七年級(jí)《一元一次方程》教學(xué)設(shè)計(jì)
作為一位杰出的教職工,總不可避免地需要編寫教學(xué)設(shè)計(jì),教學(xué)設(shè)計(jì)是教育技術(shù)的組成部分,它的功能在于運(yùn)用系統(tǒng)方法設(shè)計(jì)教學(xué)過(guò)程,使之成為一種具有操作性的程序。怎樣寫教學(xué)設(shè)計(jì)才更能起到其作用呢?下面是小編收集整理的七年級(jí)《一元一次方程》教學(xué)設(shè)計(jì),歡迎閱讀,希望大家能夠喜歡。
教學(xué)目標(biāo):
進(jìn)一步認(rèn)識(shí)方程,理解一元一次方程的概念,會(huì)根據(jù)題意列簡(jiǎn)單的一元一次方程。
認(rèn)識(shí)方程的解的概念。
掌握驗(yàn)根的方法。
體驗(yàn)用嘗試法解一元一次方程的思想方法。
重點(diǎn):
一元一次方程的概念
難點(diǎn):
嘗試檢驗(yàn)法
教學(xué)過(guò)程:
1、溫故
方程是含有xx的xx.
歸納:判斷方程的兩要素:
、儆形粗獢(shù)②是等式
。ㄍㄟ^(guò)填空讓學(xué)生簡(jiǎn)單回顧方程概念,并總結(jié)方程兩要素)
2、知新
根據(jù)題意列方程:
。1)一件衣服按8折銷售的售價(jià)為72元,這件衣服的原價(jià)是多少元?
設(shè)這件衣服的原價(jià)為x元,8折后售價(jià)為xx
可列出方程、
(2)有一棵樹,剛移栽時(shí),樹高為2m,假設(shè)以后平均每年長(zhǎng)0.3m,幾年后樹高為5m?
設(shè)x年后樹高為5m,
可列出方程_______
。3)物體在水下,水深每增加10.33米承受的壓力就會(huì)增加1個(gè)大氣壓、當(dāng)“蛟龍”號(hào)下潛至3500米時(shí),它承受的壓力約為340個(gè)大氣壓、問(wèn)當(dāng)它承受壓力增加到500個(gè)大氣壓時(shí),它又繼續(xù)下潛了多少米?
設(shè)它又繼續(xù)下潛了x米,
x米增加大氣壓個(gè)。
可列出方程、
。ń處熞龑(dǎo)學(xué)生列出方程)
80%x=72
觀察比較方程:
(學(xué)生根據(jù)方程特點(diǎn)填空)
等式的兩邊的代數(shù)式都是xx___;每個(gè)方程都只含有___個(gè)未知數(shù);且未知數(shù)的指數(shù)是_____
。ń處熆偨Y(jié))這樣的方程叫做一元一次方程.
。ń處熖釂(wèn):需滿足幾個(gè)特點(diǎn),學(xué)生回答后總結(jié)一元一次方程概念)
1、兩邊都是整式
2、只含有一個(gè)未知數(shù)
3、未知數(shù)的指數(shù)是一次、
。ń處熞稣n題——5.1一元一次方程)
3、(接下來(lái)一起將前面所學(xué)新知與舊知融會(huì)貫通)
1、下列各式中,哪些是方程?哪些是一元一次方程?
