男人天堂日韩,中文字幕18页,天天伊人网,成人性生交大片免费视频

《絕對值的定義》教學(xué)設(shè)計

時間:2022-09-28 20:10:21 教學(xué)設(shè)計 我要投稿

《絕對值的定義》教學(xué)設(shè)計

  作為一名教師,時常需要用到教學(xué)設(shè)計,借助教學(xué)設(shè)計可使學(xué)生在單位時間內(nèi)能夠?qū)W到更多的知識。優(yōu)秀的教學(xué)設(shè)計都具備一些什么特點呢?下面是小編為大家收集的《絕對值的定義》教學(xué)設(shè)計,歡迎大家分享。

《絕對值的定義》教學(xué)設(shè)計

《絕對值的定義》教學(xué)設(shè)計1

  教學(xué)目標(biāo):

  知識目標(biāo):

  (1)理解絕對值的概念及表示法。

  (2)理解數(shù)的絕對值的幾何意義。

  能力目標(biāo):

 。1)掌握求一個數(shù)的絕對值及有關(guān)的簡單計算,

 。2)掌握絕對值等于某一正數(shù)的有理數(shù)的求法,探索絕對值的簡單應(yīng)用。

  情感目標(biāo):讓學(xué)生經(jīng)歷絕對值的產(chǎn)生過程,體會數(shù)形結(jié)合思想。

  教學(xué)重點、難點:

  重點:

  絕對值的概念和求一個數(shù)的絕對值。

  難點:

  絕對值的幾何意義。

  教學(xué)手段:

  多媒體(powerpoint)教學(xué)與板書相結(jié)合。

  教學(xué)過程:

  一、新課引入

  我們已經(jīng)知道有理數(shù)在日常生活中應(yīng)用廣泛,與生產(chǎn)實踐聯(lián)系緊密,用正、負(fù)數(shù)可以來表示相反意義的量,而數(shù)軸使我們直觀的感受到有理數(shù)中正、負(fù)數(shù)的區(qū)別和數(shù)在數(shù)軸上相應(yīng)的位置。

  乘城市中的出租車去逛商店是我們經(jīng)常經(jīng)歷的事,其中的數(shù)量關(guān)系與我們所學(xué)的有理數(shù)、數(shù)軸有密切聯(lián)系。例如有2位同學(xué)在書店購買書籍后回家,一位同學(xué)乘上甲出租車向東行駛10Km到達(dá)A處,另一位同學(xué)乘上乙出租車向西行駛10Km到達(dá)B處。

  二、合作學(xué)習(xí)

  把全班同學(xué)分4—5組分組討論完成下面的三個問題

  1:描述請大家用數(shù)軸來表示這一過程(記向東行駛的里程數(shù)為正)

  2:思考兩位同學(xué)付費額度是否一樣?為什么?

  3:結(jié)論付費額度與行駛方向有沒有關(guān)系?

  然后請各組代表總結(jié)發(fā)言:(鼓勵學(xué)生積極參與,并給予高度的評價)

  這兩位同學(xué)由于乘車離開書店的距離一樣,所以付費額度也是一樣的,與行駛方向無關(guān)。說明在數(shù)軸上的A(+10)、B(—10)兩點到原點(書店)的距離是一樣的,都是10。同樣數(shù)軸上+5和—5兩點到原點的距離也是一樣的。

  我們把一個數(shù)在數(shù)軸上對應(yīng)的點到原點的距離叫做這個數(shù)的絕對值。(注意是離開原點的距離)

  如數(shù)軸上表示-5的點到原點的距離是5,所以—5的絕對值是5,記作;+5的絕對值也是5,記作。其實際意義是:數(shù)軸上+5這個點到原點的距離為5。(強調(diào)絕對值符號的書寫格式)

  三、課內(nèi)練習(xí)

  1、求下列各數(shù)的絕對值:-1。60-10+10同時說出它們的幾何意義。

  2、說出下列各數(shù)的絕對值:-7-2。0501000

  由上述兩題可概括出:(在教師的引導(dǎo)下讓學(xué)生得出結(jié)論)

  一個正數(shù)的絕對值是它本身,一個負(fù)數(shù)的絕對值是它的相反數(shù),零的絕對值是零,互為相反的兩個數(shù)的絕對值相等。(注意一個數(shù)的絕對值不可能是負(fù)數(shù),而是非負(fù)數(shù)。)

 。ㄒ唬┑淅治

  1、求絕對值等于4的數(shù)?

