多邊形的內(nèi)角教學(xué)設(shè)計(jì)
作為一位無私奉獻(xiàn)的人民教師,時常需要準(zhǔn)備好教學(xué)設(shè)計(jì),教學(xué)設(shè)計(jì)是教育技術(shù)的組成部分,它的功能在于運(yùn)用系統(tǒng)方法設(shè)計(jì)教學(xué)過程,使之成為一種具有操作性的程序。那么應(yīng)當(dāng)如何寫教學(xué)設(shè)計(jì)呢?下面是小編精心整理的多邊形的內(nèi)角教學(xué)設(shè)計(jì),希望能夠幫助到大家。
多邊形的內(nèi)角教學(xué)設(shè)計(jì)1
一、素質(zhì)教育目標(biāo)
。ㄒ唬┲R教學(xué)點(diǎn)
1.使學(xué)生掌握四邊形的有關(guān)概念及四邊形的內(nèi)角和外角和定理.
2.了解四邊形的不穩(wěn)定性及它在實(shí)際生產(chǎn),生活中的應(yīng)用.
(二)能力訓(xùn)練點(diǎn)
1.通過引導(dǎo)學(xué)生觀察氣象站的實(shí)例,培養(yǎng)學(xué)生從具體事物中抽象出幾何圖形的能力.
2.通過推導(dǎo)四邊形內(nèi)角和定理,對學(xué)生滲透化歸思想.
3.會根據(jù)比較簡單的條件畫出指定的四邊形.
4.講解四邊形外角概念和外角定理時,聯(lián)系三角形的有關(guān)概念對學(xué)生滲透類比思想.
。ㄈ┑掠凉B透點(diǎn)
使學(xué)生認(rèn)識到這些四邊形都是常見的,研究他們都有實(shí)際應(yīng)用意義,從而激發(fā)學(xué)生學(xué)習(xí)新知識的興趣.
。ㄋ模┟烙凉B透點(diǎn)
通過四邊形內(nèi)角和定理數(shù)學(xué),滲透統(tǒng)一美,應(yīng)用美.
二、學(xué)法引導(dǎo)
類比、觀察、引導(dǎo)、講解
三、重點(diǎn)·難點(diǎn)·疑點(diǎn)及解決辦法
1.教學(xué)重點(diǎn):四邊形及其有關(guān)概念;熟練推導(dǎo)四邊形外角和這一結(jié)論,并用此結(jié)論解決與四邊形內(nèi)外角有關(guān)計(jì)算問題.
2.教學(xué)難點(diǎn):理解四邊形的有關(guān)概念中的一些細(xì)節(jié)問題;四邊形不穩(wěn)定性的理解和應(yīng)用.
3.疑點(diǎn)及解決辦法:四邊形的定義中為什么要有“在平面內(nèi)”,而三角形的定義中就沒有呢?根據(jù)指定條件畫四邊形,關(guān)鍵是要分析好作圖的順序,一般先作一個角.
四、課時安排
2課時
五、教具學(xué)具準(zhǔn)備
投影儀、膠片、四邊形模型、常用畫圖工具
六、師生互動活動設(shè)計(jì)
教師引入新課,學(xué)生觀察圖形,類比三角形知識導(dǎo)出四邊形有關(guān)概念;師生共同推導(dǎo)四邊形內(nèi)角和的定理,學(xué)生鞏固內(nèi)角和定理和應(yīng)用;共同分析探索外角和定理,學(xué)生閱讀相關(guān)材料.
第一課時
七、教學(xué)步驟
【復(fù)習(xí)引入】
在小學(xué)里已經(jīng)對四邊形、長方形、平形四邊形的有關(guān)知識有所了解,但還很膚淺,這一章我們將比較系統(tǒng)地學(xué)習(xí)各種四邊形的性質(zhì)和判定分析它們之間的關(guān)系,并運(yùn)用有關(guān)四邊形的知識解決一些新問題.
【引入新課】
用投影儀打出課前畫好的教材中P119的圖.
師問:在上圖中你能把知道的長方形、正方形、平行四邊形、梯形找出來嗎?(啟發(fā)學(xué)生找上述圖形,最后教師用彩色筆勾出幾個圖形).
【講解新課】
1.四邊形的有關(guān)概念
結(jié)合圖形講解四邊形,四邊形的邊、頂點(diǎn)、角,凸四邊形,四邊形的對角線(同時學(xué)生在書上畫出上述概念),講解這些概念時:
(1)要結(jié)合圖形.
。2)要與三角形類比.
。3)講清定義中的關(guān)鍵詞語.如四邊形定義中要說明為什么加上“同一平面內(nèi)”而三角形的定義中為什么不加“同一平面內(nèi)”(三角形的三個頂點(diǎn)一定在同一平面內(nèi),而四個點(diǎn)有可能不在同一平面內(nèi),如圖4—2中的點(diǎn) .我們現(xiàn)在只研究平面圖形,故在定義中加上“在同一平面內(nèi)”的限制).
