線性代數(shù)課件
一、簡介
線性代數(shù)是代數(shù)學的一個分支,今天數(shù)學界一致認它作為一門獨立學科誕生于上世紀30年代,因為吸納了系統(tǒng)的線性代數(shù)內(nèi)容的著作是在這一時期產(chǎn)生的,如Van的名著代數(shù)學第二卷就把線性代數(shù)作為其中的短短一章。
回顧線性代數(shù)的歷史基礎上,分析了關于線性代數(shù)的幾個核心問題:第一介紹了幾種關于線性代數(shù)基本結(jié)構(gòu)問題的看法;第二介紹了關于線性代數(shù)的兩個基本問題,即“線性”和“線性問題”;第三介紹了線性代數(shù)的研究對象;第四分析了線性代數(shù)的結(jié)構(gòu)體系。
上世紀80年代以來,隨著計算機應用的普及,線性代數(shù)理論被廣泛應用到科學、技術和經(jīng)濟領域,因此線性代數(shù)也成為高等院校理工科各專業(yè)的一門基礎課程,文章簡述線性代數(shù)的相關核心核心問題。
二、線性代數(shù)的歷史
線性代數(shù)是代數(shù)學的一個分支,今天數(shù)學界一致認它作為一門獨立學科誕生于上世紀30年代,因為吸納了系統(tǒng)的線性代數(shù)內(nèi)容的著作是在這一時期產(chǎn)生的,如Van的名著代數(shù)學第二卷就把線性代數(shù)作為其中的短短一章。但是線性代數(shù)的一些初級內(nèi)容如行列式、矩陣和線性方程組的研究可以追溯到二百多年前;19世紀四五十年代Grassmann創(chuàng)立了用符號表述幾何概念的方法,給出了線性無關和基等概念,這標準著線性代數(shù)內(nèi)容近代化開始;19世紀末向量空間的抽象定義形成,并在20世紀初被廣泛用于泛函分析研究,從而使線性代數(shù)成為以空間理論為終結(jié)的獨立學科,因此可以說線性代數(shù)是綜合了若干項獨立發(fā)展的數(shù)學成果而形成的。從上世紀六七十年代起線性代數(shù)進入了大學數(shù)學專業(yè)課程,在我國這門課程稱為高等代數(shù),它以線性代數(shù)為主體并納入了一章多項式理論。
無論是高等代數(shù)或線性代數(shù),這個課程有兩個特點:一個特點是各部分內(nèi)容相對獨立,整個課程呈現(xiàn)出一種塊狀結(jié)構(gòu),原因是線性代數(shù)學科的形成過程本身就沒有一條明確的主線。我們幾乎可以找到從線性方程組,行列式,向量,矩陣,多項式,線性空間,線性變換中的任何一個分塊開始展開的教材,其展開過程主要取決于作者串聯(lián)這些分塊的形式邏輯的脈絡。另一個特點是內(nèi)容抽象,要真正掌握線性代數(shù)的原理與方法必須具備較強的抽象思維能力,即對形式概念的理解能力和形式邏輯的演繹能力,而這兩種能力要求幾乎超越了大多數(shù)學生在中學階段的能力儲備,而必須在學習這門課程的過程中重塑。主要是這兩個原因,線性代數(shù)被認為是一門非常難掌握的課程,而克服這一困難的關鍵就是針對線性代數(shù)課程的這兩個特點進行有效的課程改革。
三、關于線性代數(shù)基本結(jié)構(gòu)問題的看法