  注:分析例題時盡量培養(yǎng)學(xué)生利用數(shù)軸來解決問題的能力。

  2、計算:

  四、反饋練習(xí)

  3、舉一個生活中的實際例子,說明解決有的問題只需考慮數(shù)的絕對值。(如港口的吞吐量;一位學(xué)生上學(xué)、放學(xué)一共所走過的路等)

  4、填表:

  相反數(shù)

  絕對值

  21

  —0。75

  5、畫一條數(shù)軸,在數(shù)軸上分別標(biāo)出絕對值是6,1,2,0的數(shù)

  6、計算:

  五、探究學(xué)習(xí)

  1、某人因工作需要租出租車從A站出發(fā),先向南行駛6Km至B處,后向北行駛10Km至C處,接著又向南行駛7Km至D處,最后又向北行駛2Km至E處。

  請通過列式計算回答下列兩個問題:

 。1)這個人乘車一共行駛了多少千米?

 。2)這個人最后的目的地在離出發(fā)地的什么方向上,相隔多少千米?

  2、寫出絕對值小于3的整數(shù),并把它們記在數(shù)軸上。

  六、小結(jié)

  一頭牛耕耘在一塊田地上,忙碌了一整天,表面上它在原地踏步,沒有踏出這塊土地,但我們說,它付出了艱辛和汗水,因為它所走過的距離之和,有時候我們是無法想象的。這就是今天所學(xué)的絕對值的意義所在。所以絕對值是不考慮方向意義時的一種數(shù)值表示。

  七、布置作業(yè)

  做作業(yè)本中相應(yīng)的部分。

《絕對值的定義》教學(xué)設(shè)計2

  教學(xué)目標(biāo)

  1.了解絕對值的概念,會求有理數(shù)的絕對值;

  2.會利用絕對值比較兩個負(fù)數(shù)的大小;

  3.在絕對值概念形成過程中,滲透數(shù)形結(jié)合等思想方法,并注意培養(yǎng)學(xué)生的思維能力.

  教學(xué)建議

  一、重點、難點分析

  絕對值概念既是本節(jié)的教學(xué)重點又是教學(xué)難點。關(guān)于絕對值的概念,需要明確的是無論是絕對值的幾何定義,還是絕對值的代數(shù)定義,都揭示了絕對值的一個重要性質(zhì)——非負(fù)性,也就是說,任何一個有理數(shù)的絕對值都是非負(fù)數(shù),即無論a取任意有理數(shù),都有

  。

  教材上絕對值的定義是從幾何角度給出的,也就是從數(shù)軸上表示數(shù)的點在數(shù)軸上的位置出發(fā),得到的定義。這樣,數(shù)軸的概念、畫法、利用數(shù)軸比較有理數(shù)的大小、相反數(shù),以及絕對值,通過數(shù)軸,這些知識都聯(lián)系在一起了。此外,0的絕對值是0,從幾何定義出發(fā),就十分容易理解了。

  二、知識結(jié)構(gòu)

  絕對值的定義

  絕對值的表示方法

  用絕對值比較有理數(shù)的大小

  三、教法建議

  用語言敘述絕對值的定義,用解析式的形式給出絕對值的定義,或利用數(shù)軸定義絕對值,從理論上講都是可以的初學(xué)絕對值用語言敘述的定義,好像更便于學(xué)生記憶和運用,以后逐步改用解析式表示絕對值的定義,即

  在教學(xué)中,只能突出一種定義,否則容易引起混亂.可以把利用數(shù)軸給出的定義作為絕對值的一種直觀解釋.

  此外,要反復(fù)提醒學(xué)生:一個有理數(shù)的絕對值不能是負(fù)數(shù),但不能說一定是正數(shù).“非負(fù)數(shù)”的概念視學(xué)生的情況,逐步滲透,逐步提出.

  四、有關(guān)絕對值的一些內(nèi)容

  1.絕對值的代數(shù)定義

  一個正數(shù)的絕對值是它本身;一個負(fù)數(shù)的絕對值是它的相反數(shù);零的絕對值是零.

  2.絕對值的幾何定義

  在數(shù)軸上表示一個數(shù)的點離開原點的距離,叫做這個數(shù)的絕對值.

  3.絕對值的主要性質(zhì)

  (2)一個實數(shù)的絕對值是一個非負(fù)數(shù),即|a|≥0,因此,在實數(shù)范圍內(nèi),絕對值最小的數(shù)是零.

  (4)兩個相反數(shù)的絕對值相等.