。1)5x=0(2)1+3x
。3)y2=4+y(4)x+y=5
。5)(6)3m+2=1–m
。ㄟ@里需要讓學(xué)生較快的先找出方程(1)、(3)、(4)、(5)、(6),并說(shuō)說(shuō)為什么剩下的不是方程。接著找出其中的一元一次方程,著重說(shuō)說(shuō)為什么(3)、(4)、(5)不是呢?引發(fā)學(xué)生套用一元一次方程三個(gè)特點(diǎn)說(shuō)明,教師要補(bǔ)充的是(3)是二次方程,(4)是二元方程,(5)這種情況左邊不是整式,進(jìn)而進(jìn)一步再?gòu)?qiáng)調(diào)一次什么是“元”什么是“次”。(3)錯(cuò)在未知數(shù)不能出現(xiàn)2次,(4)錯(cuò)在不能出現(xiàn)兩個(gè)未知數(shù))
4、概念提升(為了能夠游刃有的`掌握一元一次方程的概念,我們?cè)賹?duì)它做一次提升,大家請(qǐng)看下面兩個(gè)問(wèn)題。
1、方程3xm-2+5=3是一元一次方程,則代數(shù)式m=xx。
2、方程(a+6)x2+3x-8=7是關(guān)于x的
一元一次方程,則a=xx。
(通過(guò)概念的強(qiáng)調(diào)對(duì)這題的理解有很大幫助,題1檢驗(yàn)學(xué)生對(duì)一元一次方程中“一次”的理解,題2檢驗(yàn)學(xué)生對(duì)“一元”的理解)
5、一元一次方程的根
思考:
當(dāng)y為多少時(shí)一元一次方程6=y+4成立呢?(本題學(xué)生容易猜想得到,教師引出一元一次方程的解的概念)
一元一次方程的解:
使一元一次方程左右兩邊的值相等的未知數(shù)的值叫做一元一次方程的解,也叫做方程的根。
(引導(dǎo)學(xué)生掌握驗(yàn)根的方法,并指導(dǎo)學(xué)生完成驗(yàn)根過(guò)程書寫步驟)
判斷下列t的值能不能使方程2t+1=7-t左右兩邊的值相等、
。1)t=-2(2)t=2
。ㄏ茸寣W(xué)生口頭檢驗(yàn),再叫學(xué)生說(shuō)說(shuō)得出結(jié)論的過(guò)程,進(jìn)而引導(dǎo)學(xué)生一步步書寫(1)步驟,學(xué)生齊答教師需要先板書步驟,完成后投影出示步驟,接下來(lái)讓學(xué)生上黑板書寫(2)的驗(yàn)根過(guò)程)
解:(1)把x=-2代入方程:
左邊=2×(-2)+1=-4+1=-3
右邊=7-(-2)=7+2=9
∵左邊≠右邊
∴x=-2不是原方程的解、
6、嘗試-檢驗(yàn)法(光會(huì)驗(yàn)根還不夠,我們還應(yīng)學(xué)習(xí)怎樣找到一元一次方程的根,大家請(qǐng)看這個(gè)問(wèn)題)
一射箭運(yùn)動(dòng)員兩次射擊的成績(jī)都是整數(shù),平均成績(jī)是6.5環(huán),其中第二次射箭的成績(jī)?yōu)?環(huán),問(wèn)第一次射箭的成績(jī)是多少環(huán)?
設(shè)第一次的射箭成績(jī)?yōu)閤環(huán),可列出方程。
。ㄕ(qǐng)一學(xué)生回答得出的方程)
思考:同學(xué)們,請(qǐng)猜想一下,結(jié)合實(shí)際,x能取哪些數(shù)呢?
。▽W(xué)生可能會(huì)說(shuō)出0、到10所有整數(shù)都可能若說(shuō)不出再引導(dǎo))(每次射箭最多是10環(huán),
而且只能取整數(shù)環(huán))(要檢驗(yàn)11次有點(diǎn)多,能不能再把范圍縮小一點(diǎn)呢?引導(dǎo)學(xué)生對(duì)比已知的一次成績(jī)與平均成績(jī)的高低,從而得出未知成績(jī)應(yīng)該比平均成績(jī)小,學(xué)生得出可以代入檢驗(yàn)7次):由已知得,x為自然數(shù)且只能取0,1,2,3,4,5,6、把這些值分別代入方程左邊得。(讓學(xué)生檢驗(yàn)得到根,接下來(lái)課件梳理驗(yàn)根的結(jié)果)
把x為0,1,2,3,4,5,6這些值分別代入方程左邊得:
當(dāng)x=4時(shí),=6.5,所以x=4就是一元一次方程
=6.5的解、
。▌倓偽覀兊贸龇匠谈姆椒ń校----嘗試檢驗(yàn)的方法
(投影出示其概念并強(qiáng)調(diào)其對(duì)于找出方程根的重要意義)
7、收獲總結(jié)
一元一次方程概念(強(qiáng)調(diào)三個(gè)特點(diǎn))
一元一次方程的根(有驗(yàn)根以及嘗試檢驗(yàn)法找根)
8、時(shí)間多余做書本練習(xí)
板書設(shè)計(jì):
5.1一元一次方程
1解:(1)把x=-2代入方程:
一元一次方程的概念2
3
掌握驗(yàn)根步驟
一元一次方程的解
嘗試檢驗(yàn)法尋根
【七年級(jí)《一元一次方程》教學(xué)設(shè)計(jì)】相關(guān)文章:
七年級(jí)《3.1.1一元一次方程》教學(xué)設(shè)計(jì)10-14
七年級(jí)《3.1.1 一元一次方程》教學(xué)設(shè)計(jì)01-03
七年級(jí)《解一元一次方程——移項(xiàng)》教學(xué)設(shè)計(jì)07-31
七年級(jí)《解一元一次方程——移項(xiàng)》教學(xué)設(shè)計(jì)01-06
一元一次方程的應(yīng)用教學(xué)設(shè)計(jì)06-13
一元一次方程的討論教學(xué)設(shè)計(jì)12-18