分式方程的應(yīng)用課件
分式方程是方程中的一種,分式方程也是初中數(shù)學(xué)的一個知識點(diǎn),如何讓學(xué)生認(rèn)識分式方程?以下是小編為你整理的初中數(shù)學(xué)分式方程教學(xué)設(shè)計(jì),希望能幫到你。
《分式方程》教學(xué)設(shè)計(jì)
教學(xué)目標(biāo)
(一)知識與技能
理解分式方程與整式方程的區(qū)別,并掌握解分式方程的一般步驟。
(二)過程與方法
通過具體例子,讓學(xué)生獨(dú)立探索方程的解法,經(jīng)歷和體會解分式方程的必要步驟,使學(xué)生進(jìn)一步了解數(shù)學(xué)思想中的"轉(zhuǎn)化"思想 。
(三)情感、態(tài)度與價值觀
培養(yǎng)學(xué)生自覺反思求解過程和自覺檢驗(yàn)的良好習(xí)慣,培養(yǎng)嚴(yán)謹(jǐn)?shù)闹螌W(xué)態(tài)度。
教學(xué)重點(diǎn):探索如何將分式方程轉(zhuǎn)化為整式方程并掌握解分式方程的一般步驟
教學(xué)難點(diǎn) :探索分式方程產(chǎn)生增根的原因。
教學(xué)過程
一.創(chuàng)設(shè)情境,導(dǎo)入新課:
為幫助四川受災(zāi)的人們重建家園,某中學(xué)號召同學(xué)們自愿捐款。已知第一次捐款總額為2000元,第二次捐款總額為2150元,第二次捐款人數(shù)比第一次多15人,而且兩次人均捐款額恰好相等。
根據(jù)以上信息你能分別求出兩次捐款的人數(shù)嗎?
若設(shè)第一次捐款人數(shù)為X人,第二次捐款人數(shù)為 ( ) 人。
根據(jù)相等關(guān)系列方程為( )。
這個方程的分母中含有未知數(shù),與以前學(xué)過的方程不同,這就是我們這節(jié)課要學(xué)習(xí)的分式方程。(板書課題)
二.新課學(xué)習(xí):
(一).分式方程的.定義:
分母中含有未知數(shù)的方程叫做分式方程
以前學(xué)過的像一元一次方程、二元一次方程等這類分母中不含有未知數(shù)的方程叫整式方程
反饋練習(xí)
(二).探索分式方程的解法
1.回顧整式方程的解法
解方程 (解上面練習(xí)中的第三題)
師生共同回顧:解整式方程的步驟
(1)去分母,(2)去括號, (3)移項(xiàng), (4)合并同類項(xiàng), (5)化未知x的系數(shù)為1
2.如何解分式方程呢?
(學(xué)生嘗試完成,然后集體補(bǔ)充步驟)
解方程:2000∕X=2150/X+15
解:方程兩邊同時乘以X(X+15),得
2000(X+15)=2150X
解這個整式方程,得
x=200
則200+15=215
檢驗(yàn):把x=200代入原方程,
因?yàn)?左邊=10 右邊=10
所以 左邊=右邊
所以x=200是原方程的解。
3.歸納解分式方程的步驟
一是去分母,二是解整式方程,三是檢驗(yàn)
4.例題解方程:
(生獨(dú)立完成,師指導(dǎo))
分式方程的增根:不適合原方程的整式方程的根,叫原方程的增根.
師:解分式方程必須進(jìn)行檢驗(yàn)!
[師]怎樣檢驗(yàn)較簡單呢?還需要將整式方程的根分別代入原方程的左、右兩邊嗎?
[生]最簡單的檢驗(yàn)方法是:把整式方程的根代入最簡公分母.若使最簡公分母為零,則是原方程的增根;若使最簡公分母不為零,則是原方程的根.是增根,必舍去。
三.應(yīng)用升華
四.小結(jié)
本節(jié)課我們學(xué)會了解分式方程,明白了解分式方程的三個步驟缺一不可,我明白了分式方程轉(zhuǎn)化為整式方程為什么會產(chǎn)生增根。
【分式方程的應(yīng)用課件】相關(guān)文章:
數(shù)學(xué)應(yīng)用題教學(xué)的課件02-24
數(shù)學(xué)課件制作與應(yīng)用的反思05-15
小學(xué)語文Flash課件應(yīng)用探索范文05-14
自主協(xié)作型課件在教學(xué)中的應(yīng)用03-18