  五、運用絕對值比較有理數(shù)的大小

  1.兩個負(fù)數(shù)大小的比較,因為兩個負(fù)數(shù)在數(shù)軸上的位置關(guān)系是:絕對值較大的負(fù)數(shù)一定在絕對值較小的負(fù)數(shù)左邊,所以,兩個負(fù)數(shù),絕對值大的反而小.

  比較兩個負(fù)數(shù)的方法步驟是:

  (1)先分別求出兩個負(fù)數(shù)的'絕對值;

  (2)比較這兩個絕對值的大小;

  (3)根據(jù)“兩個負(fù)數(shù),絕對值大的反而小”作出正確的判斷.

  2.兩個正數(shù)大小的比較,與小學(xué)學(xué)習(xí)的方法一致,絕對值大的較大.

  教學(xué)設(shè)計示例

《絕對值的定義》教學(xué)設(shè)計3

  一、學(xué)習(xí)與導(dǎo)學(xué)目標(biāo):

  知識與技能:會求出一個數(shù)的絕對值,能利用數(shù)軸及絕對值的知識,比較兩個有理數(shù)的大小;

  過程與方法:經(jīng)歷絕對值概念的形成,初步體會數(shù)形結(jié)合的思想方法,豐富解決問題的策略;

  情感態(tài)度:通過創(chuàng)設(shè)情境,初步感悟?qū)W習(xí)絕對值的必要性,促進(jìn)責(zé)任心的形成。

  二、學(xué)程與導(dǎo)程活動:

  A、創(chuàng)設(shè)情境(幻燈片或掛圖)

  1、兩輛汽車,其一向東行駛10km,另一向西行駛8km。為了區(qū)別,可規(guī)定向東行駛為正,則分別記作+10km和-8km。但在計算出租車收費,汽車行駛所耗的汽油,起主要作用的是汽車行駛的路程,而不是行駛的方向。此時,行駛路程則分別記作10km和8km。

  再如測量誤差問題、排球重量誰更接近標(biāo)準(zhǔn)問題

  2、在討論數(shù)軸上的點與原點的距離時,只需要觀察它與原點相隔多少個單位長度,與位于原點何方無關(guān)。

  B、學(xué)習(xí)概念:

  1、我們把在數(shù)軸上表示數(shù)a的點與原點的距離叫做數(shù)a的絕對值(absolutevalue),記作︱a︱(幻燈片)。因此,上述+10,-8的絕對值分別是10,8。

  如在數(shù)軸上表示數(shù)-6的點和表示數(shù)6的點與原點的距離都是6,所以,-6和6的絕對值都是6,記作︱-6︱=6,︱6︱=6。(互為相反數(shù)的兩個數(shù)的絕對值相同)

  2、嘗試回答(1)︱+2︱=,︱1/5︱=,︱+8.2︱=;

  (2)︱-3︱=,︱-0.2︱=,︱-8.2︱=;

  (3)︱0︱=。(幻燈片)

  思考:你能從中發(fā)現(xiàn)什么規(guī)律?引導(dǎo)學(xué)生得出:(幻燈片)

  性質(zhì):一個正數(shù)的絕對值是它本身;

  一個負(fù)數(shù)的絕對值是它的相反數(shù);

  零的絕對值是零。

  如果用字母a表示有理數(shù),上述性質(zhì)可表述為:

  當(dāng)a是正數(shù)時,︱a︱=a;

  當(dāng)a是負(fù)數(shù)時,︱a︱=-a;

  當(dāng)a=0時,︱a︱=0。

  解答課本P19/7及P15練習(xí),由P19/7體會絕對值在實際中的應(yīng)用,由練習(xí)1體會上面的三個等式,由練習(xí)2中提到的絕對值大小、數(shù)軸,引出問題:

  在引入負(fù)數(shù)以后,如何比較兩個數(shù)的大小,尤其是兩個負(fù)數(shù)的大小?

  3、讓我們?nèi)匀换氐綄嶋H中去看看有怎樣的啟發(fā),引導(dǎo)閱讀P16(幻燈片)。

  顯然,結(jié)合問題的實際意義不難得到:-4-202。

  因此,在數(shù)軸上你有何發(fā)現(xiàn)?生討論后發(fā)現(xiàn):從左往右表示的數(shù)越來越大。

  再找?guī)讉量試試是否如此?這些數(shù)的絕對值的大小如何?(可利用P19/6,8為素材)

  通過以上探究活動得到:正數(shù)大于0,0大于負(fù)數(shù),正數(shù)大于負(fù)數(shù);

  兩個負(fù)數(shù),絕對值大的反而小。

  4、師生活動比較下列各對數(shù)的大。篜17例,P18練習(xí)。

  5、師生小結(jié)歸納(幻燈片)

  三、筆記與板書提綱:

  1、幻燈片

  2、師生板演練習(xí)P15/1

  四、練習(xí)與拓展選題:

  P19/4,5,9,10

《絕對值的定義》教學(xué)設(shè)計4

  一、素質(zhì)教育目標(biāo)

  (一)知識教學(xué)點

  1.能根據(jù)一個數(shù)的絕對值表示“距離”,初步理解絕對值的概念.

