三角形內(nèi)角和教學(xué)設(shè)計(精選15篇)
作為一名人民教師,就難以避免地要準備教學(xué)設(shè)計,借助教學(xué)設(shè)計可以更大幅度地提高學(xué)生各方面的能力,從而使學(xué)生獲得良好的發(fā)展。你知道什么樣的教學(xué)設(shè)計才能切實有效地幫助到我們嗎?下面是小編為大家整理的三角形內(nèi)角和教學(xué)設(shè)計,希望能夠幫助到大家。
三角形內(nèi)角和教學(xué)設(shè)計 篇1
教學(xué)目標
通過猜想、驗證,了解三角形的內(nèi)角和是180度。在學(xué)習的過程中進一步激發(fā)學(xué)生探索數(shù)學(xué)規(guī)律的興趣,初步感知計算多邊形內(nèi)角和的公式。
教學(xué)重難點
三角形的內(nèi)角和
課前準備
電腦課件、學(xué)具卡片
教學(xué)活動
一、計算三角尺三個內(nèi)角的和。
出示三角尺中的一個,提問:誰來說說三角尺上的三個角分別是多少度?
引導(dǎo)學(xué)生說出90度、60度、30度。
出示另一個三角尺,引導(dǎo)學(xué)生分別說出三個角的度數(shù):90度、45度、45度。
提問:請同學(xué)們?nèi)芜x一個三角尺,算出他們?nèi)齻角一共多少度?
學(xué)生計算后指名回答。
師:三角尺三個角的和是180度。
二、自主探索,解決問題
提問:是不是任一個三角形三個角的和都是180度呢?請同學(xué)們在自備本上任畫一個三角形,量出它們?nèi)齻角分別是多少度,再求出它們的和,然后小組內(nèi)交流。
學(xué)生小組活動,教師了解學(xué)生情況,個別同學(xué)加以輔導(dǎo)。
全班交流:讓學(xué)生分別說出三個角的度數(shù)以及它們的和。
提問:你發(fā)現(xiàn)了什么?
任何一個三角形三個角的和都是180度。利用三角形的這一性質(zhì),我們可以解決許多問題。
三、試一試
要求學(xué)生先計算,再用量角器量,最后比較結(jié)果是否相同?讓學(xué)生說說計算的方法。
教師說明:即使結(jié)果不完全一樣,是因為測量的結(jié)果存在誤差,我們還是以計算的結(jié)果為準。
四、鞏固提高
完成想想做做的題目。
第1題
學(xué)生獨立計算,交流算法。要求學(xué)生用量角器量出結(jié)果,和計算的結(jié)果想比較。
第2題
指導(dǎo)學(xué)生看圖,弄清拼成的三角形的三個內(nèi)角指的是哪三個角。計算三角形三個角的內(nèi)角和,幫助學(xué)生進一步理解:三角形三個內(nèi)角的和是180度。
第3題
通過操作、計算,使學(xué)生認識到:不管三角形的大小怎樣變化,它的內(nèi)角和是不會變化的。
第4、5、6
引導(dǎo)學(xué)生運用三角形的分類及三角形內(nèi)角和的有關(guān)知識解決有關(guān)問題,重點培養(yǎng)學(xué)生靈活運用知識解決問題的能力。
三角形內(nèi)角和教學(xué)設(shè)計 篇2
一、教材分析
“三角形的內(nèi)角和”是三角形的一個重要性質(zhì),它有助于學(xué)生理解三角形內(nèi)角之間的關(guān)系,是進一步學(xué)習幾何的基礎(chǔ)。
二、教學(xué)目標
1、知識與技能:明確三角形的內(nèi)角的概念,使學(xué)生自主探究發(fā)現(xiàn)三角形內(nèi)角和等于180°,并運用這一規(guī)律解決問題。
2、過程和方法:通過學(xué)生猜、量、拼、折、觀察等活動,培養(yǎng)學(xué)生發(fā)現(xiàn)問題、提出問題、分析問題和解決問題的能力。
3、情感與態(tài)度:使學(xué)生感受數(shù)學(xué)圖形之美及轉(zhuǎn)化思想,體驗數(shù)學(xué)就在我們身邊。
三、教學(xué)重難點
教學(xué)重點:動手操作、自主探究發(fā)現(xiàn)三角形的內(nèi)角和是180°,并能進行簡單的運用。
教學(xué)難點:采用多種途徑驗證三角形的內(nèi)角和是180°。
四、學(xué)情分析
通過前面的學(xué)習,學(xué)生已經(jīng)掌握了三角形的一些基礎(chǔ)知識,會量角,部分學(xué)生已經(jīng)知道三角形內(nèi)角和是180°,但不知道怎樣得出這個結(jié)論。
五、教學(xué)法分析
本節(jié)課采用自主探索、合作交流的教學(xué)方法,學(xué)生自主參與知識的構(gòu)建。領(lǐng)悟轉(zhuǎn)化思想在解決問題中的應(yīng)用。
六、課前準備
1、教師準備:多媒體課件、三角形教具。
2、學(xué)生準備:銳、直、鈍角三角形各兩個,量角器、剪刀。
七、教學(xué)過程
(一)、創(chuàng)設(shè)情境,激趣導(dǎo)入
導(dǎo)入:“同學(xué)們,有三位老朋友已經(jīng)恭候我們多時了!埃ǔ鍪救切蝿赢嬚n件),讓學(xué)生依次說出各是什么三角形。
課件分別閃爍三角形三個內(nèi)角,并介紹:“這三個角叫做三角形的內(nèi)角,把三個角的度數(shù)加起來,就是三角形的內(nèi)角和。請學(xué)生畫一個三角形,要求:有兩個直角。為什么不能畫,問題在哪呢?這節(jié)課我們就一起來探究三角形的內(nèi)角和。板書課題。
。ǘ、自主探究、合作交流
1、探索特殊三角形內(nèi)角和
拿出自己的一副三角板,同桌之間互相說一說各個角的度數(shù)。
三角形內(nèi)角和是多少度呢?指名匯報。
90°+30°+60°=180°
90°+45°+45°=180°
從剛才兩個三角形內(nèi)角和的計算中,你發(fā)現(xiàn)了什么?
2、探索一般三角形的內(nèi)角和
一般三角形的內(nèi)角和是多少度?猜一猜。你們能想辦法證明嗎?接下來,我們采用小組合作的方式進行探究,看看哪個組的方法多而且富有新意。
3、匯報交流
請小組代表匯報方法。
1)量:你測量的三個內(nèi)角分別是多少度?和呢?(有不同意見)
沒有統(tǒng)一的結(jié)果,有沒有其他方法?
2)剪―拼:把三角形的三個內(nèi)角剪下來拼在一起,成為一個平角,利用平角是180°這一特點,得出結(jié)論。(學(xué)生嘗試驗證)
3)折拼:學(xué)生邊演示邊匯報。把三角形的三個內(nèi)角都向內(nèi)折,把這三個內(nèi)角拼組成一個平角。所以得出三角形的內(nèi)角和是180°。(學(xué)生嘗試驗證)
4)教師課件驗證結(jié)果。
請看屏幕,老師也來驗證一下,是不是和你們的結(jié)果一樣?播放課件。我們可以得到一個怎樣的結(jié)論?
學(xué)生回答后教師板書:三角形的內(nèi)角和是180°
為什么有的小組用測量的方法不能得到180°?(誤差)
4、驗證深化
質(zhì)疑:大小不同的三角形,它們的內(nèi)角和會是一樣嗎?(一樣)
誰能說一說不能畫出有兩個直角的三角形的原因?
。ㄈ(yīng)用規(guī)律,解決問題:
揭示規(guī)律后,學(xué)生要掌握知識,就要通過解答實際問題。
1、為了讓學(xué)生積極參與,我設(shè)計了闖關(guān)的活動來激勵學(xué)生的興趣。闖關(guān)成功會獲得小獎?wù)隆?/p>
第一關(guān):基礎(chǔ)練習,要求學(xué)生利用“三角形內(nèi)角和是180°”這一規(guī)律在三角形內(nèi)已知兩個角,求第三個角(課件出示)
第二關(guān),提高練習,
①已知等腰三角形的底角,求頂角。
、谇蟮冗吶切蚊總角的度數(shù)是多少。直角三角形已知一個銳角,求另一個。
讓學(xué)生靈活應(yīng)用隱含條件來解決問題,進一步提高能力。
2、小組合作練習,完成相應(yīng)做一做。
(四)、課堂總結(jié),效果檢測。
一節(jié)成功的好課要有一個好的開頭,更要有一個完美的結(jié)尾,數(shù)學(xué)是使人變聰明的學(xué)科,通過這節(jié)課的學(xué)習,你收獲了什么?學(xué)生們暢所欲言。接下來老師要檢查大家的學(xué)習效果,學(xué)生完成答題卡,組長評判,集體匯報。
(五)作業(yè)課下繼續(xù)探究三角形,看你有什么新發(fā)現(xiàn)。
八、板書設(shè)計
通過這樣的設(shè)計,使學(xué)生不僅學(xué)到科學(xué)的探究方法,而且體驗到探索的樂趣,使學(xué)生在自主中學(xué)習,在探究中發(fā)現(xiàn),在發(fā)現(xiàn)中成長。以上便是我對《三角形的內(nèi)角和》這一堂課的說課,謝謝大家!
三角形內(nèi)角和教學(xué)設(shè)計 篇3
一、教學(xué)目標:
1、理解掌握三角形內(nèi)角和是180°,并運用這一性質(zhì)解決一些簡單的問題。
2、通過直觀操作的方法,引導(dǎo)學(xué)生探索并發(fā)現(xiàn)三角形內(nèi)角和等于180°,在實驗活動中,體驗探索的過程和方法。
3、在探索和發(fā)現(xiàn)三角形內(nèi)角和的過程中獲得成功的體驗。
二、教學(xué)重、難點:
重點:探索并發(fā)現(xiàn)三角形內(nèi)角和等于180°。
難點:運用三角形內(nèi)角和等于180°的性質(zhì)解決一些實際問題。
教具:課件、三角形若干。
學(xué)具:量角器、直角三角形、銳角三角形和鈍角三角形各一個。
三、教學(xué)過程
(一)創(chuàng)設(shè)情境,導(dǎo)入新課
我們已經(jīng)學(xué)過了三角形的知識,我們來復(fù)習一下,看看大屏幕,各是什么三角形?誰能說說什么是銳角三角形、直角三角形、鈍角三角形?追問:不管是什么三角形它們都有幾個角呢?這三個角都叫做三角形的內(nèi)角,而這三個內(nèi)角的和就是這個三角形的內(nèi)角和。那么誰來說一說什么是三角形的內(nèi)角和?三角形有大有小,形狀也各不相同,那么它們的內(nèi)角和有沒有什么特點和規(guī)律呢?我們來看一個小片段,仔細聽它們都說了什么?
教師放課件。
課件內(nèi)容說明:一個大的直角三角形說:“我的個頭大,我的內(nèi)角和一定比你們大。”一個鈍角三角形說:“我有一個鈍角,我的內(nèi)角和才是最大的)一個小的銳角三角形很委屈的樣子說“是這樣嗎?”