線性代數(shù)基本結(jié)構(gòu)問題,學者們歷來有許多不同的看法,較為常見的是以下幾種:
第一種是以矩陣為中心。
這一看法認為整個線性代數(shù)以矩陣理論為核心,將矩陣理論視為各個內(nèi)容聯(lián)系的紐帶。在求線性方程組、判定方程組的解以及研究線性空間問題時,矩陣理論是重要工具。例如正交矩陣和對稱矩陣主要應用于歐氏空間和二次型方程問題中。可見,只要對矩陣知識有了全面系統(tǒng)的理解后,就能將各種問題都化解為矩陣理論中的.一部分,引申為矩陣問題。
第二種是以線性方程組為中心。
這一關觀點認為線性方程組是線性代數(shù)研究的基本問題。具體操作過程中,將線性方程組的理論和方法應用到各個章節(jié),由此引出矩陣、行列式、向量等理論,最后列出方程組、求解,然后進一步應用,串聯(lián)起各部分內(nèi)容。這一理論較為系統(tǒng)、科學,常常被初學者采納。
第三是一種線性代數(shù)體系,以線性變換和線性空間為核心。
在學習線性代數(shù)之前,學生要先掌握關系、集合、環(huán)、群、域等概念,形成對高等數(shù)學的研究對象、知識結(jié)構(gòu)、表達方式的初步認識。線性代數(shù)體系依次安排了線性空間、內(nèi)積空間、線性變化、矩陣概念和性質(zhì)等章節(jié)。掌握線性變換基礎后,再教學線性方程組求解知識,在此基礎上,進一步引出特征向量、特征值和二次型理論。整個體系以線性代數(shù)為核心,內(nèi)容介紹、理論講解及方法系統(tǒng)化為一個整體。
第四是以向量理論為核心。
對二維、三維直角坐標系的研究是線性代數(shù)的起源。學生在中學時就已經(jīng)了解了關于平面向量的一些基本知識,因此,將向量作為整個線性代數(shù)知識的核心,有利于使各部分內(nèi)容的聯(lián)系更加密切、理論體系更加完整完善,學生的空間概念也能得以加強。矩陣、行列式、線性方程組一般為研究維向量空間所必須的表示工具、向量的線性相關性的判別工具)和未知向量的計算工具,從宏觀講它們獨立于體系之外,從微觀講它們也是維向量空間的一些具體內(nèi)容。而二次型僅僅是對稱雙線性函數(shù)的一個簡單應用。
四、線性和線性問題
“線性”這個數(shù)學名詞在中學數(shù)學課程中,學生從未接觸過。而這一課程是大學數(shù)學的基礎課程,學生剛進入大學,對這一詞匯的具體內(nèi)容知之甚少。所以在學習之前,學生必須對什么是“線性”有所了解,在“線性代數(shù)”這一課程中有對于“線性”概念的明確介紹。這是學習線性代數(shù)要解決的第一個基本問題,即什么是“線性”。
從整個數(shù)學全局來看線性代數(shù),可將涉及到的數(shù)學問題分為兩類:即線性問題和非線性問題。其中,對于線性問題的研究,歷來有最完善的理論和最多的研究成果;并且,許多非線性問題往往也可以轉(zhuǎn)化為線性問題解答。所以解決具體的數(shù)學問題時,首先應判斷該問題是否屬于線性問題,如果是線性問題該采用怎樣的解決方法,如果不是線性問題,應考慮如何將其轉(zhuǎn)化為線性問題。這是學習線性代數(shù)要解決的第二個基本問題:什么是“線性問題”,如何處理“線性問題”?