  2.給出一個數(shù),能求它的絕對值.

  (二)能力訓(xùn)練點

  在把絕對值的代數(shù)定義轉(zhuǎn)化成數(shù)學(xué)式子的過程中,培養(yǎng)學(xué)生運用數(shù)學(xué)轉(zhuǎn)化思想指導(dǎo)思維活動的能力.

  (三)德育滲透點

  1.通過解釋絕對值的幾何意義,滲透數(shù)形結(jié)合的思想.

  2.從上節(jié)課學(xué)的相反數(shù)到本節(jié)的絕對值,使學(xué)生感知數(shù)學(xué)知識具有普遍的聯(lián)系性.

  (四)美育滲透點

  通過數(shù)形結(jié)合理解絕對值的意義和相反數(shù)與絕對值的聯(lián)系,使學(xué)生進(jìn)一步領(lǐng)略數(shù)學(xué)的和諧美.

  二、學(xué)法引導(dǎo)

  1.教學(xué)方法:采用引導(dǎo)發(fā)現(xiàn)法,輔之以講授,學(xué)生討論,力求體現(xiàn)“教為主導(dǎo),學(xué)為主體”的教學(xué)要求,注意創(chuàng)設(shè)問題情境,使學(xué)生自得知識,自覓規(guī)律.

  2.學(xué)生學(xué)法:研究+6和-6的不同點和相同點→絕對值概念→鞏固練習(xí)→歸納小結(jié)(絕對值代數(shù)意義)

  三、重點、難點、疑點及解決辦法

  1.重點:給出一個數(shù)會求出它的絕對值.

  2.難點:絕對值的幾何意義,代數(shù)定義的導(dǎo)出.

  3.疑點:負(fù)數(shù)的絕對值是它的相反數(shù).

《絕對值的定義》教學(xué)設(shè)計5

  教學(xué)內(nèi)容

  七年級上冊課本11----12頁1.2.4絕對值

  教學(xué)目標(biāo)

  1.知識與能力目標(biāo):借助于數(shù)軸,初步理解絕對值的概念,能求一個數(shù)的絕對值,初步學(xué)會求絕對值等于某一個正數(shù)的有理數(shù)。

  2.過程與方法目標(biāo):通過從數(shù)形兩個側(cè)面理解絕對值的意義,初步了解數(shù)形結(jié)合的思想方法。通過應(yīng)用絕對值解決實際問題,體會絕對值的意義。

  3.情感態(tài)度與價值觀:通過應(yīng)用絕對值解決實際問題,培養(yǎng)學(xué)生濃厚的學(xué)習(xí)興趣,使學(xué)生能積極參與數(shù)學(xué)學(xué)習(xí)活動,對數(shù)學(xué)有好奇心與求知欲。

  教學(xué)重點與難點

  教學(xué)重點:絕對值的幾何意義和代數(shù)意義,以及求一個數(shù)的絕對值。

  教學(xué)難點:絕對值定義的得出、意義的理解,以及求絕對值等于某一個正數(shù)的有理數(shù)。

  教學(xué)準(zhǔn)備

  多媒體課件

  教學(xué)過程

  一、創(chuàng)設(shè)問題情境

  1、兩只小狗從同地方出發(fā),在一條筆直的街上跑,一只向右跑10米到達(dá)A點,另一只向左跑10米到達(dá)B點。若規(guī)定向右為正,則A處記作-xxxxxxxxxx,B處記作xxxxxxxxxx。

  以O(shè)為原點,取適當(dāng)?shù)膯挝婚L度畫數(shù)軸,并標(biāo)出A、B的位置。

  (用生動有趣的引例吸引學(xué)生,即復(fù)習(xí)了數(shù)軸和相反數(shù),又為下文作準(zhǔn)備)。

  2、這兩只小狗在跑的過程中,有沒有共同的地方?在數(shù)軸上的A、B兩點又有什么特征?(從形和數(shù)兩個角度去感受絕對值)。

  3、在數(shù)軸上找到-5和5的點,它們到原點的距離分別是多少?表示-和的點呢?