都聽清它們在爭論什么嗎?(它們在爭論誰的內(nèi)角和大。)誰能說一說你的想法?(學(xué)生各抒己見,是不評價)果真是這樣嗎?下面我們就來研究“三角形內(nèi)角和”。
。ò鍟n題:三角形內(nèi)角和)
。ǘ┳灾魈骄浚l(fā)現(xiàn)規(guī)律
1、探究三角形內(nèi)角和的特點。
。1)檢查作業(yè),并提出要求:
昨天老師讓每位學(xué)生都分別剪出了銳角三角形、直角三角形和鈍角三角形,并量出了每個角的度數(shù),都完成了嗎?拿出來吧,一會我們要算出三角形的內(nèi)角和填在下面的表格里。我們來看一下表格以及要求。出示小組活動記錄表。
小組活動記錄表
小組成員的姓名
三角形的形狀
每個內(nèi)角的度數(shù)
三角形內(nèi)角的和
。ㄒ螅禾钔瓯砗螅埿〗M成員仔細觀察你發(fā)現(xiàn)了什么?)
、谛〗M合作。
會使用表格了嗎?下面我們就以小組為單位,按照要求把結(jié)果填在小組長手中的表格內(nèi)。
各組長進行匯報。發(fā)現(xiàn)了三角形的內(nèi)角和都是180°左右。
師:實際上,三角形三個內(nèi)角和就是180°,只是因為測量有誤差,所以我們才得到剛才得到的數(shù)據(jù)。
2、驗證推測。
那么同學(xué)們有沒有什么辦法知道三角形的內(nèi)角和就是180°呢?大家可以討論一下,學(xué)生可能會想到用折拼或剪拼的方法來看一看三角形的三個角和起來是不是180°,也就是說三角形的三個角能不能拼成一個平角。師生先演示撕下三個角拼在一起是否是平角,同學(xué)們在下面操作進行體驗,再用課件演示把三個內(nèi)角折疊在一起(這時要注意平行折,把一個頂點放在邊上)學(xué)生也動手試一試。
通過我們的驗證我們可以得出三角形的內(nèi)角和是180°。
板書:(三角形內(nèi)角和等于180°。)
3、師談話:三個三角形討論的問題現(xiàn)在能解決了嗎?你現(xiàn)在想對這三個三角形說點什么嗎?(讓學(xué)生暢所欲言,對得出的三角形內(nèi)角和是180°做系統(tǒng)的整理。)
4、同學(xué)們還有什么疑問嗎?大家想一想我們知道了三角形內(nèi)角和是180°可以干什么呢?(知道三角形中兩個角,可以求出第三個角)
出示書28頁,試一試第3題,并講解。
說明:在直角三角形中一個銳角等于30°,求另一個銳角。
生獨立做,再訂正格式、以及強調(diào)不要忘記寫度。
小結(jié):同學(xué)們有沒有不明白的地方?如果沒有我們來做練習。
。ㄈ╈柟叹毩暎卣箲(yīng)用
1、出示書29頁第一題。說明:第一幅圖是銳角三角形已知一個銳角是75°,另一個銳角是28°,求第三個銳角?第二幅圖是直角三角形已知一個銳角是35°,求另一個銳角?第三幅圖是鈍角三角形已知一個銳角是20°,另一個銳角是45°,求鈍角?
完成,并填在書上。講一講直角三角形還有什么解法。
2、出示29頁第2題。
說明:一個鈍角三角形說:我的兩個銳角之和大于90°。
一個直角三角形說:我的兩個銳角之和正好等于90°。讓學(xué)生判斷。
3、畫一畫:
出示四邊形和六邊形。運用三角形內(nèi)角和是180°計算出各自的內(nèi)角和。你能推算出多邊形的內(nèi)角和嗎?
三角形內(nèi)角和180度是科學(xué)家帕斯卡12歲時發(fā)現(xiàn)的。我們同學(xué)還沒到12歲,看你能不能通過自己的努力也去探索和發(fā)現(xiàn)。
。ㄋ模┱n堂總結(jié)
讓學(xué)生說說在這節(jié)課上的收獲!
三角形內(nèi)角和教學(xué)設(shè)計 篇4
教學(xué)目標:
1、讓學(xué)生通過觀察、操作、比較、歸納,發(fā)現(xiàn)三角形的內(nèi)角和是180。
2、讓學(xué)生學(xué)會根據(jù)三角形的內(nèi)角和是180這一知識求三角形中一個未知角的度數(shù)。
3、激發(fā)學(xué)生主動參與、自主探索的意識,鍛煉動手能力,發(fā)展空間觀念。
教學(xué)準備:
三角板,量角器、點子圖、自制的三種三角形紙片等。
教學(xué)過程:
一、提出猜想
老師取一塊三角板,讓學(xué)生分別說說這三個角的度數(shù),再加一加,分別得到這樣的2個算式:90+60+30=180,90+45+45=180
看了這2個算式你有什么猜想?
。ㄈ切蔚娜齻角加起來等于180度)
二、驗證猜想
1、畫、量:在點子圖上,分別畫銳角三角形、直角三角形、鈍角三角形。畫好后分別量出各個角的度數(shù),再把三個角的度數(shù)相加。
老師注意巡視和指導(dǎo)。交流各自加得的結(jié)果,說說你的發(fā)現(xiàn)。
2、折、拼:學(xué)生用自己事先剪好的圖形,折一折。
指名介紹折的方法:比如折的是一個銳角三角形,可以先把它上面的一個角折下,頂點和下面的邊重合,再分別把左邊、右邊的角往里折,三個角的頂點要重合。發(fā)現(xiàn):三個角會正好在一直線上,說明它們合起來是一個平角,也就是180度。
繼續(xù)用該方法折鈍角三角形,得到同樣的結(jié)果。
直角三角形的折法有不同嗎?
通過交流使學(xué)生明白:除了用剛才的方法之外,直角三角形還可以用更簡便的方法折;可以直角不動,而把兩個銳角折下,正好能拼成一個直角;兩個直角的度數(shù)和也是180度。
3、撕、拼:可能有個別學(xué)生對折的方法感到有困難。那么還可以用撕的方法。
在撕之前要分別在三個角上標好角1、角2和角3。然后撕下三個角,把三個角的一條邊、頂點重合,也能清楚地看到三個角合起來就是一個平角180度。
小結(jié):我們可以用多種方法,得到同樣的結(jié)果:三角形的內(nèi)角和是180。
4、試一試
三角形中,角1=75,角2=39,角3=()
算一算,量一量,結(jié)果相同嗎?
三、完成想想做做
。、算出下面每個三角形中未知角的度數(shù)。
在交流的時候可以分別學(xué)生說說怎么算才更方便。比如第1題,可先算40加60等于100,再用180減100等于80。第2題則先算180減110等于70,再用70減55更方便。第3題是直角三角形,可不用180去減,而用90減55更好。
指出:在計算的時候,我們可根據(jù)具體的數(shù)據(jù)選擇更佳的算法。
2、一塊三角尺的內(nèi)角和是180,用兩塊完全一樣的三角尺拼成一個三角形,這個三角形的內(nèi)角和是多少度?
可先猜想:兩個三角形拼在一起,會不會它的內(nèi)角和變成1802=360呢?為什么?
然后再分別算一算圖上的這三個三角形的內(nèi)角和。得出結(jié)論:三角形不論大小,它的內(nèi)角和都是180。
3、用一張正方形紙折一折,填一填。
4、說理:一個直角三角形中最多有幾個直角?為什么?
一個鈍角三角形中最多有幾個直角?為什么?
四、布置作業(yè)
第4、5題
三角形內(nèi)角和教學(xué)設(shè)計 篇5
教學(xué)目標:
1.掌握三角形內(nèi)角和定理及其推論;
2.弄清三角形按角的分類,會按角的大小對三角形進行分類;
3.通過對三角形分類的學(xué)習,使學(xué)生了解數(shù)學(xué)分類的基本思想,并會用方程思想去解決一些圖形中求角的問題。
4.通過三角形內(nèi)角和定理的證明,提高學(xué)生的邏輯思維能力,同時培養(yǎng)學(xué)生嚴謹?shù)目茖W(xué)態(tài)
5.通過對定理及推論的分析與討論,發(fā)展學(xué)生的求同和求異的思維能力,培養(yǎng)學(xué)生聯(lián)系與轉(zhuǎn)化的辯證思想。
教學(xué)重點:
三角形內(nèi)角和定理及其推論。
教學(xué)難點:
三角形內(nèi)角和定理的證明
教學(xué)用具:
直尺、微機
教學(xué)方法:
互動式,談話法
教學(xué)過程:
1、創(chuàng)設(shè)情境,自然引入
把問題作為教學(xué)的出發(fā)點,創(chuàng)設(shè)問題情境,激發(fā)學(xué)生學(xué)習興趣和求知欲,為發(fā)現(xiàn)新知識創(chuàng)造一個最佳的心理和認知環(huán)境。
問題1三角形三條邊的關(guān)系我們已經(jīng)明確了,而且利用上述關(guān)系解決了一些幾何問題,那么三角形的三個內(nèi)角有何關(guān)系呢?
問題2你能用幾何推理來論證得到的關(guān)系嗎?
對于問題1絕大多數(shù)學(xué)生都能回答出來(小學(xué)學(xué)過的),問題2學(xué)生會感到困難,因為這個證明需添加輔助線,這是同學(xué)們第一次接觸的新知識―――“輔助線”。教師可以趁機告訴學(xué)生這節(jié)課將要學(xué)習的一個重要內(nèi)容(板書課題)
新課引入的好壞在某種程度上關(guān)系到課堂教學(xué)的成敗,本節(jié)課從舊知識切入,特別是從知識體系考慮引入,“學(xué)習了三角形邊的關(guān)系,自然想到三角形角的關(guān)系怎樣呢?”使學(xué)生感覺本節(jié)課學(xué)習的內(nèi)容自然合理。
2、設(shè)問質(zhì)疑,探究嘗試
(1)求證:三角形三個內(nèi)角的和等于
讓學(xué)生剪一個三角形,并把它的三個內(nèi)角分別剪下來,再拼成一個平面圖形。這里教師設(shè)計了電腦動畫顯示具體情景。然后,圍繞問題設(shè)計以下幾個問題讓學(xué)生思考,教師進行學(xué)法指導(dǎo)。
問題1觀察:三個內(nèi)角拼成了一個什么角?
問題2此實驗給我們一個什么啟示?
(把三角形的三個內(nèi)角之和轉(zhuǎn)化為一個平角)
問題3由圖中AB與CD的關(guān)系,啟發(fā)我們畫一條什么樣的線,作為解決問題的橋梁?
其中問題2是解決本題的關(guān)鍵,教師可引導(dǎo)學(xué)生分析。對于問題3學(xué)生經(jīng)過思考會畫出此線的。這里教師要重點講解“輔助線”的有關(guān)知識。比如:為什么要畫這條線?畫這條線有什么作用?要讓學(xué)生知道“輔助線”是以后解決幾何問題有力的工具。它的作用在于充分利用條件;恰當轉(zhuǎn)化條件;恰當轉(zhuǎn)化結(jié)論;充分提示題目中各元素間的一些不明顯的關(guān)系,達到化難為易解決問題的目的。
(2)通過類比“三角形按邊分類”,三角形按角怎樣分類呢?
學(xué)生回答后,電腦顯示圖表。
(3)三角形中三個內(nèi)角之和為定值,那么對三角形的其它角還有哪些特殊的關(guān)系呢?問題1直角三角形中,直角與其它兩個銳角有何關(guān)系?
