二次函數(shù)說課課件
二次函數(shù)(quadratic function)的基本表示形式為y=ax+bx+c(a≠0)。二次函數(shù)最高次必須為二次, 二次函數(shù)的圖像是一條對稱軸與y軸平行或重合于y軸的拋物線。下面是小編為你帶來的二次函數(shù)說課課件 ,歡迎閱讀。
教學(xué)目標(biāo):
1.使學(xué)生掌握用描點(diǎn)法畫出函數(shù)y=ax2+bx+c的圖 象。
2.使學(xué)生掌握用圖象或通過配方確定拋物線的開口方向、對稱軸和頂點(diǎn)坐標(biāo)。
3.讓學(xué)生經(jīng)歷探索二次函數(shù)y=ax2+bx+c的圖象的開口方向、對稱軸和頂點(diǎn)坐標(biāo)以及性質(zhì)的過程,理解二次函數(shù)y=ax2+bx+c的性質(zhì)。
重點(diǎn)難點(diǎn):
重點(diǎn):用描點(diǎn)法畫出二次函數(shù)y=ax2+bx+c的圖象和通過配方確定拋物線的對稱軸、頂點(diǎn)坐標(biāo)是教學(xué)的重點(diǎn)。
難點(diǎn):理解二次函數(shù)y=ax2 +b x+c(a≠0)的 性質(zhì)以及它的對稱軸(頂點(diǎn)坐標(biāo)分別是x=-b2a、(-b2a,4ac-b24a)是教學(xué)的難點(diǎn)。
教學(xué)過程:
一、提出問題
1.你能說出函數(shù)y=-4(x-2)2+1圖象的開口方向、對稱軸和頂點(diǎn)坐標(biāo)嗎?
2.函數(shù) y=-4(x-2)2+1圖象與函數(shù)y=-4x2的圖象有什么關(guān)系?
(函數(shù)y=-4(x-2)2+1的圖象可以看成是將函數(shù)y= -4x2的圖象向右平移2個單位再向上平移1個單位得到的)
3.函數(shù)y=-4(x-2)2+1具有哪些性質(zhì)?
(當(dāng)x<2時,函數(shù)值y隨x的增大而增大,當(dāng)x>2時,函數(shù)值y隨x的增 大而減;當(dāng)x=2時,函數(shù)取得最大值,最大值y=1)
4.不畫出圖象,你能直接說出函數(shù)y=-12x2+x-52的圖象的開口方向、對稱軸和頂點(diǎn)坐標(biāo)嗎?
5.你能畫出函數(shù)y=-12x2+x-52的圖象,并說明這個函數(shù)具有哪些性質(zhì)嗎?
二、解決問題
由以上第4個問題的解決 ,我們已經(jīng)知道函數(shù)y=-12x2+x-52的圖象的開口方向、對稱軸和頂點(diǎn)坐標(biāo)。根據(jù)這些特點(diǎn),可以采用描點(diǎn)法作圖的'方法作出函數(shù)y=-12x2+x-52的圖象,進(jìn)而觀察得到這個函數(shù)的性質(zhì)。
解:(1)列表:在x的取值范圍內(nèi)列出函數(shù)對應(yīng)值表;
x…-2-101234…
y…-612
。4-212
-2-212
。4-612
…
(2)描點(diǎn):用表格里各組對應(yīng)值作為點(diǎn)的坐標(biāo),在平面直角坐標(biāo)系中描點(diǎn)。
(3)連線:用光滑的曲線順次連接各點(diǎn),得到函數(shù)y=-12x2+x-52的圖象。
說明:(1)列表時,應(yīng)根據(jù)對稱軸是x=1,以1為中心,對稱地選取自變量的值,求出相應(yīng)的函數(shù)值。相應(yīng)的函數(shù)值是相等的。
(2)直角坐標(biāo)系中x軸、y軸的長度單位可以任意定,且允許x軸、y軸選取的長度單位不同。所以要根據(jù)具體問題 ,選取適當(dāng)?shù)拈L度單位,使畫出的圖象美觀。
讓學(xué)生觀察函數(shù)圖象,發(fā)表意見,互相補(bǔ)充,得到這個函數(shù)韻性質(zhì);
當(dāng)x<1時,函數(shù)值y隨x的增大而增大;當(dāng)x>1時,函數(shù)值y隨x的增大而減小;
當(dāng)x=1時,函數(shù)取得最大值,最大值y=-2
三、做一做
1.請你按照上面的方法,畫出函數(shù)y=12x2-4x+10的圖象,由圖象你能發(fā)現(xiàn)這個函數(shù)具有哪些性質(zhì)嗎?