  小結(jié):在實際生活中,有時存在這樣的情況,無需考慮數(shù)的正負(fù)性質(zhì),比如:在計算小狗所跑的路程中,與小狗跑的方向無關(guān),這時所走的路程只需用正數(shù),這樣就必須引進(jìn)一個新的概念-———絕對值。

  二、建立數(shù)學(xué)模型

  1、絕對值的概念

  (借助于數(shù)軸這一工具,師生共同討論,引出絕對值的概念)

  絕對值的幾何定義:一個數(shù)在數(shù)軸上對應(yīng)的點到原點的距離叫做這個數(shù)的絕對值。比如:-5到原點的距離是5,所以-5的絕對值是5,記|-5|=5;5的絕對值是5,記做|5|=5。

  注意:①與原點的關(guān)系②是個距離的概念

  2..練習(xí)1:請學(xué)生舉一個生活中的實際例子,說明解決有的問題只需考慮的數(shù)絕對值。[溫度上升了5度,用+5表示的話,那么下降了5度,就用-5表示,如果我們不去考慮它的意義(即:上升還是下降),只考慮數(shù)量(即:溫度)的變化,我們可以說:溫度的變化都是5度。銀行存款,如果存入100元用+100表示,那么取出100元就用-100表示,如果我們不去考慮它的意義(即:存入還是取出),只考慮數(shù)量的多少,我們可以說:金額都是100元。]

  (通過應(yīng)用絕對值解決實際問題,體會絕對值的意義與作用,感受數(shù)學(xué)在生活中的價值。)

  三、應(yīng)用深化知識

  1、例題求解

  例1、求下列各數(shù)的絕對值

  -1.6,0,-10,+10

  2、根據(jù)上述題目,讓學(xué)生歸納總結(jié)絕對值的特點。(教師進(jìn)行補充小結(jié))

  特點:

  1、一個正數(shù)的絕對值是它本身

  2、一個負(fù)數(shù)的絕對值是它的相反數(shù)

  3、零的絕對值是零

  4、互為相反數(shù)的兩個數(shù)的絕對值相等

  3.出示題目

  (1)-3的符號是xxxxxxx,絕對值是xxxxxx;

  (2)+3的符號是xxxxxxx,絕對值是xxxxxx;

  (3)-6.5的符號是xxxxxxx,絕對值是xxxxxx;

  (4)+6.5的符號是xxxxxxx,絕對值是xxxxxx;

  學(xué)生口答。

  師:上面我們看到任何一個有理數(shù)都是由符號,和絕對值兩個部分構(gòu)成,F(xiàn)在老師有一個問題想問問大家,在上一節(jié)課中我們規(guī)定只有符號不同的兩個數(shù)稱互為相反數(shù)。那么大家在今天學(xué)習(xí)了絕對值以后,你能給相反數(shù)一個新的解釋嗎?

  5、練習(xí)3:回答下列問題

 、僖粋數(shù)的絕對值是它本身,這個數(shù)是什么數(shù)?

 、谝粋數(shù)的絕對值是它的相反數(shù),這個數(shù)是什么數(shù)?

 、垡粋數(shù)的絕對值一定是正數(shù)嗎?

 、芤粋數(shù)的絕對值不可能是負(fù)數(shù),對嗎?

 、萁^對值是同一個正數(shù)的數(shù)有兩個,它們互為相反數(shù),這句話對嗎?

  (由學(xué)生口答完成,進(jìn)一步鞏固絕對值的概念)

  6、例2.求絕對值等于4的數(shù)

  (讓學(xué)生考慮這樣的數(shù)有幾個,是怎樣得出這個結(jié)果的呢?對后一個問題由學(xué)生去討論,啟發(fā)學(xué)生從數(shù)與形兩個方面考慮,培養(yǎng)學(xué)生的發(fā)散思維能力。)

  分析:

 、購臄(shù)字上分析

  |+4|=4,|-4|=4∴絕對值等于4的數(shù)是+4和-4畫一個數(shù)軸(如下圖)

  ②從幾何意義上分析,畫一個數(shù)軸(如下圖)

  因為數(shù)軸上到原點的距離等于4個單位長度的點有兩個,即表示+4的點P和表示-4的點M

  所以絕對值等于4的數(shù)是+4和-4

  6、練習(xí):做書上12頁課內(nèi)練習(xí)1、2兩題。

  四、歸納小結(jié)

  1、本節(jié)課我們學(xué)習(xí)了什么知識?