問題2三角形一個外角與它不相鄰的兩個內(nèi)角有何關(guān)系?
問題3三角形一個外角與其中的一個不相鄰內(nèi)角有何關(guān)系?
其中問題1學(xué)生很容易得出,提出問題2之后,先給出三角形外角的定義,然后讓學(xué)生經(jīng)過分析討論,得出結(jié)論并書寫證明過程。
這樣安排的目的有三點:第一,理解定理之后的延伸――推論,培養(yǎng)學(xué)生良好的學(xué)習習慣。第二,模仿定理的證明書寫格式,加強學(xué)生書寫能力。第三,提高學(xué)生靈活運用所學(xué)知識的能力。
3、三角形三個內(nèi)角關(guān)系的定理及推論
引導(dǎo)學(xué)生分析并嚴格書寫解題過程
三角形內(nèi)角和教學(xué)設(shè)計 篇6
【教學(xué)目標】
1、學(xué)生動手操作,通過量、剪、拼、折的方法,探索并發(fā)現(xiàn)“三角形內(nèi)角和等于180度”的規(guī)律。
2、在探究過程中,經(jīng)歷知識產(chǎn)生、發(fā)展和變化的過程,通過交流、比較,培養(yǎng)策略意識和初步的空間思維能力。
3、體驗探究的過程和方法,感受思維提升的過程,激發(fā)求知欲和探索興趣。
【教學(xué)重點】探究發(fā)現(xiàn)和驗證“三角形的內(nèi)角和180度”這一規(guī)律的過程,并歸納總結(jié)出規(guī)律。
【教學(xué)難點】對不同探究方法的指導(dǎo)和學(xué)生對規(guī)律的靈活應(yīng)用。
【教具準備】課件、表格、學(xué)生準備不同類型的三角形各一個,量角器。
【教學(xué)過程】
一、激趣引入。
1、猜謎語
師:同學(xué)們喜歡猜謎語嗎?
生:喜歡。
師:那么,下面老師給大家出個謎語。請聽謎面:
形狀似座山,穩(wěn)定性能堅,三竿首尾連,學(xué)問不簡單。(打一圖形)大家一起說是什么?
生:三角形
2、介紹三角形按角的分類
師:真聰明!板書“三角形”!那么,三角形按角分可以分為鈍角三角形、直角三角形和銳角三角形這幾類
師分別出示卡片貼于黑板。
3、激發(fā)學(xué)生探知心里
師:大家會不會畫三角形。
生:會
師:下面請你拿出筆在本子上畫出一個三角形,但是我有個要求:畫出一個有兩個直角的三角形。試一試吧!
生:試著畫
師:畫出來沒有?
生:沒有
師:畫不出來了,是嗎?
生:是
師:有兩個直角的三角形為什么畫不出來呢?這就是三角形中角的奧秘!這節(jié)課我們就來學(xué)習有關(guān)三角形角的知識“三角形內(nèi)角和”(板書課題)
二、探究新知。
1、認識三角形的內(nèi)角
看看這三個字,說說看,什么是三角形的內(nèi)角?
生:就是三角形里面的角。
師:三角形有幾個內(nèi)角啊?
生:3個。
師:那么為了研究的時候比較方便,我們把這三個內(nèi)角標上角1角2角3,請同學(xué)們也拿出桌子上三角形標出(教師標出)
師:你知道什么是三角形“內(nèi)角和”嗎?
生:三角形里面的角加起來的度數(shù)。
2、研究特殊三角形的內(nèi)角和
師:分別拿出一個直角三角板,請同學(xué)們看看這屬于什么三角形,說出每個角的度數(shù),那這個三角形的內(nèi)角和是多少度?
生:算一算:90°+60°+30°=180° 90°+45°+45°=180°
師:180°也是我們學(xué)習過的什么角?
生:平角
師:從剛才兩個三角形的內(nèi)角和的計算中,你發(fā)現(xiàn)了什么?
3、研究一般三角形的內(nèi)角和
師:猜一猜,其它三角形的內(nèi)角和是多少度呢?
生:
4、操作、驗證
師:同學(xué)們猜的結(jié)果各不相同,那怎么辦呀?你能想個辦法驗證一下嗎?
要求:
。1)每4人為一個小組。
(2)每個小組都有不同類型的三角形,每種類型都需要驗證,先討論一下,怎樣才能較快的完成任務(wù)?
(3)驗證的方法不只一種,同學(xué)們要多動動腦子。
師:好,開始活動!
師:巡視指導(dǎo)
師:好!請一組匯報測量結(jié)果。
生:通過測量我們發(fā)現(xiàn)每個三角形的三個內(nèi)角和都在180度左右。
師:其實三角形的內(nèi)角和就是180度,只是因為我們在測量時存在了一些誤差,所以測量出的結(jié)果不準確。
生:我是用撕的方法,把直角三角形三個內(nèi)角撕下來,拼在一起,拼成一個平角,是180度。
師:好!非常好!
師:有其它同學(xué)操作銳角三角形和鈍角三角形的嗎?誰愿意到前面來展示一下?生:展示銳角三角形(撕拼)
生:展示折一折我是用折的方法把銳角三角形三個角折在一起,組成一個平角,是180°。
師:老師也做了一個實驗看一看是不是和大家得到結(jié)果一樣呢?(多媒體展示)
現(xiàn)在老師問同學(xué)們,三角形的內(nèi)角和是多少?
生:180度。
師:通過驗證:我們知道了無論是銳角三角形,直角三角形還是鈍角三角形,它們的內(nèi)角和都是180°。板書:三角形內(nèi)角和等于180度,F(xiàn)在讓我們用自豪的、肯定的語氣讀出我們的發(fā)現(xiàn):“三角形的內(nèi)角和是180°”。
三、解決疑問
師:好!請同學(xué)們回憶一下,剛才課前老師讓同學(xué)們畫出有兩個直角的三角形畫出來了嗎?
生:沒有
師:那你能用這節(jié)課的知識解釋一下為什么畫不出來嗎?
生:兩個直角是180度,沒有第三個角了。
師:如果想畫出有兩個角是鈍角的三角形你能畫出來嗎?
生:大于180度,也畫不出第三個角。師:所以,生活中不存在這樣的三角形。
師:學(xué)會了知識,我們就要懂得去運用。
四、鞏固提高。
1、填空。
(1)三角形的內(nèi)角和是()度。
(2)一個三角形的兩個內(nèi)角分別是80°和75°,它的另一個角是()。
2、求下面各角的度數(shù)。
(1)∠1=27° ∠2=53° ∠3=()這是一個()三角形。
。2)∠1=70° ∠2=50° ∠3=()這是一個()三角形。
3、判斷每組中的三個角是不是同一個三角形中的三個內(nèi)角。
。1)80° 95° 5°( )
。2)60° 70° 90°( )
。3)30° 40° 50°( )
4、紅領(lǐng)巾是一個等腰三角形,求底角的度數(shù)。(多媒體出示)
對學(xué)生進行思品教育。
5、思考延伸。
根據(jù)三角形內(nèi)角和是180度,算一算四邊形和八邊形的內(nèi)角和是多少?
6、游戲:幫角找朋友每組卡片中,哪三個角可以組成三角形?)每組卡片中,哪三個角可以組成三角形?)60°90°45°30°⑴60°、90°、45°、30°54°46°52°
五、總結(jié)。
三角形內(nèi)角和教學(xué)設(shè)計 篇7
【教學(xué)目標】:
1、探索與發(fā)現(xiàn)三角形的內(nèi)角和是180°,已知三角形的兩個角度,會求出第三個角度。
2、培養(yǎng)學(xué)生動手操作和合作交流的能力,促進掌握學(xué)習數(shù)學(xué)的方法。
3、培養(yǎng)學(xué)生自主學(xué)習、積極探索的好習慣,激發(fā)學(xué)生學(xué)習數(shù)學(xué)應(yīng)用數(shù)學(xué)的興趣。
【教學(xué)重點和難點】:
重點掌握三角形的內(nèi)角和是180°,會應(yīng)用三角形的內(nèi)角和解決實際問題;難點是探索性質(zhì)的過程。
【教材分析】
《三角形內(nèi)角和》屬于空間與圖形的范疇,是在學(xué)生已經(jīng)接觸了三角形的穩(wěn)定性和三角形的分類相關(guān)知識后對三角形的進一步研究,探索三個內(nèi)角的和。教材中安排了學(xué)生對不同形狀的、大小的三角形進行進行度量,運用折疊、拼湊等方法發(fā)現(xiàn)三角形的內(nèi)角和是180°。擴充了學(xué)生認識圖形的一般規(guī)律從直觀感性的認識到具體的性質(zhì)探索,更加深入的培養(yǎng)了學(xué)生的空間觀念。
【教學(xué)過程】
一、創(chuàng)設(shè)情境,激發(fā)興趣。
出示課件,提出兩個兩個疑問:
1、兩個大小不一樣的兩個三角形的對話我比你大,所以我的內(nèi)角和比你大,是這樣的嗎?
2、三個形狀不一樣的三角形的爭論。我們的形狀不一樣,所以我們的內(nèi)角和各不相同,是這樣的嗎?老師發(fā)現(xiàn)它們爭論的焦點是三角形的內(nèi)角和的問題,那什么是三角形的內(nèi)角?什么又是三角形的內(nèi)角和呢?
二、初建模型,實際驗證自己的猜想
在第一步的基礎(chǔ)上學(xué)生自然想到要量出三角形每個角的度數(shù)就能夠求出三角形的內(nèi)角和,從而證明三角形的內(nèi)角和與三角形的大小和形狀沒有關(guān)系都接近180度。這時教師要組織學(xué)生進行小組合作,每人用量角器量出一種三角形(銳角三角形、鈍角三角形、直角三角形、等腰三角形、等邊三角形)的三個內(nèi)角,并計算出它們的總和是多少?把小組的測量結(jié)果和討論結(jié)果記錄下來以便全班進行交流。
三角形的形狀
三角形每個內(nèi)角的度數(shù)
內(nèi)角和
銳角三角形
鈍角三角形
直角三角形
等腰三角形
等邊三角形
三、再建模型,徹底的得出正確的結(jié)論
因為在上一環(huán)節(jié)學(xué)生已經(jīng)得出三角形的內(nèi)角和大約都是或接近180度。因為我們在測量時由于測量人不同、測量工具不同可能產(chǎn)生一些誤差。有的同學(xué)難免可能猜想三角形的內(nèi)角和就是180度呢?我們繼續(xù)研究和探索。除了測量外我們是否可以利用我們手中的三角形通過拼一拼、折一折、畫一畫的方法來證明三角形的內(nèi)角和都是180度呢?教師放手讓學(xué)生去思考、去動手操作,對有困難和有疑問的同學(xué)進行提示和指導(dǎo)。然后讓學(xué)生到前面演示驗證的方法,教師借助多媒體進行演示。
四、應(yīng)用新知,鞏固練習
1、算一算,對于不同形狀的三角形給出其中的兩個角求第三個角的度數(shù)。(1小題屬于基本練習)
2、試一試,在直角三角形中已知其中的一個角求另一個角的度數(shù)
3、想一想,已知等腰三角形的頂角如何算出它的兩個底角;已知等腰三角形的一個底角的度數(shù)求三角形的頂角。
4、說一說,判斷三角形的兩個銳角的和大于90度;直角三角形的兩個兩個銳角的和等90度;等腰三角形沿著高對折,每個三角形的內(nèi)角和是90度。這些說法是否正確?由兩個三角形拼成一個大的三角形,大三角形的內(nèi)角和是360度,對嗎?