(4)強(qiáng)調(diào)四邊形對角線的作用,作為四邊形的一種常用的輔助線,通過它可以把四邊形問題轉(zhuǎn)化為三角形來解(滲透化歸思想),并觀察圖4-3用對角線分成的這些三角形與原四邊形的關(guān)系.
。5)強(qiáng)調(diào)四邊形的表示方法,一定要按頂點(diǎn)順序書寫四邊形如圖4—1.
。6)在判斷一個四邊形是不是凸四邊形時,一定要按照定義的要求把每一邊都延長后再下結(jié)論如圖4-4,圖4-5.
2.四邊形內(nèi)角和定理
教師問:
(1)在圖4-3中對角線AC把四邊形ABCD分成幾個三角形?
(2)在圖4-6中兩條對角線AC和BD把四邊形分成幾個三角形?
。3)若在四邊形ABCD 如圖4-7內(nèi)任取一點(diǎn)O,從O向四個頂點(diǎn)作連線,把四邊形分成幾個三角形.
我們知道,三角形內(nèi)角和等于180°,那么四邊形的內(nèi)角和就等于:
、2×180°=360°如圖4—6;
、4×180°-360°=360°如圖4-7.
例1 已知:如圖4—8,直線 于B、 于C.
求證:(1) ; (2) .
本例題是四邊形內(nèi)角和定理的應(yīng)用,實(shí)際上它證明了兩邊相互垂直的兩個角相等或互補(bǔ)的關(guān)系,何時用相等,何時用互補(bǔ),如果需要應(yīng)用,作兩三步推理就可以證出.
【總結(jié)、擴(kuò)展】
1.四邊形的有關(guān)概念.
2.四邊形對角線的作用.
3.四邊形內(nèi)角和定理.
八、布置作業(yè)
教材P128中1(1)、2、 3.
九、板書設(shè)計(jì)
四邊形有關(guān)概念
四邊形內(nèi)角和例1
十、隨堂練習(xí)
教材P122中1、2、3.
多邊形的內(nèi)角教學(xué)設(shè)計(jì)2
教學(xué)過程
。ㄒ唬﹦(chuàng)設(shè)問題情境,引出新課。
1、以疑導(dǎo)入,引發(fā)求知欲。先展示六螺帽,八角石英鐘、多邊形水果盤等多邊形實(shí)物。由此激發(fā)學(xué)生自己要設(shè)計(jì),怎樣設(shè)計(jì)的求知欲。然后提出具體問題。
引題:我們學(xué)校要準(zhǔn)備建造一個各邊長為5米,各內(nèi)角都相等的十二邊形花壇。問各角是多少度?
2、復(fù)習(xí)提問,知識鞏固。
⑴三角形內(nèi)角和等于多少度?
、扑倪呅蝺(nèi)角和定理以及推導(dǎo)方法。
3、引入新課
上一節(jié)課學(xué)習(xí)了求四邊形內(nèi)角和的方法,怎樣求五邊形、六邊形……n邊形的內(nèi)角和呢?下面我們一起來討論這個問題(板書課題)。
(二)引導(dǎo)探索,研討新知
1、以動激趣,淺探求知。
一畫:畫三角形、四邊形、五邊形、六邊形(讓學(xué)生自己動手畫)。
二量:量出五邊形、六邊形各內(nèi)角,并求出其和(讓學(xué)生自己求知)。
三比較:比較四邊形、五邊形、六邊形分別是三角形內(nèi)角和的'多少倍,并由此去探索他們之間的初步規(guī)律。
2、觀察聯(lián)想,啟迪思維。
。ㄈ┗仡櫺〗Y(jié),驗(yàn)收成效
1、已知邊數(shù)如何求內(nèi)角和;
2、已知內(nèi)角和如何求邊數(shù);
3、n邊形的內(nèi)角和與外角和成一定的比例關(guān)系,求其n邊形的邊數(shù)。
(四)課后作業(yè)(教材P91習(xí)題7.3第8、9題)
多邊形的內(nèi)角教學(xué)設(shè)計(jì)3
[教學(xué)目標(biāo)]
知識與技能:
1.會用多邊形公式進(jìn)行計(jì)算。
2.理解多邊形外角和公式。
過程與方法:
經(jīng)歷探究多邊形內(nèi)角和計(jì)算方法的過程,培養(yǎng)學(xué)生的合作交流意識力.