  2、你覺得本節(jié)課有什么收獲?

  3、由學(xué)生自行總結(jié)在自主探究,合作學(xué)習(xí)中的體會。

  五、課后作業(yè)

  1、讓學(xué)生去尋找一些生活中只考慮絕對值的實際例子。

  2、課本15頁的作業(yè)題。

《絕對值的定義》教學(xué)設(shè)計6

  一、教學(xué)目標(biāo):

  1.知識目標(biāo):

 、倌軠(zhǔn)確理解絕對值的幾何意義和代數(shù)意義。

 、谀軠(zhǔn)確熟練地求一個有理數(shù)的絕對值。

  ③使學(xué)生知道絕對值是一個非負(fù)數(shù),能更深刻地理解相反數(shù)的概念。

  2.能力目標(biāo):

 、俪醪脚囵B(yǎng)學(xué)生觀察、分析、歸納和概括的思維能力。

 、诔醪脚囵B(yǎng)學(xué)生由抽象到具體再到抽象的思維能力。

  3.情感目標(biāo):

 、偻ㄟ^向?qū)W生滲透數(shù)形結(jié)合思想和分類討論的思想,讓學(xué)生領(lǐng)略到數(shù)學(xué)的奧妙,從而激起他們的好奇心和求知欲望。

 、谕ㄟ^課堂上生動、活潑和愉快、輕松地學(xué)習(xí),使學(xué)生感受到學(xué)習(xí)數(shù)學(xué)的快樂,從而增強他們的自信心。

  二、教學(xué)重點和難點

  教學(xué)重點:絕對值的幾何意義和代數(shù)意義,以及求一個數(shù)的絕對值。

  教學(xué)難點:絕對值定義的得出、意義的理解及求一個負(fù)數(shù)的絕對值。

  三、教學(xué)方法

  啟發(fā)引導(dǎo)式、討論式和談話法

  四、教學(xué)過程

 。ㄒ唬⿵(fù)習(xí)提問

  問題:相反數(shù)6與-6在數(shù)軸上與原點的距離各是多少?兩個相反數(shù)在數(shù)軸上的點有什么特征?

 。ǘ┬率

  1.引入

  結(jié)合教材P63圖2-11和復(fù)習(xí)問題,講解6與-6的絕對值的意義。

  2.數(shù)a的絕對值的意義

 、賻缀我饬x

  一個數(shù)a的絕對值就是數(shù)軸上表示數(shù)a的點到原點的距離。數(shù)a的絕對值記作|a|.

  舉例說明數(shù)a的絕對值的幾何意義。(按教材P63的倒數(shù)第二段進(jìn)行講解。)

  強調(diào):表示0的點與原點的距離是0,所以|0|=0.

  指出:表示“距離”的數(shù)是非負(fù)數(shù),所以絕對值是一個非負(fù)數(shù)。

 、诖鷶(shù)意義

  把有理數(shù)分成正數(shù)、零、負(fù)數(shù),根據(jù)絕對值的幾何意義可以得出絕對值的代數(shù)意義:一個正數(shù)的絕對值是它本身,一個負(fù)數(shù)的絕對值是它的相反數(shù),0的絕對值是0.

  用字母a表示數(shù),則絕對值的代數(shù)意義可以表示為:

  指出:絕對值的代數(shù)定義可以作為求一個數(shù)的絕對值的方法。

  3.例題精講

  例1.求8,-8,,-的絕對值。

  按教材方法講解。

  例2.計算:|2.5|+|-3|-|-3|.

  解:|2.5|+|-3|-|-3|=2.5+3-3=6-3=3

  例3.已知一個數(shù)的絕對值等于2,求這個數(shù)。

  解:∵|2|=2,|-2|=2

  ∴這個數(shù)是2或-2.

  五、鞏固練習(xí)

  練習(xí)一:教材P641、2,P66習(xí)題2.4A組1、2.

  練習(xí)二:

  1.絕對值小于4的整數(shù)是____.

  2.絕對值最小的數(shù)是____.

  3.已知|2x-1|+|y-2|=0,求代數(shù)式3x2y的值。

  六、歸納小結(jié)

  本節(jié)課從幾何與代數(shù)兩個方面說明了絕對值的意義,由絕對值的意義可知,任何數(shù)的絕對值都是非負(fù)數(shù)。絕對值的代數(shù)意義可以作為求一個數(shù)的絕對值的方法。

  七、布置作業(yè)

  教材P66習(xí)題2.4A組3、4、5.

