男人天堂日韩,中文字幕18页,天天伊人网,成人性生交大片免费视频

北師大八年級上冊《等邊三角形》數(shù)學(xué)課件

時間:2021-03-31 12:55:19 課件 我要投稿

北師大八年級上冊《等邊三角形》數(shù)學(xué)課件

  等邊三角形(又稱正三邊形),為三邊相等的三角形,其三個內(nèi)角相等,均為60°,它是銳角三角形的一種。

北師大八年級上冊《等邊三角形》數(shù)學(xué)課件

  等邊三角形(一)

  教學(xué)目的

  1.使學(xué)生熟練地運用等腰三角形的性質(zhì)求等腰三角形內(nèi)角的角度。

  2.熟識等邊三角形的性質(zhì)及判定.

  2.通過例題教學(xué),幫助學(xué)生總結(jié)代數(shù)法求幾何角度,線段長度的方法。

  教學(xué)重點: 等腰三角形的性質(zhì)及其應(yīng)用。

  教學(xué)難點: 簡潔的邏輯推理。

  教學(xué)過程

  一、復(fù)習(xí)鞏固

  1.?dāng)⑹龅妊切蔚男再|(zhì),它是怎么得到的?

  等腰三角形的兩個底角相等,也可以簡稱“等邊對等角”。把等腰三角形對折,折疊兩部分是互相重合的,即AB與AC重合,點B與點 C重合,線段BD與CD也重合,所以∠B=∠C。

  等腰三角形的頂角平分線,底邊上的中線和底邊上的高線互相重合,簡稱“三線合一”。由于AD為等腰三角形的對稱軸,所以BD= CD,AD為底邊上的中線;∠BAD=∠CAD,AD為頂角平分線,∠ADB=∠ADC=90°,AD又為底邊上的高,因此“三線合一”。

  2.若等腰三角形的兩邊長為3和4,則其周長為多少?

  二、新課

  在等腰三角形中,有一種特殊的情況,就是底邊與腰相等,這時,三角形三邊都相等。我們把三條邊都相等的三角形叫做等邊三角形。

  等邊三角形具有什么性質(zhì)呢?

  1.請同學(xué)們畫一個等邊三角形,用量角器量出各個內(nèi)角的度數(shù),并提出猜想。

  2.你能否用已知的知識,通過推理得到你的猜想是正確的?

  等邊三角形是特殊的等腰三角形,由等腰三角形等邊對等角的性質(zhì)得到∠A=∠B=C,又由∠A+∠B+∠C=180°,從而推出∠A=∠B=∠C=60°。

  3.上面的條件和結(jié)論如何敘述?

  等邊三角形的各角都相等,并且每一個角都等于60°。

  等邊三角形是軸對稱圖形嗎?如果是,有幾條對稱軸?

  等邊三角形也稱為正三角形。

  例1.在△ABC中,AB=AC,D是BC邊上的中點,∠B=30°,求∠1和∠ADC的度數(shù)。

  分析:由AB=AC,D為BC的中點,可知AB為 BC底邊上的中線,由“三線合一”可知AD是△ABC的頂角平分線,底邊上的高,從而∠ADC=90°,∠l=∠BAC,由于∠C=∠B=30°,∠BAC可求,所以∠1可求。

  問題1:本題若將D是BC邊上的中點這一條件改為AD為等腰三角形頂角平分線或底邊BC上的高線,其它條件不變,計算的結(jié)果是否一樣?

  問題2:求∠1是否還有其它方法?

  三、練習(xí)鞏固

  1.判斷下列命題,對的打“√”,錯的打“×”。

  a.等腰三角形的角平分線,中線和高互相重合( )

  b.有一個角是60°的等腰三角形,其它兩個內(nèi)角也為60°( )

  2.如圖(2),在△ABC中,已知AB=AC,AD為∠BAC的平分線,且∠2=25°,求∠ADB和∠B的度數(shù)。

  3.P54練習(xí)1、2。

  四、小結(jié)

  由等腰三角形的性質(zhì)可以推出等邊三角形的各角相等,且都為60°!叭合一”性質(zhì)在實際應(yīng)用中,只要推出其中一個結(jié)論成立,其他兩個結(jié)論一樣成立,所以關(guān)鍵是尋找其中一個結(jié)論成立的條件。

  五、作業(yè): 1.課本P57第7,9題。

  2、補充:如圖(3),△ABC是等邊三角形,BD、CE是中線,求∠CBD,∠BOE,∠BOC,∠EOD的度數(shù)。

  等邊三角形(二)

  教學(xué)目標(biāo)

  1.掌握等邊三角形的性質(zhì)和判定方法. 2.培養(yǎng)分析問題、解決問題的能力.

