo)求得。

  (八)課后小結(jié)

  (1)直線的方程的傾斜角的概念。

  (2)直線的傾斜角和斜率的概念。

  (3)直線的斜率公式。

  數(shù)學(xué)函數(shù)教學(xué)設(shè)計(jì) 11

  目標(biāo):

  1.使學(xué)生掌握用待定系數(shù)法由已知圖象上一個(gè)點(diǎn)的坐標(biāo)求二次函數(shù)y=ax2的關(guān)系式。

  2. 使學(xué)生掌握用待定系數(shù)法由已知圖象上三個(gè)點(diǎn)的坐標(biāo)求二次函數(shù)的關(guān)系式。

  3.讓學(xué)生體驗(yàn)二次函數(shù)的函數(shù)關(guān)系式的應(yīng)用,提高學(xué)生用數(shù)學(xué)意識(shí)。

  重點(diǎn)難點(diǎn):

  重點(diǎn):已知二次函數(shù)圖象上一個(gè)點(diǎn)的坐標(biāo)或三個(gè)點(diǎn)的坐標(biāo),分別求二次函數(shù)y=ax2、y=ax2+bx+c的關(guān)系式是的`重點(diǎn)。

  難點(diǎn):已知圖象上三個(gè)點(diǎn)坐標(biāo)求二次函數(shù)的關(guān)系式是教學(xué)的難點(diǎn)。

  教學(xué)過程:

  一、創(chuàng)設(shè)問題情境

  如圖,某建筑的屋頂設(shè)計(jì)成橫截面為拋物線型(曲線AOB)的薄殼屋頂。它的拱高AB為4m,拱高CO為0.8m。施工前要先制造建筑模板,怎樣畫出模板的輪廓線呢?

  二、引申拓展

  問題1:能不能以A點(diǎn)為原點(diǎn),AB所在直線為x軸,過點(diǎn)A的x軸的垂線為y軸,建立直角坐標(biāo)系?

  讓學(xué)生了解建立直角坐標(biāo)系的方法不是唯一的,以A點(diǎn)為原點(diǎn),AB所在的直線為x軸,過點(diǎn)A的x軸的垂線為y軸,建立直角坐標(biāo)系也是可行的。

  問題2,若以A點(diǎn)為原點(diǎn),AB所在直線為x軸,過點(diǎn)A的x軸的垂直為y軸,建立直角坐標(biāo)系,你能求出其函數(shù)關(guān)系式嗎?

  分析:按此方法建立直角坐標(biāo)系,則A點(diǎn)坐標(biāo)為(0,0),B點(diǎn)坐標(biāo)為(4,0),OC所在直線為拋物線的對(duì)稱軸,所以有AC=CB,AC=2m,O點(diǎn)坐標(biāo)為(2;0.8)。即把問題轉(zhuǎn)化為:已知拋物線過(0,0)、(4,0);(2,0.8)三點(diǎn),求這個(gè)二次函數(shù)的關(guān)系式。

  二次函數(shù)的一般形式是y=ax2+bx+c,求這個(gè)二次函數(shù)的關(guān)系式,跟以前學(xué)過求一次函數(shù)的關(guān)系式一樣,關(guān)鍵是確定o、6、c,已知三點(diǎn)在拋物線上,所以它的坐標(biāo)必須適合所求的函數(shù)關(guān)系式;可列出三個(gè)方程,解此方程組,求出三個(gè)待定系數(shù)。

  解:設(shè)所求的二次函數(shù)關(guān)系式為y=ax2+bx+c。

  因?yàn)镺C所在直線為拋物線的對(duì)稱軸,所以有AC=CB,AC=2m,拱高OC=0.8m,

  所以O(shè)點(diǎn)坐標(biāo)為(2,0.8),A點(diǎn)坐標(biāo)為(0,0),B點(diǎn)坐標(biāo)為(4,0)。

  由已知,函數(shù)的圖象過(0,0),可得c=0,又由于其圖象過(2,0.8)、(4,0),可得到4a+2b=0.816+4b=0 解這個(gè)方程組,得a=-15b=45 所以,所求的二次函數(shù)的關(guān)系式為y=-15x2+45x。

  問題3:根據(jù)這個(gè)函數(shù)關(guān)系式,畫出模板的輪廓線,其圖象是否與前面所畫圖象相同?