《絕對值的定義》教學(xué)設(shè)計7

  教學(xué)目標(biāo)

  1、掌握絕對值的概念,有理數(shù)大小比較法則。

  2、學(xué)會絕對值的計算,會比較兩個或多個有理數(shù)的大小。

  3、體驗數(shù)學(xué)的概念、法則來自于實際生活,滲透數(shù)形結(jié)合和分類思想。

  教學(xué)難點

  兩個負(fù)數(shù)大小的比較

  知識重點

  絕對值的概念

  教學(xué)過程

  (師生活動)設(shè)計理念

  設(shè)置情境

  引入課題星期天黃老師從學(xué)校出發(fā),開車去游玩,她先向東行20千米,到朱家尖,下午她又向西行30千米,回到家中(學(xué)校、朱家尖、家在同一直線上),如果規(guī)定向東為正,①用有理數(shù)表示黃老師兩次所行的路程;②如果汽車每公里耗油0.15升,計算這天汽車共耗油多少升?

  學(xué)生思考后,教師作如下說明:

  實際生活中有些問題只關(guān)注量的具體值,而與相反

  意義無關(guān),即正負(fù)性無關(guān),如汽車的耗油量我們只關(guān)心汽車行駛的距離和汽油的價格,而與行駛的方向無關(guān);

  觀察并思考:畫一條數(shù)軸,原點表示學(xué)校,在數(shù)軸上畫出表示朱家尖和黃老師家的點,觀察圖形,說出朱家尖黃老師家與學(xué)校的距離.

  學(xué)生回答后,教師說明如下:

  數(shù)軸上表示數(shù)的點到原點的距離只與這個點離開原點的長度有關(guān),而與它所表示的數(shù)的正負(fù)性無關(guān);

  一般地,數(shù)軸上表示數(shù)a的點與原點的距離叫做數(shù)a的絕對值,記做|a|

  例如,上面的問題中|20|=20,|-10|=10顯然,|0|=0這個例子中,第一問是相反意義的量,用正負(fù)數(shù)表示,后一問的解答則與符號沒有關(guān)系,說明實際生活中有些問題,人們只需知道它們的具體數(shù)值,而并不關(guān)注它們所表示的意義.為引入絕對值概念做準(zhǔn)備.使學(xué)生體驗數(shù)學(xué)知識與生活實際的聯(lián)系.

  因為絕對值概念的幾何意義是數(shù)形轉(zhuǎn)化的典型模型,學(xué)生初次接觸較難接受,所以配置此觀察與思考,為建立絕對值概念作準(zhǔn)備.

  合作交流

  探究規(guī)律例1求下列各數(shù)的絕對值,并歸納求有理數(shù)a的絕對

  有什么規(guī)律?、

  -3,5,0,+58,0.6

  要求小組討論,合作學(xué)習(xí).

  教師引導(dǎo)學(xué)生利用絕對值的意義先求出答案,然后觀察原數(shù)與它的絕對值這兩個數(shù)據(jù)的特征,并結(jié)合相反數(shù)的意義,最后總結(jié)得出求絕對值法則(見教科書第15頁).

  鞏固練習(xí):教科書第15頁練習(xí).

  其中第1題按法則直接寫出答案,是求絕對值的基本訓(xùn)練;第2題是對相反數(shù)和絕對值概念進(jìn)行辨別,對學(xué)生的分析、判斷能力有較高要求,要注意思考的周密性,要讓學(xué)生體會出不同說法之間的區(qū)別.求一個數(shù)的絕時值的法則,可看做是絕對值概念的一個應(yīng)用,所以安排此例.學(xué)生能做的盡量讓學(xué)生完成,教師在教學(xué)過程中只是組織者.本著這個理念,設(shè)計這個討論.

  結(jié)合實際發(fā)現(xiàn)新知引導(dǎo)學(xué)生看教科書第16頁的圖,并回答相關(guān)問題:

  把14個氣溫從低到高排列;

  把這14個數(shù)用數(shù)軸上的點表示出來;

  觀察并思考:觀察這些點在數(shù)軸上的位置,并思考它們與溫度的高低之間的關(guān)系,由此你覺得兩個有理數(shù)可以比較大小嗎?

  應(yīng)怎樣比較兩個數(shù)的大小呢?