  教學(xué)重點:等邊三角形的性質(zhì)和判定方法.

  教學(xué)難點:等邊三角形性質(zhì)的應(yīng)用

  教學(xué)過程

  I創(chuàng)設(shè)情境,提出問題

  回顧上節(jié)課講過的等邊三角形的有關(guān)知識

  1.等邊三角形是軸對稱圖形,它有三條對稱軸.

  2.等邊三角形每一個角相等,都等于60°

  3.三個角都相等的三角形是等邊三角形.

  4.有一個角是60°的等腰三角形是等邊三角形.

  其中1、2是等邊三角形的.性質(zhì);3、4的等邊三角形的判斷方法.

  II例題與練習(xí)

  1.△ABC是等邊三角形,以下三種方法分別得到的△ADE都是等邊三角形嗎,為什么?

 、僭谶匒B、AC上分別截取AD=AE.

  ②作∠ADE=60°,D、E分別在邊AB、AC上.

  ③過邊AB上D點作DE‖BC,交邊AC于E點.

  2. 已知:如右圖,P、Q是△ABC的邊BC上的兩點,,并且PB=PQ=QC=AP=AQ.求∠BAC的大。

  分析:由已知顯然可知三角形APQ是等邊三角形,每個角都是60°.又知△APB與△AQC都是等腰三角形,兩底角相等,由三角形外角性質(zhì)即可推得∠PAB=30°.

  3.P56頁練習(xí)1、2

  III課堂小結(jié):1.等腰三角形和性質(zhì);等腰三角形的條件

  V布置作業(yè): 1.P58頁習(xí)題12.3第ll題.

  2.已知等邊△ABC,求平面內(nèi)一點P,滿足A,B,C,P四點中的任意三點連線都構(gòu)成等腰三角形.這樣的點有多少個?

  等邊三角形(三)

  教學(xué)過程

  一、復(fù)習(xí)等腰三角形的判定與性質(zhì)

  二、新授

  1.等邊三角形的性質(zhì):三邊相等;三角都是60°;三邊上的中線、高、角平分線相等

  2.等邊三角形的判定:

  三個角都相等的三角形是等邊三角形;有一個角是60°的等腰三角形是等邊三角形;

  在直角三角形中,如果一個銳角等于30°,那么它所對的直角邊等于斜邊的一半

  注意:推論1是判定一個三角形為等邊三角形的一個重要方法.推論2說明在等腰三角形中,只要有一個角是600,不論這個角是頂角還是底角,就可以判定這個三角形是等邊三角形。推論3反映的是直角三角形中邊與角之間的關(guān)系.

  3.由學(xué)生解答課本148頁的例子;

  4.補充:已知如圖所示, 在△ABC中, BD是AC邊上的中線, DB⊥BC于B,

  ∠ABC=120o, 求證: AB=2BC

  分析 由已知條件可得∠ABD=30o, 如能構(gòu)造有一個銳角是30o的直角三角形, 斜邊是AB,30o角所對的邊是與BC相等的線段,問題就得到解決了.

【北師大八年級上冊《等邊三角形》數(shù)學(xué)課件】相關(guān)文章:

人教版八年級上冊數(shù)學(xué)教學(xué)課件04-01

北師大版二年級上冊數(shù)學(xué)教學(xué)課件04-01

五年上冊數(shù)學(xué)教學(xué)課件04-04

滬科版八年級上冊數(shù)學(xué)教學(xué)課件04-01

數(shù)學(xué)教學(xué)課件模板04-02

人教版六年級上冊數(shù)學(xué)教學(xué)課件04-01

新目標(biāo)八年級英語上冊教學(xué)導(dǎo)學(xué)案課件04-08

初三英語上冊教學(xué)課件04-07

北師大高一英語必修2教學(xué)課件04-03

小學(xué)趣味數(shù)學(xué)教學(xué)課件04-01