五、拓展與延伸
通過三角形的內(nèi)角和是180度的事實來探討四邊形、五邊行的內(nèi)角和。
三角形內(nèi)角和教學(xué)設(shè)計 篇8
一、教學(xué)目標
1.知識目標:通過測量、撕拼(剪拼)、折疊等方法,探索和發(fā)現(xiàn)三角形三個內(nèi)角的度數(shù)和等于180°這一規(guī)律,并能實際應(yīng)用。
2.能力目標:培養(yǎng)學(xué)生主動探索、動手操作的能力。使學(xué)生養(yǎng)成良好的合作習慣。
3.情感目標:讓學(xué)生體會幾何圖形內(nèi)在的結(jié)構(gòu)美。并充分體會到學(xué)習數(shù)學(xué)的快樂。
二、教學(xué)過程
。ㄒ唬﹦(chuàng)設(shè)情境,導(dǎo)入新課
1、師:我們已經(jīng)認識了三角形,你知道哪些關(guān)于三角形的知識?
。▽W(xué)生暢所欲言。)
2、師:我們在討論三角形知識的時候,三角形中的三個好朋友卻吵了起來,想知道是怎么回事嗎?讓我們一起去看看吧!
師口述:一個大的直角三角形說:“我的個頭大,我的內(nèi)角和一定比你們大。”一個鈍角三角形說:“我有一個鈍角,我的內(nèi)角和才是最大的)一個小的銳角三角形很委屈的樣子說“是這樣嗎?”,
3、到底誰說的對呢?今天我們就來研究有關(guān)三角形內(nèi)角和的知識。(板書課題:三角形內(nèi)角和)
。ǘ┳灾魈骄浚l(fā)現(xiàn)規(guī)律
1、認識什么是三角形的內(nèi)角和。
師:你知道什么是三角形的內(nèi)角和嗎?
通過學(xué)生討論,得出三角形的內(nèi)角和就是三角形三個內(nèi)角的度數(shù)和。
2、探究三角形內(nèi)角和的特點。
、僮寣W(xué)生想一想、說一說怎樣才能知道三角形的內(nèi)角和?
學(xué)生會想到量一量每個三角形的內(nèi)角,再相加的方法來得到三角形的內(nèi)角和。(如果學(xué)生想到別的方法,只要合理的,教師就給予肯定,并鼓勵他們對自己想到的方法進行)
②小組合作。
通過小組合作后交流,匯報。(教師同時板書出幾個小組匯報的結(jié)果)讓學(xué)生們發(fā)現(xiàn)每個三角形的內(nèi)角和都在180°左右。
引導(dǎo)學(xué)生推測出三角形的內(nèi)角和可能都是180°。
3、驗證推測。
讓學(xué)生動腦筋想一想,怎樣才能驗證自己的推想是否正確,學(xué)生可能會想到用折拼或剪拼的方法來看一看三角形的三個角和起來是不是180°,也就是說三角形的三個角能不能拼成一個平角。
。ㄐ〗M合作驗證,教師參與其中。)
4、全班交流,共同發(fā)現(xiàn)規(guī)律。
當學(xué)生匯報用折拼或剪拼的方法的時候,指名學(xué)生上黑板展示結(jié)果。
學(xué)生交流、師生共同總結(jié)出三角形的內(nèi)角和等于180°。教師同時板書(三角形內(nèi)角和等于180°。)
5、師談話:三個三角形討論的問題現(xiàn)在能解決了嗎?你現(xiàn)在想對這三個三角形說點什么嗎?(讓學(xué)生暢所欲言,對得出的三角形內(nèi)角和是180°做系統(tǒng)的整理。)
(三)鞏固練習,拓展應(yīng)用
根據(jù)發(fā)現(xiàn)的三角形的新知識來解決問題。
1、完成“試一試”
讓學(xué)生獨立完成后,集體交流。
2、游戲:選度數(shù),組三角形。
請選出三個角的度數(shù)來組成一個三角形。
150°10°15°18°20°32°
35°50°52°54°56°58°
130°70°72°75°60°
學(xué)生回答的同時,教師操作課件,把學(xué)生選擇的度數(shù)拖入方框內(nèi),通過電腦計算相加是否等于180°,來驗證學(xué)生的選擇是否正確。驗證學(xué)生選的對了以后,再讓學(xué)生判斷選擇的度數(shù)所組成的三角形按角的大小分類,屬于哪種三角形。并說出理由。
3、“想想做做”第1題
生獨立完成,集體訂正,并說說解題方法。
4、“想想做做”第2題
提問:為什么兩個三角形拼成一個三角形后,內(nèi)角和還是180度?
5、“想想做做”第3題
生動手折折看,填空。
提問:三角形的內(nèi)角和與三角形的大小有關(guān)系嗎?三角形越大,內(nèi)角和也越大嗎?
6、“想想做做”第5題
生獨立完成,說說不同的解題方法。
7、“想想做做”第6題
學(xué)生說說自己的想法。
8、思考題
教師拿一個大三角形,提問學(xué)生內(nèi)角和是多少?用剪刀剪成兩個三角形,提問學(xué)生內(nèi)角和是多少?為什么?再剪下一個小三角形,提問學(xué)生內(nèi)角和是多少?為什么?最后建成一個四邊形,提問學(xué)生內(nèi)角和是多少?你能推導(dǎo)
出四邊形的內(nèi)角和公式嗎?
。ㄋ模┱n堂總結(jié)
本節(jié)課我們學(xué)習了哪些內(nèi)容?(生自由說),同學(xué)們說得真好,我們要勇于從事實中尋找規(guī)律,再將規(guī)律運用到實踐當中去。
三角形內(nèi)角和教學(xué)設(shè)計 篇9
【學(xué)習目標】
1.學(xué)生動手操作,通過量、剪、拼、折的方法,探索并發(fā)現(xiàn)“三角形內(nèi)角和等于180度”的規(guī)律。
2.在探究過程中,經(jīng)歷知識產(chǎn)生、發(fā)展和變化的過程,通過交流、比較,培養(yǎng)策略意識和初步的空間思維能力。
3.體驗探究的過程和方法,感受思維提升的過程,激發(fā)求知欲和探索興趣。
【教學(xué)過程】
一、創(chuàng)設(shè)情境,發(fā)現(xiàn)問題
1、魔術(shù)導(dǎo)入:把長方形的紙剪兩刀,怎樣拼成一個三角形?
2、你知道三角形的那些知識?(復(fù)習)
3、小游戲:猜一猜藏在信封后面的是什么三角形。
師:我們在猜三角形的時候,看到一個直角,就能斷定它一定是直角三角形;看到一個鈍角,就能斷定他一定是鈍角三角形;但只看到一個銳角,就判斷不出來是哪種三角形。看來在一個三角形中,只能有一個直角或一個鈍角,為什么畫不出有兩個直角或兩個鈍角的三角形呢?
三角形的這三個角究竟存在什么奧秘呢,我們一起來研究研究。
。▌(chuàng)設(shè)的不是生活中的情境,而是數(shù)學(xué)化的情境。有的孩子認為一個三角形中可能會有兩個鈍角,還有的提出等邊三角形中可能會有直角,這兩個問題顯現(xiàn)出學(xué)生在認知上的矛盾,學(xué)生用已經(jīng)學(xué)的三角形的特征只能解釋“不能是這樣”,而不能解釋“為什么不能是這樣”。這樣引入問題恰好可以利用學(xué)生的這種認知沖突,激發(fā)學(xué)生的學(xué)習興趣。)
二、引導(dǎo)探究,解決問題
1.介紹內(nèi)角、內(nèi)角和
師:我們現(xiàn)在研究三角形的三個角,都是它的內(nèi)角,以后到了初中,還會接觸三角形的外角?蠢蠋熓掷锏娜切,關(guān)于它的三個內(nèi)角,除了我們已經(jīng)掌握的知識外,你還知道哪方面的知識?誰能說一說三角形的內(nèi)角和指的是什么?
已經(jīng)知道三角形的內(nèi)角和是多少的同學(xué),可以把它寫在本上。不知道的同學(xué)想一想,計量內(nèi)角和的單位是度,可以估計一下,各種各樣的三角形的內(nèi)角和是不是一個固定的數(shù),有可能會是多少度,把你的猜想也寫在本上。
我們這節(jié)課就來一起探究用哪些方法能知道三角形的內(nèi)角和。
2.確定研究范圍(預(yù)設(shè)約3-5分)
師:研究三角形的內(nèi)角和,是不是應(yīng)該包括所有的三角形?只研究黑板上這一個行不行?那就隨便畫,挨個研究吧。(學(xué)生反對)
請你想個辦法吧!
。ㄍㄟ^引導(dǎo)學(xué)生分析,“研究哪幾類三角形,就能代表所有的三角形”這個問題,來滲透研究問題要全面,也就是完全歸納法的數(shù)學(xué)思想)
3.動手操作實踐(預(yù)設(shè)約8-10分)
同桌組成學(xué)習小組,拿出課前制作的各種各樣的三角形,先找到三個內(nèi)角,把每個角標上序號。老師提出要求:先試著研究自己的三角形,然后再共同研究小組里其他同學(xué)的三角形,看看各種三角形內(nèi)角和是不是一樣的。(學(xué)生動手操作試驗,在小組中討論問題)
。榱藵M足學(xué)生的探究欲望,發(fā)揮學(xué)生的主觀能動性,我在設(shè)計學(xué)具的時候,想了幾個不同的方案,最后決定課前讓學(xué)生在學(xué)習小組里分工合作制作各種不同的三角形,課上就讓學(xué)生就用自己制作的三角形,通過獨立探究和組內(nèi)交流,實現(xiàn)對多種方法的體驗和感悟。)
4.匯報交流(預(yù)設(shè)約15-20分)
。1)測量的方法
學(xué)生匯報量的方法,師請同學(xué)評價這種方法。
師小結(jié):直接量的方法挺好,雖然測量有誤差,不準,但我們能知道,三角形的內(nèi)角和只能在180°左右,究竟是不是一定就是180度呢,誰還有別的方法?
(2)剪拼的方法
學(xué)生匯報后師小結(jié):能想到這個方法不簡單,拼成的看起來像平角,到底是不是平角呢,我們一起來試試看。(教師和學(xué)生剪一剪、拼一拼)
師:把三角形的三個內(nèi)角湊到了一起,拼成了一個大角,角的兩條邊是不是在一條直線上呢?看起來挺象的,但在操作的過程中難免會產(chǎn)生誤差,有時會差一點點,誰還有別的方法確定三角形的內(nèi)角和一定是180°?
。3)折拼的方法
學(xué)生匯報后師小結(jié):我們要研究三角形的內(nèi)角和,實際上就是想辦法把三角形的三個內(nèi)角湊到一起,像剪和折的方法,看三個內(nèi)角拼到一起是不是180度,都是借助我們學(xué)過的平角解決的問題。
這三種方法都不錯,在操作的過程中,有時會有誤差,不太有說服力。想一想,你還能不能借助我們學(xué)過的哪種圖形,想辦法說明三角形的內(nèi)角和一定是180度?