了解了什么是“線性”、什么是“線性問題”后,離完成線性代數(shù)的教學目的還有很長一段距離。如今的高校教育,一味灌輸給學生行列式、向量、矩陣、線性變換等空洞的數(shù)學定理,指導學生用這些理論來思考線性代數(shù)的基本結(jié)構(gòu)、具體應用等問題。教師在教學線性代數(shù)問題時更是一味強調(diào)理論的選擇與應用,卻忽視了學生發(fā)現(xiàn)問題、分析問題、解決問題的能力的培養(yǎng)。
五、線性代數(shù)的研究對象
稍微觀察一下我們可以發(fā)現(xiàn),中學的初等代數(shù)就是線性代數(shù)的前身,只是在其基礎上的進一步抽象化。初等代數(shù)研究的多是具體的問題,運用加減乘除的運算方法即可解決問題;線性代數(shù)中則引入了許多新的概念,如向量、向量空間、集合、空間、矩陣等等,問題展現(xiàn)的形式發(fā)生了變化,要想解決問題,我們的思維方式也應該發(fā)生變化。涉及到新概念的數(shù)學問題往往都很抽象,如向量指的是既有數(shù)值又有具體方向的量;向量空間是許多量組成的集合,這一集合中的元素全都符合特定的運算規(guī)則;集合是具有某種屬性的事物的總和;矩陣理論則是一種更加抽象化的理論,因此我們的研究方法和思維方式都要隨之進行改變。如初等代數(shù)中的基本運算法則性代數(shù)中經(jīng)常會失效,線性代數(shù)的研究對象是向量運算、矩陣運算和線性變換,解決問題時,需要采用一種特殊的運算方法。
綜上所述,線性代數(shù)的學習中應重點培養(yǎng)兩個方面的能力:
一個是知識掌握的能力的培養(yǎng)。介紹知識時應堅持從易到難、循序漸進。先掌握好中學的運算法則,再慢慢學習向量、矩陣知識,之后學習線性變換,最后綜合學習線性運算。學生經(jīng)過中學階段的學習,完全掌握了加法和乘法這兩種基礎運算法則,簡單了解了向量運算。矩陣知識相對于前者更加抽象,因此應放在之后學習。線性變換則是線性代數(shù)教學中的重點和難點所在,也是最容易被忽視的地方。由于線性變換可結(jié)合映射知識學習,而映射知識在中學數(shù)學和微積分教學中都有詳細的介紹,在此基礎上學生更容易理解線性變換及運算的相關知識,更容易解決矩陣特征值問題、線性方程組問題及二次型問題等。
另外一個是思維能力的培養(yǎng)。在學習中,注意引導學生帶著問題學習,并在學習中進一步發(fā)現(xiàn)問題、解決問題,這是最有效的思維方式和學習方法。前文提到了學習線性代數(shù)必須先了解的兩個基本問題:什么是“線性”、什么是“線性問題”。這兩個基本問題應該始終貫穿性代數(shù)的學習過程中。無論在什么階段的學習,都要注重理論知識和實際問題的有效結(jié)合。學生在掌握了一定的理論知識后,可嘗試去解決相關的實際問題。在這一過程中,學生會加深對理論知識的理解,并進一步發(fā)現(xiàn)自身知識儲備的不足之處。若單單追求知識的應用,而不加深自己的理論素養(yǎng),最終也無法具備良好的思維能力。所以,在學習線性代數(shù)時,要培養(yǎng)好兩方面的能力,使之相輔相成、相互促進。
結(jié)語:
20世紀后50年計算技術的高速發(fā)展,推動了大規(guī)模工程和經(jīng)濟系統(tǒng)問題的解決,使人們看到,線性代數(shù)和相關的矩陣模型是如微積分那樣的數(shù)學工具,無所不在的線性代數(shù)問題,等待著各層次的工程技術人員快速精確地去解決相關線性代數(shù)問題。因此絕大對工科學生而言,數(shù)學課應該使他們有宏觀的使用數(shù)學的思想,要使工程師了解工程中可能遇到的各種數(shù)學問題的類別,并且知道應該用什么樣的數(shù)學理論和軟件工具來解決,這是一種高水平的抽象。而了解線性代數(shù)的核心問題,無疑對線性代數(shù)課程的學習有重要的價值。
【線性代數(shù)課件】相關文章:
《將心比心》課件05-14
《詠柳》課件05-02
春曉課件05-03
荷花課件10-26
師說課件下載11-29
看雪課件05-18
菱形課件教案05-18
《石榴》課件精選05-17
知錯就改課件設計05-12
《紙船》課件教案05-12