  學(xué)生交流后,教師總結(jié):

  14個數(shù)從左到右的順序就是溫度從低到高的順序:

  在數(shù)軸上表示有理數(shù),它們從左到右的順序就是從小到大的順序,即左邊的數(shù)小于右邊的數(shù).

  在上面14個數(shù)中,選兩個數(shù)比較,再選兩個數(shù)試試,通過比較,歸納得出有理數(shù)大小比較法則

  想象練習(xí):想象頭腦中有一條數(shù)軸,其上有兩個點,分別表示數(shù)一100和一90,體會這兩個點到原點的距離(即它們的絕對值)以及這兩個數(shù)的大小之間的關(guān)系.

  要求學(xué)生在頭腦中有清晰的圖形.讓學(xué)生體會到數(shù)學(xué)的規(guī)定都來源于生活,每一種規(guī)定都有它的合理性。

  數(shù)在大小比較法則第2點學(xué)生較難掌握,要從絕對值的意義和數(shù)軸上的數(shù)左小右大這方面結(jié)合起來來了解,所以配置想象練習(xí),加強數(shù)與形的想象。

  課堂練習(xí)例2,比較下列各數(shù)的大小(教科書第17頁例)

  比較大小的過程要緊扣法則進(jìn)行,注意書寫格式

  練習(xí):第18頁練習(xí)

  小結(jié)與作業(yè)

  課堂小結(jié)怎樣求一個數(shù)的絕對值,怎樣比較有理數(shù)的大小?

  本課作業(yè)1,必做題:教產(chǎn)書第19頁習(xí)題1,2,第4,5,6,10

  2,選做題:教師自行安排

  本課教育評注(課堂設(shè)計理念,實際教學(xué)效果及改進(jìn)設(shè)想)

  1,情景的創(chuàng)設(shè)出于如下考慮:①體現(xiàn)數(shù)學(xué)知識與生活實際的緊密聯(lián)系,讓學(xué)生在這些熟悉的日常生活情境中獲得數(shù)學(xué)體驗,不僅加深對絕對值的理解,更感受到學(xué)習(xí)絕對值概念的必要性和激發(fā)學(xué)習(xí)的興趣.②教材中數(shù)的絕對值概念是根據(jù)幾何意義來定義的(其本質(zhì)是將數(shù)轉(zhuǎn)化為形來解釋,是難點),然后通過練習(xí)歸納出求有理數(shù)的絕對值的規(guī)律,如果直接給出絕對值的概念,灌輸知識的味道很濃,且太抽象,學(xué)生不易接受.

  2,一個數(shù)絕對值的法則,實際上是絕對值概念的直接應(yīng)用,也體現(xiàn)著分類的數(shù)學(xué)思想,所以直接通過例1歸納得出,顯得非常緊湊,是教學(xué)重點;從知識的發(fā)展和學(xué)生的能力培養(yǎng)角度來看,教師應(yīng)更重視學(xué)生的自主學(xué)習(xí)和探究的過程,關(guān)注學(xué)生的思維,做好教學(xué)的組織和引導(dǎo),留給學(xué)生足夠的空間。

  3,有理數(shù)大小的比較法則是大小規(guī)定的直接歸納,其中第(2)條學(xué)生較難理解,教學(xué)中要結(jié)合絕對值的意義和規(guī)定:“在數(shù)軸上表示有理數(shù),它們從左到右的順序就是從小到大的順序”,幫助學(xué)生建立“數(shù)軸上越左邊的點到原點的距離越大,所以表示的數(shù)越小”這個數(shù)形結(jié)合的模型.為此設(shè)置了想象練習(xí).

  4,本節(jié)課的內(nèi)容包括絕對值的概念和數(shù)的絕對值的求法、有理數(shù)大小比較的法則,教學(xué)內(nèi)容很多,學(xué)生接受起來可能會有困難,建議把有理數(shù)的大小比較移到下節(jié)課教學(xué)。

  附板書:

  1.2.4絕對值

【《絕對值的定義》教學(xué)設(shè)計】相關(guān)文章:

絕對值的定義和性質(zhì)09-02

《絕對值》教學(xué)設(shè)計06-12

《絕對值》教學(xué)設(shè)計范文精選08-08

數(shù)學(xué)絕對值教學(xué)設(shè)計06-12

《定義過程》教學(xué)設(shè)計01-28

定義與命題教學(xué)設(shè)計06-11

絕對值與相反數(shù)教學(xué)設(shè)計12-18

絕對值教學(xué)設(shè)計范文(精選3篇)04-05

《菱形的定義》微課教學(xué)設(shè)計12-19