。4)演繹推理的方法
。ń柚鷮W(xué)過的長方形,把一個長方形沿對角線分成兩個三角形。)
師:你認為這種方法好不好?我們看看是不是這么回事。
師小結(jié):這種方法避免了在剪拼過程中由于操作出現(xiàn)的誤差,非常準確的說明了三角形的內(nèi)角和一定是180度。
(學(xué)生通過小組合作的方式學(xué)到方法,分享經(jīng)驗,更重要的是領(lǐng)悟到科學(xué)研究問題的方法。就學(xué)生的發(fā)展而言,探究的過程比探究獲得的結(jié)論更有價值。)
學(xué)生用的方法會非常多,怎樣對這些方法進行引導(dǎo),是值得思考的問題。這些方法的思維水平不應(yīng)該是平行的:直接測量的方法是學(xué)生利用已有的知識,測量出每個角的度數(shù),再用加法求和;拼角求和法,也就是間接剪拼和折拼這兩種方法,都是通過拼成一個特殊角,也就是平角來解決問題;而演繹推理,即把兩個完全相同的三角形合二為一,或把長方形一分為二,成為兩個三角形,這是更深層次的思考,是一種批判的思維。前兩種方法是不完全歸納法,能使我們確定研究的范圍只能是180度左右,而不可能是其他任意猜想的度數(shù)。最后一種方法具有演繹推理的色彩,把一個長方形沿對角線分成兩個完全相同的三角形后,因為兩個三角形的內(nèi)角和是原來長方形的四個內(nèi)角之和360度,所以一個三角形的內(nèi)角和就是360°÷2=180°,這種方法從科學(xué)證明的角度闡述了三角形的內(nèi)角和,它有嚴密性和精確性;谝陨系南敕ǎ矣X得在課上不能停留在學(xué)生對方法的描述上,而應(yīng)引導(dǎo)學(xué)生經(jīng)歷從直觀到抽象、思維程度從低到高的過程,感悟數(shù)學(xué)的嚴謹性。所以在最后一個環(huán)節(jié)中,教師向全班同學(xué)推薦這種分的方法,大家一起來做一做,不要求全體都掌握,就想起到引導(dǎo)和點撥的作用。學(xué)生在經(jīng)歷量和拼之后,逐漸會在思維發(fā)散的過程中得到集中,集中為分的方法,最后將四邊形一分為二,五邊形一分為三,六邊形一分為四……,又會發(fā)現(xiàn)一些新的規(guī)律!
5.驗證猜想
請學(xué)生把剛才研究的三角形舉起來,分別是銳角三角形、直角三角形、鈍角三角形,這三類的三角形內(nèi)角和都是180度,那就可以說,所有的三角形的內(nèi)角和都是180度。
這個結(jié)論和課前剛才知道的或猜的一樣嗎?
(在很多同學(xué)都知道三角形內(nèi)角和的情況下,要引導(dǎo)學(xué)生領(lǐng)悟有了猜測還要去驗證,這是一種科學(xué)的研究問題的方法,是一種求實精神。)
6.解釋課前問題
用內(nèi)角和的知識解釋課前的問題,為什么在三角形中不能有兩個直角或鈍角。
三、拓展應(yīng)用,深化創(chuàng)新
1.介紹科學(xué)家帕斯卡(出示帕斯卡的資料)
師:帕斯卡為科學(xué)作出了巨大的貢獻,在我們以后學(xué)習的知識中,也有很多是帕斯卡發(fā)現(xiàn)和驗證的,他12歲就發(fā)現(xiàn)三角形內(nèi)角和是180度,我們同學(xué)還沒到12歲,看你能不能通過自己的努力也去探索和發(fā)現(xiàn)。
2.四邊形內(nèi)角和及多邊形內(nèi)角和(幻燈片)
你打算用哪種方法知道四邊形的內(nèi)角和?
你覺得哪種方法更好?
。ㄔO(shè)計求四邊形的內(nèi)角和,是把這個新問題轉(zhuǎn)化歸結(jié)為求幾個三角形內(nèi)角和的問題上,滲透化歸的數(shù)學(xué)學(xué)習方法。)
3.總結(jié)
我們把四邊形一分為二,用三角形內(nèi)角和的知識知道了四邊形內(nèi)角和,那么五邊形、六邊形……這些多邊形的內(nèi)角和是多少度?有沒有什么規(guī)律可循,希望同學(xué)們能用學(xué)到的知識和方法去探究問題,你還會有一些精彩的發(fā)現(xiàn)。
三角形內(nèi)角和教學(xué)設(shè)計 篇10
教學(xué)目標:
1、通過測量一量、拼一拼、折一折三個活動,探索和發(fā)現(xiàn)三角形三個內(nèi)角的度數(shù)和等于180°。
2、已知三角形兩個角的度數(shù),會求出第三個角的度數(shù)。
3、經(jīng)歷三角形內(nèi)角和的研究方法,感受數(shù)學(xué)研究方法。
教學(xué)重點:
1、探索和發(fā)現(xiàn)三角形三個內(nèi)角的度數(shù)和等于180°。
2、已知三角形兩個角的度數(shù),會求出第三個角的度數(shù)。
教學(xué)難點:掌握探究方法(猜想-驗證-歸納總結(jié)),學(xué)會用“轉(zhuǎn)化”的數(shù)學(xué)思想探究三角形內(nèi)角和。
教學(xué)用具:表格、課件。
學(xué)具準備:各種三角形、剪刀、量角器。
教學(xué)過程:
一、創(chuàng)設(shè)情境揭示課題。
1、一天兩個三角形發(fā)生了爭執(zhí),他們請你們來評評理。大三角形說:“我的個頭大,所以我的內(nèi)角和一定比你大!毙∪切魏懿桓市牡卣f:“我有一個鈍角,我的內(nèi)角和一定比你大!薄Ul說得有道理呢?今天讓我們來做一回裁判吧。
生1:大三角形大(個子大)
生2:小三角形大(有鈍角)
(教師不做判斷,讓學(xué)生帶著問題進入新課)
2、什么是三角形的內(nèi)角和?(板書:內(nèi)角和)
講解:三角形內(nèi)兩條邊所夾的角就叫做這個三角形的內(nèi)角。每個三角形都有三個內(nèi)角,這三個內(nèi)角的度數(shù)加起來就是三角形的內(nèi)角和。
二、自主探究,合作交流。
(一)提出問題:
1、你認為誰說得對?你是怎么想的?
2、你有什么辦法可以比較一下這兩個三角形的內(nèi)角和呢?
生1:用量角器量一量三個內(nèi)角各是多少度,把它們加起來,再比較。
生2:用拼一拼的辦法把三個角拼到一起看它們能不能組成平角。
生3:用折一折的辦法把三個角折到一起看它們能不能組成平角
(二)探索與發(fā)現(xiàn)
活動一:量一量
。1)①了解活動要求:(屏幕顯示)
A、在練習本上畫一個三角形,量一量三角形三個內(nèi)角的度數(shù)并標注。(測量時要認真,力求準確)
B、把測量結(jié)果記錄在表格中,并計算三角形內(nèi)角和。
C、討論:從剛才的測量和計算結(jié)果中,你發(fā)現(xiàn)了什么?
。ㄒ龑(dǎo)生回顧活動要求)
②小組合作。
、蹍R報交流。
你們測量了幾個三角形?它們的內(nèi)角和分別是多少?從測量和計算結(jié)果中你們發(fā)現(xiàn)了什么?
。ㄒ龑(dǎo)學(xué)生發(fā)現(xiàn)每個三角形的三個內(nèi)角和都在180°,左右。)
(2)提出猜想
剛才我們通過測量和計算發(fā)現(xiàn)了三角形內(nèi)角和都在180度左右,那你能不能大膽的猜測一下:三角形內(nèi)角和是否相等?三角形的內(nèi)角和等于多少度呢?(板書:猜測)
活動二:拼一拼,驗證猜想
這個猜想是否成立呢?我們要想辦法來驗證一下。(板書驗證)
引導(dǎo):180°,跟我們學(xué)過的什么角有關(guān)?我們課前準備了各種三角形紙片,你能不能利用這些三角形紙片,想辦法把三角形的三個內(nèi)角轉(zhuǎn)換成一個平角呢?
(1)小組合作,討論驗證方法。(把三個角撕下來,拼在一起,3個角拼成了一個平角,所以三角形內(nèi)角和就是180°)。
(2)討論:銳角三角形、直角三角形、鈍角三角形是否都能得出相同的結(jié)論呢?
。3)分組匯報,討論質(zhì)疑
。4)課件演示,驗證結(jié)果
活動三:折一折
師生一起活動,教師先讓學(xué)生看課件演示,然后拿出準備好的三角形紙艮老師一起折一折。
。ò讶切蔚慕1折向它的對邊,使頂點落在對邊上,然后另外兩個角相向?qū)φ,使它們的頂點與角1的頂點互相重合,也證明了三角形內(nèi)角和等于180°,)。
討論:銳角三角形、直角三角形、鈍角三角形能否得到相同的結(jié)論?
提問:還有沒有其它的方法?
3、回顧兩種方法,歸納總結(jié),得出結(jié)論。
(1)引導(dǎo)學(xué)生得出結(jié)論。
孩子們,三角形內(nèi)角和到底等于多少度呢?”
學(xué)生答:“180°!”
。2)總結(jié)方法,齊讀結(jié)論
我們通過動作操作,折一折,拼一拼,把三角形的三個內(nèi)角轉(zhuǎn)換成了一個平角,成功的得到了這個結(jié)論,讓我們?yōu)樽约旱腵成功鼓掌!齊讀結(jié)論。(板書:得到結(jié)論)
(3)解釋測量誤差
為什么我們剛才通過測量,計算出來的三角形內(nèi)角和不是180°,呢?
那是因為我們在測量時,由于測量工具、測量操作等各方面的原因,使我們的測量結(jié)果存在一定的誤差。實際上,三角形內(nèi)角和就等于180°
。ㄈ┗仡檰栴}:
現(xiàn)在你知道這兩個三角形誰說得對了嗎?(都不對!)
為什么?請大家一起,自信肯定的告訴我。
生:因為三角形內(nèi)角和等于1800180°。(齊讀)
三、鞏固深化,加深理解。
1、試一試:數(shù)學(xué)書28頁第3題
∠A=180°-90°-30°
2、練一練:數(shù)學(xué)書29頁第一題(生獨立解決)
∠A=180°-75°-28°
3、小法官:數(shù)學(xué)書29頁第二題
四、回顧課堂,滲透數(shù)學(xué)方法。
1、總結(jié):猜想—驗證—歸納—應(yīng)用的數(shù)學(xué)方法。
2、介紹:三角形內(nèi)角和等于180度這個結(jié)論的由來;數(shù)學(xué)領(lǐng)域里還未被證明的其它猜想,如哥德巴赫猜想、霍啟猜想、龐加萊猜想等。
3、課堂延伸活動:探索——多邊形內(nèi)角和
板書設(shè)計:
探索與發(fā)現(xiàn)(一)
三角形內(nèi)角和等于180°
三角形內(nèi)角和教學(xué)設(shè)計 篇11
教學(xué)目標:
。.知道三角形的內(nèi)角和是180度,理解三角形內(nèi)角和與三角形的大小無關(guān)。
。.通過測量、計算、猜想、實驗等數(shù)學(xué)活動,積累認識圖形的方法和經(jīng)驗,逐步推理、歸納出三角形內(nèi)角和。
3.關(guān)注學(xué)生在操作活動中遇到的真問題,培養(yǎng)學(xué)生誠實嚴謹?shù)膶嶒瀾B(tài)度,實事求是的科學(xué)的態(tài)度。
教學(xué)重點:
知道三角形的內(nèi)角和是180度,理解三角形的內(nèi)角和與三角形的大小、形狀無關(guān)。
教學(xué)難點:
經(jīng)歷操作活動,推理、歸納出三角形的內(nèi)角和。
教學(xué)資源:
多煤體課件,各種三角形,三角板,量角器,剪刀。
教學(xué)活動:
一、創(chuàng)設(shè)情境,導(dǎo)入新課。
1.昨天我們學(xué)習了三角形的分類,三角形按角的特征怎么分類?按邊的特征怎么分類?