  問題4:比較兩種建立直角坐標(biāo)系的方式,你認(rèn)為哪種建立直角坐標(biāo)系方式能使解決問題來(lái)得更簡(jiǎn)便?為什么?

  (第一種建立直角坐標(biāo)系能使解決問題來(lái)得更簡(jiǎn)便,這是因?yàn)樗O(shè)函數(shù)關(guān)系式待定系數(shù)少,所求出的函數(shù)關(guān)系式簡(jiǎn)單,相應(yīng)地作圖象也容易)

  請(qǐng)同學(xué)們閱瀆P18例7。

  三、課堂練習(xí): P18練習(xí)1.(1)、(3)2。

  四、小結(jié):

  二次函數(shù)的關(guān)系式有幾種形式,函數(shù)的關(guān)系式y(tǒng)=ax2+bx+c就是其中一種常見的形式。二次函數(shù)關(guān)系式的確定,關(guān)鍵在于求出三個(gè)待定系數(shù)a、b、c,由于已知三點(diǎn)坐標(biāo)必須適合所求的函數(shù)關(guān)系式,故可列出三個(gè)方程,求出三個(gè)待定系數(shù)。

  數(shù)學(xué)函數(shù)教學(xué)設(shè)計(jì) 12

  教學(xué)目標(biāo):

  使學(xué)生對(duì)反比例函數(shù)和反比例函數(shù)的xxx象意義加深理解。

  教學(xué)重點(diǎn):

  反比例函數(shù)的應(yīng)用

  教學(xué)程序:

  一、新授:

  1、實(shí)例1:(1)用含S的代數(shù)式表示P,P是S的反比例函數(shù)嗎?為什么?

  答:P=600s (s0),P是S的反比例函數(shù)。

 。2)、當(dāng)木板面積為0.2 m2時(shí),壓強(qiáng)是多少?

  答:P=3000Pa

 。3)、如果要求壓強(qiáng)不超過6000Pa,木板的面積至少要多少?

  答:至少0.lm2。

 。4)、在直角坐標(biāo)系中,作出相應(yīng)的.函數(shù)xxx象。

 。5)、請(qǐng)利用xxx象(2)和(3)作出直觀解釋,并與同伴進(jìn)行交流。

  二、做一做

  1、(1)蓄電池的電壓為定值,使用此電源時(shí),電流I(A)與電阻R()之間的函數(shù)關(guān)系如xxx5-8所示。

 。2)蓄電池的電壓是多少?你以寫出這一函數(shù)的表達(dá)式嗎?

  電壓U=36V,I=60k

  2、完成下表,并回答問題,如果以蓄電池為電源的用電器限制電流不得超過10A,那么用電器的可變電阻應(yīng)控制在什么范圍內(nèi)?

【數(shù)學(xué)函數(shù)教學(xué)設(shè)計(jì)】相關(guān)文章:

初中數(shù)學(xué)函數(shù)教學(xué)設(shè)計(jì)07-28

函數(shù)的圖象數(shù)學(xué)教學(xué)設(shè)計(jì)06-12

關(guān)于初中數(shù)學(xué)中函數(shù)的教學(xué)設(shè)計(jì)06-11

《函數(shù)的概念》教學(xué)設(shè)計(jì)06-14

變量與函數(shù)教學(xué)設(shè)計(jì)06-20

高中數(shù)學(xué)函數(shù)的單調(diào)性的教學(xué)設(shè)計(jì)06-12

高二數(shù)學(xué)《導(dǎo)數(shù)與函數(shù)單調(diào)性》教學(xué)設(shè)計(jì)07-01

關(guān)于《冪函數(shù)》教學(xué)設(shè)計(jì)06-14

對(duì)數(shù)函數(shù)的教學(xué)設(shè)計(jì)06-12