情感態(tài)度與價值觀:
讓學(xué)生在觀察、合作、討論、交流中感受數(shù)學(xué)轉(zhuǎn)化思想和實(shí)際應(yīng)用價值,同時培養(yǎng)學(xué)生善于發(fā)現(xiàn)、積極思考、合作學(xué)習(xí)、勇于創(chuàng)新的學(xué)習(xí)態(tài)度。
[教學(xué)重點(diǎn)、難點(diǎn)與關(guān)鍵]
教學(xué)重點(diǎn):多邊形的內(nèi)角和.的應(yīng)用.
教學(xué)難點(diǎn):探索多邊形的內(nèi)角和與外角和公式過程.
教學(xué)關(guān)鍵:應(yīng)用化歸的數(shù)學(xué)方法,把多邊形問題轉(zhuǎn)化為三角形問題來解決.
[教學(xué)方法]
本節(jié)課采用“探究與互動”的教學(xué)方式,并配以真的情境來引題。
[教學(xué)過程:]
(一)探索多邊形的內(nèi)角和
活動1:判斷下列圖形,從多邊形上任取一點(diǎn)c,作對角線,判斷分成三角形的個數(shù)。
活動2:①從多邊形的一個頂點(diǎn)出發(fā),可以引多少條對角線?他們將多邊形分成多少個三角形?②總結(jié)多邊形內(nèi)角和,你會得到什么樣的結(jié)論?
多邊形邊數(shù)分成三角形的個數(shù)圖形
內(nèi)角和計(jì)算規(guī)律
三角形31180°(3-2)·180°
四邊形4
五邊形5
六邊形6
七邊形7
。。。。。。
n邊形n
活動3:把一個五邊形分成幾個三角形,還有其他的分法嗎?
總結(jié)多邊形的內(nèi)角和公式
一般的,從n邊形的一個頂點(diǎn)出發(fā)可以引____條對角線,他們將n邊形分為____個三角形,n邊形的內(nèi)角和等于180×______。
鞏固練習(xí):看誰求得又快又準(zhǔn)!(搶答)
例1:已知四邊形ABCD,∠A+∠C=180°,求∠B+∠D=?
(點(diǎn)評:四邊形的一組對角互補(bǔ),另一組對角也互補(bǔ)。)
(二)探索多邊形的外角和
活動4:例2如圖,在五邊形的每個頂點(diǎn)處各取一個外角,這些外角的和叫做五邊形的外角和.五邊形的外角和等于多少?
分析:(1)任何一個外角同于他相鄰的內(nèi)角有什系?
(2)五邊形的五個外角加上與他們相鄰的內(nèi)角所得總和是多少?
(3)上述總和與五邊形的內(nèi)角和、外角和有什么關(guān)系?
解:五邊形的外角和=______________-五邊形的內(nèi)角和
活動5:探究如果將例2中五邊形換成n邊(n≥3),可以得到同樣的結(jié)果嗎?
也可以理解為:從多邊形的一個頂點(diǎn)A點(diǎn)出發(fā),沿多邊形的各邊走過各點(diǎn)之后回到點(diǎn)A.最后再轉(zhuǎn)回出發(fā)時的方向。由于在這個運(yùn)動過程中身體共轉(zhuǎn)動了一周,也就是說所轉(zhuǎn)的各個角的和等于一個______角。所以多邊形的外角和等于_________。
結(jié)論:多邊形的外角和=___________。
練習(xí)1:如果一個多邊形的每一個外角等于30°,則這個多邊形的邊數(shù)是_____。
練習(xí)2:正五邊形的每一個外角等于________,每一個內(nèi)角等于_______。
練習(xí)3.已知一個多邊形,它的內(nèi)角和等于外角和,它是幾邊形?
(三)小結(jié):本節(jié)課你有哪些收獲?
(四)作業(yè):
課本P84:習(xí)題7.3的2、6題
附知識拓展—平面鑲嵌
(五)隨堂練習(xí)(練一練)
1、n邊形的內(nèi)角和等于__________,九邊形的內(nèi)角和等于___________。
2、一個多邊形當(dāng)邊數(shù)增加1時,它的內(nèi)角和增加()。
3、已知多邊形的每個內(nèi)角都等于150°,求這個多邊形的邊數(shù)?
4、一個多邊形從一個頂點(diǎn)可引對角線3條,這個多邊形內(nèi)角和等于()
A:360°B:540°C:720°D:900°
5.已知一個多邊形,它的內(nèi)角和等于外角和的2倍,求這個多邊形的邊數(shù)?
【多邊形的內(nèi)角教學(xué)設(shè)計(jì)】相關(guān)文章:
1.多邊形的內(nèi)角教學(xué)設(shè)計(jì)
3.多邊形的內(nèi)角和與外角和導(dǎo)學(xué)案PPT課件公開課實(shí)錄
5.三角形內(nèi)角和教學(xué)設(shè)計(jì)合集15篇
6.《點(diǎn)金術(shù)》的教學(xué)設(shè)計(jì)