2.信封中裝一個三角形露出一個銳角,猜一猜信封中裝的是一個什么三角形?能確定嗎?(露出一個鈍角)現(xiàn)在能確定了嗎?為什么現(xiàn)在就能確定了?(有一個鈍角,兩個銳的三角形是鈍角三角形)。
3.三角形中還隱藏著那些知識?三角形的三個內(nèi)角的和是多少度?這節(jié)課我們研究三角形的內(nèi)角和。(板書課題:三角形的內(nèi)角和)
二、合件交流,操作發(fā)現(xiàn)。
1.(課件)你知道三角尺內(nèi)角的度數(shù)分別是多少嗎?每個直角三角尺的內(nèi)角度數(shù)之和都是多少度?我們能根據(jù)三角尺的內(nèi)角和是180度,就得出三角形的內(nèi)角和的結(jié)論嗎?應(yīng)該怎么研究?(應(yīng)該把三角形中所有的類型銳角三角形、直角三角形、鈍角三角形都研究后,才能得出結(jié)論)(課件出示學(xué)習單)。
2.組織學(xué)生小組合作:
請同學(xué)們以4人為一個小組,三個人分別量一量,算一算一種三角形的內(nèi)角的度數(shù),小組長填寫學(xué)習單。老師巡視。①師:能不能只量出兩個角的度數(shù),不量第三個角的度數(shù),就開始填表、計算?(我們的研究必須是科學(xué)的、實事求是的,測量的數(shù)據(jù)必須是真實的,來不的半點馬虎)。②同桌交流,你們有什么發(fā)現(xiàn)?
3.組織學(xué)生匯報交流:
、倌莻組說一說你們組測量的數(shù)據(jù)和計算的結(jié)果?(學(xué)生的計算不是正好180度時,問:大約是多少度?)②你們有什么發(fā)現(xiàn)?(銳角三角形、直角三角形、鈍角三角形的內(nèi)角和大約都是180度。③你能提出什么猜想?(我猜三角形的內(nèi)角和是180度)老師板書:三角形的內(nèi)角和是180°我們的猜想對不對,(在板書后面打上“?”),就需要我們驗證,請同學(xué)們想辦法驗證我們的猜想對不對?(學(xué)生通過折的方法剪拼進行驗證;學(xué)生通過剪、拼的方法進行驗證。)
4.學(xué)生展臺展示自己的難方法。通過驗證,我們發(fā)現(xiàn)三角形的內(nèi)角和是180度。老師把“?”改為“!”。
5.操作總會有誤差,有沒有別的方法說明呢?(老師課件演示長方形的四個角都是直角,所以長方形的內(nèi)角和應(yīng)為:90°×4=360°。將長方形沿對角線分割,可以分成兩個完全相等的直角三角形,所以直角三角形內(nèi)角和應(yīng)為:360°÷2=180°;沿高可以將任意三角形分成兩個直角三角形。由于前面證明了任意直角三角形的內(nèi)角和是180°,因此兩個直角三角形的內(nèi)角和應(yīng)為:180°×2=360°。而直角三角形的兩個直角不屬于分割前三角形的內(nèi)角,因此任意三角形的內(nèi)角和應(yīng)為:360°-180°=180°。)
三、實踐應(yīng)用,拓展延伸。
1.這里有一條紅領(lǐng)巾,它的形狀是等腰三角形,其中∠1=110°,請計算出∠2=()°,∠3=()°。
2.把下面這個三角形沿虛線剪成兩個小三角形,每個小三角形的內(nèi)角和是多少度?(把一個三角形剪成兩個小三角形,雖然大小發(fā)生了變化,可是內(nèi)角和依然是180度,說明三角形的內(nèi)角和與三角形大小無關(guān))。
四、反思總結(jié),自我建構(gòu)。
這節(jié)課你有什么收獲?
這節(jié)課我們就研究到這兒,同學(xué)們再見!
三角形內(nèi)角和教學(xué)設(shè)計 篇12
教學(xué)目標:
1、讓學(xué)生通過量、剪、拼、折等活動,主動探究推導(dǎo)出三角形內(nèi)角和是180度,并運用所學(xué)知識解決簡單的實際問題。
2、讓學(xué)生在動手獲取知識的過程中,培養(yǎng)學(xué)生的創(chuàng)新意識、探索精神和實踐能力。并通過動手操作把三角形內(nèi)角和轉(zhuǎn)化為平角的探究活動,向?qū)W生滲透"轉(zhuǎn)化"數(shù)學(xué)思想。
3、在學(xué)生親自動手和歸納中,使學(xué)生體驗成功的喜悅,激發(fā)學(xué)生主動學(xué)習數(shù)學(xué)的興趣。
教學(xué)重點:
讓學(xué)生經(jīng)歷"三角形內(nèi)角和是180°"這一知識的形成、發(fā)展和應(yīng)用的全過程。
教學(xué)難點:
通過小組內(nèi)量一量、折一折、撕一撕等活動,驗證"三角形的內(nèi)角和是180°。"
教師準備:
4組學(xué)具、課件
學(xué)生準備:
量角器、練習本
教學(xué)過程:
一、興趣導(dǎo)入,揭示課題
1、導(dǎo)入:"同學(xué)們,這幾天我們都在研究什么知識?能說說你們都認識了哪些三角形嗎?它們各有什么特點?"
。ㄉ鍪救切尾R報各類三角形及特點)
2、今天老師也帶來了兩個三角形,想不想看看?(播放大屏幕)。"咦,不好,它們怎么吵起來了?快聽聽它們?yōu)槭裁闯称饋砹耍?quot;"哦,它們?yōu)榱巳齻內(nèi)角和的大小而吵起來。"(設(shè)置矛盾,使學(xué)生在矛盾中去發(fā)現(xiàn)問題、探究問題。)
3、我們來幫幫它們好嗎?
4、那么什么叫內(nèi)角?你們明白嗎?誰來說說?來指指。
你能標出三角形的三個角嗎?(生快速標好)
數(shù)學(xué)中把三角形的這三個角稱為三角形的內(nèi)角,三個內(nèi)角加起來就叫內(nèi)角和。這節(jié)課我們就來研究一下"三角形的內(nèi)角和"(課件片頭1)
"同學(xué)們,用什么方法能知道三角形的內(nèi)角和?"
二、猜想驗證,探究規(guī)律 (動手操作,探究新知)
1.量角求和法證明:
先聽合作要求:拿出準備的一大一小的兩個三角形,現(xiàn)在我們以小組為單位來量一量它們的內(nèi)角,注意分工:最好兩個人 量,一人記錄,一人計算,看哪一小組完成的好?
。1)學(xué)生聽合作要求后分組合作,將各種三角形的內(nèi)角和計算出來并填在小組活動記錄表中。(觀察哪組配合好)。
。2)指名匯報各組度量和計算內(nèi)角和的結(jié)果。
。3)觀察:從大家量、算的結(jié)果中,你發(fā)現(xiàn)什么?
歸納:大家算出的三角形內(nèi)角和都等于或接近180°。
。5)思考、討論:
通過測量計算,我們發(fā)現(xiàn)三角形的內(nèi)角和不一定等于180度,因為是測量所以能有誤差,那么還有更好的方法能驗證呢?
大家討論討論。
現(xiàn)在各小組就行動起來吧,看哪些小組的方法巧妙。看看能得出什么結(jié)論?
看同學(xué)們拼得這樣開心,老師也想拼拼,行嗎?演示課件。
看老師最終把三個角拼成了一個什么角?平角。是多少角?
"180°是一個什么角?想一想,怎樣可以把三角形的三個內(nèi)角拼在一起?如果拼成一個180 度的平角就可以驗證這個結(jié)論,對嗎?"(課件3)
現(xiàn)在,我們可驗證三角形的內(nèi)角和是(180度)?
2、那么對任意三角形都是這個結(jié)論?請看大屏幕。
演示銳角三角形折角。 (三個頂點重合后是一個平角,折好后是一個長方形。)
你們想不想去試一試。
1、小組探究活動,師巡視過程中加入探究、指導(dǎo)(如生有困難,師可引導(dǎo)、有可能出現(xiàn)折不到一起的情況,可演示以幫助學(xué)生)
2、"你通過哪種三角形驗證(鈍角、銳角、直角逐一匯報)",生邊出示三角形邊匯報。(如有實物投影,直接在實物投影上展示最好,也可用大三角形示范,可隨機改變順序)
a、驗證直角三角形的內(nèi)角和
折法1中三個角拼在一起組成了一個什么角?我們可以得出什么結(jié)論?
引導(dǎo)生歸納出:直角三角形的內(nèi)角和是180°
折法2 我們還可以得出什么結(jié)論?
引導(dǎo)生歸納出:直角三角形中兩個銳角的和是90°。
。矗翰槐厝齻角都折,銳角向直角方向折,兩個銳角拼成直角與直角重合即可)
b、驗證銳角、鈍角三角形的內(nèi)角和。
歸納:銳角、鈍角三角形的內(nèi)角和也是180°。
放手發(fā)動學(xué)生獨立完成 ,逐一種類匯報 師給予鼓勵
三、總結(jié)規(guī)律
剛才,我們將直角三角形、銳角三角形、鈍角三角形的三個內(nèi)角量、剪、撕,能不能給三角形內(nèi)角下一個結(jié)論呢?(生:三角形的內(nèi)角和是180°)對!不論是哪種三角形,不論大小!我們可以得出一個怎樣的結(jié)論?
(三角形的內(nèi)角和是180°。)
。ń處煱鍟喝切蔚膬(nèi)角和是180°學(xué)生齊讀一遍。)
為什么用測量計算的方法不能得到統(tǒng)一的結(jié)果呢?
。康牟粶省S械牧拷瞧饔姓`差。)
老師的大三角形內(nèi)角和大小三角形內(nèi)角和大呀?(一樣大)首尾呼應(yīng)
四、應(yīng)用新知,知識升華。
。ㄗ寣W(xué)生體驗成功的喜悅)
現(xiàn)在,我們已經(jīng)知道了三角形的內(nèi)角和是180°,它又能幫助我們解決那些問題呢?
(課件5……)
在一個三角形中,有沒有可能有兩個鈍角呢?
。ú豢赡。)
追問:為什么?
。ㄒ驗閮蓚銳角和已經(jīng)超過了180°。)
有兩個直角的一個三角形
。ㄒ驗槿切蔚膬(nèi)角和是180°,在一個三角形中如果有兩個直角,它的內(nèi)角和就大于180°。)
問:那有沒有可能有兩個銳角呢?
。ㄓ,在一個三角形中最少有兩個內(nèi)角是銳角。)
1、 看圖求出未知角的度數(shù)。(知識的直接運用,數(shù)學(xué)信息很淺顯)
2、做一做:
在一個三角形中,∠1=140度, ∠3=35度,求∠2的度數(shù)、
3、27頁第3題(數(shù)學(xué)信息較為隱藏和生活中的實際問題)
4.思考題、
五、總結(jié)
今天,我們在研究三角形的內(nèi)角和時經(jīng)歷了猜想、驗證、得出結(jié)論的過程,并且運用這一結(jié)論解決了一些問題。人們在進行科學(xué)研究中,常常都要經(jīng)歷這樣的過程,同時,它也是一種科學(xué)的研究方法。
三角形內(nèi)角和教學(xué)設(shè)計 篇13
教學(xué)目標
1、讓學(xué)生親自動手,通過量、剪、拼等活動發(fā)現(xiàn)、證實三角形內(nèi)角和是180°,并會應(yīng)用這一知識解決生活中簡單的實際問題。
2、讓學(xué)生在動手獲取知識的過程中,培養(yǎng)學(xué)生的創(chuàng)新意識、探索精神和實踐能力。并通過動手操作把三角形內(nèi)角和轉(zhuǎn)化為平角的探究活動,向?qū)W生滲透“轉(zhuǎn)化”數(shù)學(xué)思想。
3、使學(xué)生體驗成功的喜悅,激發(fā)學(xué)生主動學(xué)習數(shù)學(xué)的興趣。
教學(xué)重點
讓學(xué)生經(jīng)歷“三角形內(nèi)角和是180°”這一知識的形成、發(fā)展和應(yīng)用的全過程。
教學(xué)準備
教具:多媒體課件、用彩色卡紙剪的相同的兩個直角三角形、一個鈍角三角形、一個銳角三角形。
學(xué)具:三角形
教學(xué)過程
一、引入
。ㄒ唬┱J識三角形的內(nèi)角及三角形的內(nèi)角和
師:我們已經(jīng)學(xué)習了三角形的分類,誰能說說老師手上的是什么三角形?
師:今天我們來學(xué)習新的知識《三角形內(nèi)角和》,誰能說說哪些角是三角形的內(nèi)角?(讓學(xué)生邊說邊指出來)
師:那三角形的內(nèi)角和又是什么意思?(把三角形三個內(nèi)角的度數(shù)合起來就叫三角形的內(nèi)角和。)
(二)設(shè)疑,激發(fā)學(xué)生探究新知的心理
師:請同學(xué)們幫老師畫一個三角形,能做到嗎?(激發(fā)學(xué)生主動學(xué)習的心理)
生:能。
師:請聽要求,畫一個有兩個內(nèi)角是直角的三角形,開始。(設(shè)置矛盾,使學(xué)生在矛盾中去發(fā)現(xiàn)問題、探究問題。)
師:有誰畫出來啦?
生1:不能畫。
生2:只能畫兩個直角。
生3:……
師:問題出現(xiàn)在哪兒呢?這一定有什么奧秘?想不想知道?那就讓我們一起來研究吧!
。ń沂久埽擅钜胄轮奶骄浚
二、動手操作,探究三角形內(nèi)角和
(一)猜一猜。
師:猜一猜三角形的內(nèi)角和是多少度呢?同桌互相說說自己的看法。
生1:180°。
生2:不一定。
……
(二)操作、驗證三角形內(nèi)角和是180°。
1、量一量三角形的內(nèi)角
動手量一量自己手中的三角形的內(nèi)角度數(shù)。
師:所有三角形的內(nèi)角和究竟是不是180°,你能用什么辦法來證明,使別人相信呢?
生:可以先量出每個內(nèi)角的度數(shù),再加起來。
師:哦,也就是測量計算,是嗎?
學(xué)生匯報結(jié)果。
師:請匯報自己測量的結(jié)果。
生1:180°。
生2:175°。
生3:182°。
……
2、拼一拼三角形的內(nèi)角
學(xué)生操作
師:沒有得到統(tǒng)一的結(jié)果。這個辦法不能使人很信服,怎么辦?還有其它辦法嗎?
生1:有。
生2:用拼合的辦法,就是把三角形的三個內(nèi)角放在一起,可以拼成一個平角。
師:怎樣才能把三個內(nèi)角放在一起呢?(學(xué)生操作)
生:把它們剪下來放在一起。
師:很好。
匯報驗證結(jié)果。
師:通過拼合我們得出什么結(jié)論?
生1:銳角三角形的內(nèi)角拼在一起是一個平角,所以銳角三角形的內(nèi)角和是180°。
生2:直角三角形的內(nèi)角和也是180°。
生3:鈍角三角形的內(nèi)角和還是180°。
課件演示驗證結(jié)果。
師:請看屏幕,老師也來驗證一下,是不是跟你們得到的結(jié)果一樣?(播放課件)
師:我們可以得出一個怎樣的結(jié)論?
生:三角形的內(nèi)角和是180°。
。ń處煱鍟喝切蔚膬(nèi)角和是180°學(xué)生齊讀一遍。)
師:為什么用測量計算的方法不能得到統(tǒng)一的結(jié)果呢?
生1:量的不準。
生2:有的量角器有誤差。
師:對,這就是測量的誤差。
3、折一折三角形的內(nèi)角
師:除了量、拼的方法,還有沒有別的方法可以驗證三角形的內(nèi)角和是180°。
如果學(xué)生說不出來,教師便提示或示范。
學(xué)生操作
4、小結(jié):三角形的內(nèi)角和是180°。
三、解決疑問。
師:現(xiàn)在誰能說說不能畫出有兩個直角的一個三角形的原因?(讓學(xué)生體驗成功的喜悅)
生:因為三角形的內(nèi)角和是180°,在一個三角形中如果有兩個直角,它的內(nèi)角和就大于180°。
師:在一個三角形中,有沒有可能有兩個鈍角呢?
生:不可能。
師:為什么?
生:因為兩個銳角和已經(jīng)超過了180°。
師:那有沒有可能有兩個銳角呢?
生:有,在一個三角形中最少有兩個內(nèi)角是銳角。
四、應(yīng)用三角形的內(nèi)角和解決問題。
1、下面說法是否正確。
鈍角三角形的內(nèi)角和一定大于銳角三角形的內(nèi)角和。()
在直角三角形中,兩個銳角的和等于90度。()
在鈍角三角形中兩個銳角的和大于90度。()
、芤粋三角形中不可能有兩個鈍角。()
、萑切沃杏幸粋銳角是60度,那么這個三角形一定是個銳角三角形。()
2、看圖求出未知角的度數(shù)。(知識的直接運用,數(shù)學(xué)信息很淺顯)
3、游戲鞏固。
由一個同學(xué)出題,其它同學(xué)回答。
。1)給出三角形兩個內(nèi)角,說出另外一個內(nèi)角(有唯一的答案)。
。2)給出三角形一個內(nèi)角,說出其它兩個內(nèi)角(答案不唯一,可以得出無數(shù)個答案)。
4、根據(jù)所學(xué)的知識算出四邊形、正五邊形、正六邊形的內(nèi)角和。
五、全課總結(jié)。
今天你學(xué)到了哪些知識?是怎樣獲取這些知識的?你感覺學(xué)得怎么樣?
三角形內(nèi)角和教學(xué)設(shè)計 篇14
【教學(xué)目標】
1、通過量、拼、折、剪等方法探索和發(fā)現(xiàn)三角形的內(nèi)角和等于180°掌握并會應(yīng)用這一規(guī)律解決實際的問題。
2、通過討論、爭辯、操作、推理發(fā)展學(xué)生動手操作、觀察比較和抽象概括的能力。
3、使學(xué)生掌握由特殊到一般的邏輯思辨方法和先猜想后研究問題的方法。
【教學(xué)重點】
讓學(xué)生經(jīng)歷“三角形內(nèi)角和是180度”這一知識的形成發(fā)展和應(yīng)用的全過程。
【教學(xué)難點】
能利用學(xué)到的知識進行合情的推理。
【教具學(xué)具準備】
課件、各種各樣的直角三角形、長方形、剪刀、量角器、數(shù)學(xué)紙
【教學(xué)過程】
一、學(xué)具三角板,引入新課
1、(出示兩個直角三角板),問:這是咱們同學(xué)非常熟悉的一種學(xué)習工具,是什么呀?(三角板)它們的外形是什么形狀的?(三角形)(課件:抽象出三角形)
2、顧名思義一個三角形都有幾個角呀?(三個)
3、認識內(nèi)角
。1)在三角形的內(nèi)部相臨兩條邊之間所夾的角叫做三角形的內(nèi)角。(課件閃爍∠1)(板書:三角形內(nèi)角)∠1就叫做三角形的什么?這兩條邊夾的角∠2呢?∠3呢?
。2)這個三角形內(nèi)有幾個內(nèi)角?(三個)這個呢?(三個)
(設(shè)計意圖:由學(xué)生最熟悉的三角板引入新課,激發(fā)學(xué)生興趣的同時為后面的學(xué)習做準備)
二、動手操作,探索新知
(一)直角三角形內(nèi)角和
、、特殊直角三角形內(nèi)角和
1、根據(jù)我們以往對三角板的了解,你還記得每個三角形上每個內(nèi)角各是多少度嗎?(生說度數(shù),師課件上在相應(yīng)角出示度數(shù):①90°、60°、30°,②90°、45°、45°)。
2、觀察這兩個三角形的度數(shù),你有什么發(fā)現(xiàn)?
生1:都有一個直角,師:那我們就可以說他們是什么三角形?(板書:直角三角形)
生2:我還發(fā)現(xiàn)他們內(nèi)角加起來是180度。師:他真會觀察,你發(fā)現(xiàn)了嗎?快算一算是不是他說的那樣?
(課件):
。1)90°+60°+30°=180°)
那么另一個三角板的三個內(nèi)角的總度數(shù)是多少?
。ㄉ卮,師課件:
。2)90°+45°+45°=180)
3、你指的哪是180度?(生:這三個內(nèi)角合起來是180度)
4、在三角形內(nèi)三個內(nèi)角的總度數(shù)又簡稱為三角形的內(nèi)角和。(板書:和)
5、這個直角三角形的內(nèi)角和是多少度?另一個呢?
6、你還記得180度是我們學(xué)過的是什么角嗎?(平角)趕快在你的數(shù)學(xué)紙上畫一個平角。
。◣煶鍪疽粋平角)問:平角是什么樣的?
7、師述:角的兩邊形成一條直線就是平角。也就是180度,哦,這兩個直角三角形的內(nèi)角和就組成這樣的一個角呀。
ⅱ、一般直角三角形內(nèi)角和
1、老師還為你們準備了各種各樣的直角三角形,快拿出來看看。
2、剛才的那兩個直角三角形的內(nèi)角和是180度,你們手中的直角三角形的內(nèi)角和是多少度呢?老師還為你們準備了一些學(xué)具,你能充分地利用這些學(xué)具,想辦法來研究直角三角形的內(nèi)角和是多少度嗎?下面我們以小組為單位來研究,注意小組同學(xué)要明確分工可以一個人填表,另外的人一起動手實驗看一看哪一組想出研究方法最多。
(1)小組活動
。2)匯報
哪個組愿意把你們的研究成果向大家展示?每個小組派代表發(fā)言。(在實物展臺上演示)
三角形的種類
驗證方法
驗證結(jié)果
“量一量”的方法:
板書:有一點誤差的度數(shù)
“剪一剪”的方法:
我們在剪的時候要注意什么?剪完之后怎樣拼?拼成的是什么?你怎么知道是平角?(提示:可以在我們畫的平角上拼)(課件展示)
現(xiàn)在我們也用這種方法試一試,看能不能拼成平角?(小組實驗)
你們的直角三角形的內(nèi)角和拼成的是平角嗎?也就是內(nèi)角和是多少度?
還有其他方法嗎?
“折一折”的方法:
預(yù)設(shè):
、偕何沂钦鄣。師:怎樣折的?你能給大家演示嗎?
學(xué)生演示(課件:折的過程)
②學(xué)生沒有說出來,師:你們看老師還有一種方法請看:(課件:折的過程)其實折的方法和剪、撕的道理是一樣的,最后都是把三個內(nèi)角拼成平角。(板書:折)
推理:
你們有用長方形來研究直角三角形內(nèi)角和度數(shù)的嗎?(課件:長方形)快想一想用長方形怎樣去研究?(課件:長方形驗證的過程)
這種方法就叫做推理,一般到中學(xué)以后我們經(jīng)常會用到。(板書:推理)
3、小結(jié)
。1)通過我們剛才的研究,我們發(fā)現(xiàn)直角三角形的內(nèi)角和都是多少度呀?(板書:內(nèi)角和是180°)剛才我們在測量的時候為什么會出現(xiàn)179度183度呢?看來只要是測量不可避免的會產(chǎn)生誤差。
。2)在我們?nèi)切蔚氖澜缰,是只有直角三角形嗎?還有什么?(板書:銳角三角形、鈍角三角形)
。ㄔO(shè)計意圖:引導(dǎo)學(xué)生通過量、拼、推理等實踐操作活動,自主探究直角三角形的內(nèi)角和是180度,體驗解決問題策略的多樣化。通過這些過程使學(xué)生明白:探究問題有不同的方法、途徑,并且方法之間可以互為驗證,達到結(jié)論的統(tǒng)一,從而使學(xué)生明白獲得探究問題的方法比獲得結(jié)論更為重要。)
。ǘJ角三角形、鈍角三角形的內(nèi)角和
1、請你們?nèi)我猱嬕粋鈍角三角形,一個銳角三角形
2、直角三角形的內(nèi)角和是180度,銳角三角形、鈍角三角形的內(nèi)角和又是多少度呢?你能利用我們剛才學(xué)到的知識來研究你所畫的三角形的內(nèi)角和是多少度嗎?快試試,可以同桌討論。(學(xué)生操作,匯報,課件演示)我們是用什么方法來研究的?
3、學(xué)生模仿老師操作說理
4、由此我們得到了銳角三角形的內(nèi)角和是多少度?鈍角三角形的內(nèi)角和呢?我們就可以說所有三角形的內(nèi)角和都是180度。
師:這也是三角形的一個特性,現(xiàn)在你對三角形的這一特性有疑問嗎?如果沒有的話請你用自信、肯定的語氣讀一讀(板書:三角形的內(nèi)角和是180°)。
。ㄔO(shè)計意圖:引導(dǎo)學(xué)生通過直角三角形的內(nèi)角和是180度來推導(dǎo)出銳角和鈍角三角形的內(nèi)角和是180度,使學(xué)生初步掌握由特殊到一般的邏輯思辨方法。)
三、鞏固新知,拓展應(yīng)用
我們就用三角形的這一特性來解決一些問題
1、兩個三角形拼成大三角形
(1)每個三角形的內(nèi)角和都是少度?
。2)(課件把兩個三角形拼在一起)它的內(nèi)角和是多少度?(這時學(xué)生答案又出現(xiàn)了180°和360°兩種。)師:究竟誰對呢
2、一個三角形去掉一部分
。1)這是一個三角形,他的內(nèi)角和是多少度?我從中剪去一個三角形他的內(nèi)角和是多少度?
再剪去一個三角形呢?(課件演示)
你們看這兩個三角形他們的大小、形狀都怎么樣?但內(nèi)角和都是180度,看來三角形的內(nèi)角和的度數(shù)和他的大小形狀都無關(guān)。
(2)我再把這個三角形剪去一部分,它的內(nèi)角和是多少度?(課件:剪成四邊形)
你能利用我們?nèi)切蔚膬?nèi)角和是180度來研究這個四邊形的內(nèi)角和是多少度嗎?
(3)如果五邊形,你還能求出他的度數(shù)嗎?
。ㄔO(shè)計意圖:充分利用多媒體資源幫助學(xué)生理解、消化、新的知識,能夠靈活的運用三角形的內(nèi)角和等于180度。在此基礎(chǔ)上滲透數(shù)學(xué)的“轉(zhuǎn)化”思想和“分割”思想提高學(xué)生靈活運用和推理等各方面的能力。)
四、總結(jié)評價、延伸知識
通過這節(jié)課的學(xué)習研究你掌握了哪些知識?我們是怎樣研究的呢?
師:先研究的是特殊直角三角形的內(nèi)角和是180度,接著通過量、拼等方法得到了直角三角形的內(nèi)角和是180度,再利用直角三角形通過推理研究出銳角三角形和鈍角三角形的內(nèi)角和是180度。
(設(shè)計意圖:幫助學(xué)生梳理本節(jié)課的知識脈絡(luò)。)
三角形內(nèi)角和教學(xué)設(shè)計 篇15
【教學(xué)目標】
1通過“量、剪、拼”等活動發(fā)現(xiàn)、驗證三角形的內(nèi)角和是180°,并能運用這個知識解決一些簡單的問題。
2.在觀察、猜想、操作、合作、分析交流等具體活動中,提高動手操作能力,積累基本的數(shù)學(xué)活動經(jīng)驗,發(fā)展空間觀念和推理能力。
3.在參與數(shù)學(xué)學(xué)習活動的過程中,獲得成功的體驗,感受數(shù)學(xué)探究的嚴謹與樂趣。
【教學(xué)重點】
探索發(fā)現(xiàn)、驗證“三角形內(nèi)角和是180°”,并運用這個知識解決實際問題。
【教學(xué)難點】驗證“三角形的內(nèi)角和是180°”。
【教(學(xué))具準備】
多媒體課件; 銳角三角形、直角三角形、鈍角三角形紙片若干個各類三角形(也包括等邊、等腰)、長方形、正方形若干個;每人一個量角器;一把剪刀;每人一副三角尺。
【教學(xué)步驟】
一、復(fù)習舊知 引出課題
1、你已經(jīng)知道有關(guān)三角形的哪些知識?
2、出示課題:三角形的內(nèi)角和
設(shè)計意圖:也自然導(dǎo)入新課。
二、提出問題 引發(fā)猜想
1、提出問題:看到這個課題,你有什么問題想問的?
預(yù)設(shè):
。1)三角形的內(nèi)角指的是哪些角?
。2)三角形的內(nèi)角和是什么意思?
。3)三角形的內(nèi)角一共是多少度?
2、引發(fā)猜想
猜一猜:三角形的內(nèi)角和是多少度?你是怎么猜的?
設(shè)計意圖:提出一個問題比解決一個問題更重要。課始在復(fù)習三角形已學(xué)知識后,引導(dǎo)學(xué)生提出有關(guān)三角形的新問題,讓學(xué)生學(xué)習自己想研究的內(nèi)容,無疑激發(fā)了學(xué)生的學(xué)習興趣,培養(yǎng)了學(xué)生的問題意識。由于學(xué)生在平時使用三角板時已經(jīng)若隱若現(xiàn)地有了特殊的直角三角形的內(nèi)角和是180度這一感覺,因此本環(huán)節(jié),要求學(xué)生猜一猜三角形的內(nèi)角和是多少,并說說是怎么猜的,以激發(fā)學(xué)生已有知識經(jīng)驗,并體會到猜想要合理且有根據(jù),同時也為推理驗證的引出作必要的鋪墊。
三、操作驗證 形成結(jié)論
1、交流驗證方法:
(1)用什么方法證明三角形的內(nèi)角和是180度呢?
預(yù)設(shè):
、倭克惴
、诩羝捶
、壅燮捶ǖ
。2)三角形的個數(shù)有無數(shù)個,驗證哪些三角形可以代表所有的三角形?我們的操作過程怎么分工才會做到省時又高效?
2、動手驗證
3、全班匯報交流
4、小結(jié):剛才通過大家的動手操作驗證了三角形的內(nèi)角和是180 °度。但動手操作會存在一定的誤差,我們的結(jié)論也可能存在偏差。
5、方法拓展
推理驗證:用直角三角形的內(nèi)角和來證明其他三角形內(nèi)角和是180 °的方法。
6、形成結(jié)論:任意三角形的內(nèi)角和是180 °。
設(shè)計意圖:《標準》指出:“教師應(yīng)激發(fā)學(xué)生的積極性,向?qū)W生提供充分從事數(shù)學(xué)活動的機會,幫助他們在自主探索和合作交流的過程中真正理解和掌握基本的數(shù)學(xué)知識與技能、數(shù)學(xué)思想和方法,獲得廣泛的數(shù)學(xué)活動經(jīng)驗!辈聹y后先獨立思考驗證的方法,再進行全班交流,給學(xué)生充分的活動時間和空間,讓學(xué)生動手操作,使學(xué)生在量、剪、拼、折等一系列操作活動中發(fā)現(xiàn)了三角形內(nèi)角和是180°這個結(jié)論。在探索活動前,交流如何使研究樣本具有代表性和全面性與如何分工做到操作省時高效這兩個問題,培養(yǎng)學(xué)生嚴謹、科學(xué)正確的研究態(tài)度,讓學(xué)生在活動中積累基本的數(shù)學(xué)活動經(jīng)驗,為后續(xù)的學(xué)習提供了經(jīng)驗支撐。
四、應(yīng)用結(jié)論 解決問題
1、鞏固新知:想一想,算一算。
2、解決問題:等腰三角形風箏的頂角是多少度?
3、辨析訓(xùn)練,完善結(jié)論。
五、課堂總結(jié),歸納研究方法
今天這節(jié)課你學(xué)到了哪些知識?你是怎樣得到這些知識的?
六、課后延伸:用今天所學(xué)的方法繼續(xù)研究四邊形的內(nèi)角和。
七、板書設(shè)計:
三角形的內(nèi)角和
猜測: 三角形的內(nèi)角和是180°?
驗證: 量 拼
結(jié)論: 任意三角形的內(nèi)角和是180°
【三角形內(nèi)角和教學(xué)設(shè)計】相關(guān)文章:
三角形內(nèi)角和教學(xué)設(shè)計11-01
三角形的內(nèi)角和的教學(xué)設(shè)計05-17
《三角形內(nèi)角和》的教學(xué)設(shè)計05-10
三角形的內(nèi)角和教學(xué)設(shè)計09-11
《三角形的內(nèi)角和》教學(xué)設(shè)計08-19
三角形的內(nèi)角和的教學(xué)設(shè)計01-22
三角形內(nèi)角和教學(xué)設(shè)計11-18
《三角形內(nèi)角和》教學(xué)設(shè)計05-25