教學(xué)要點(diǎn)
(1)在學(xué)生畫函數(shù)圖象的同時,教師巡視、指導(dǎo);
(2)叫一位或兩位同學(xué)板演,學(xué)生自糾,教 師點(diǎn)評。
2.通過配方變形,說出函數(shù)y=-2x2+8x-8的圖象的開口方向、對稱軸和頂點(diǎn)坐標(biāo),這個函數(shù)有最大值還是最小值?這個值是多少?
教學(xué)要點(diǎn)
(1)在學(xué)生做題時,教師巡視、指導(dǎo);(2)讓學(xué)生總結(jié)配方的方法;(3)讓學(xué)生思考函數(shù)的最大值或最小值與函數(shù)圖象的開口方向有什么關(guān)系?這個值與函數(shù)圖象的頂點(diǎn)坐標(biāo)有什么關(guān)系?
以上講的,都是給出一個具體的二次函數(shù),來研究它的圖象與性質(zhì)。那么,對于任意一個二次函數(shù)y=ax2+bx+c(a≠0),如何確定它的圖象的開口方向、對稱軸和頂點(diǎn)坐標(biāo)?你能把結(jié)果寫出來嗎?
教師組織學(xué)生分組討論,各組選派代表發(fā)言,全班交流,達(dá)成共識;
y=ax2 +bx+c=a(x2+bax)+c =a[x2+bax+(b2a)2-(b2a)2]+c =a[x2+bax+(b2a)2]+c-b24a
。絘(x+b2a)2+4ac-b24a
當(dāng)a>0時,開口向上,當(dāng)a<0時,開口向下。
對稱軸是x=-b/2a,頂點(diǎn)坐標(biāo)是(-b2a,4ac-b24a)
四、課堂練習(xí):
練習(xí)第1、2、3題。
五、小結(jié): 通過本節(jié)課的學(xué)習(xí),你學(xué)到了什么知識?有何體會?
六、作業(yè):
1.填空:
(1)拋物線y=x2-2x+2的頂點(diǎn)坐標(biāo)是_______;
(2)拋物線y=2x2-2x-52的開口_______,對稱軸是_______;
(3)拋物線y=-2x2-4x+8的開口_______,頂點(diǎn)坐標(biāo)是_______;
(4)拋物線y=-12x2+2x+4的對稱軸是_______;
(5)二次函數(shù)y=ax2+4x+a的最大值是3,則a=_______.
2.畫出函數(shù)y=2x2-3x的圖象,說明這個函數(shù)具有哪些性質(zhì)。
3. 通過配方,寫出下列拋物線的開口方向、對稱軸和頂點(diǎn)坐標(biāo)。
(1 )y=3x2+2x;(2)y=-x 2-2x
( 3)y=-2x2+8x-8(4)y=12x2-4x+3
4.求二次函數(shù)y=mx2+2mx+3(m>0)的圖象的對稱軸,并說出該函數(shù)具有哪些性質(zhì)
【二次函數(shù)說課課件】相關(guān)文章:
二次函數(shù)課件說課03-18
二次函數(shù)說課稿02-17
二次函數(shù)說課稿11-02
冪函數(shù)說課課件03-21
小數(shù)的近似數(shù)說課課件03-20
平均數(shù)說課課件03-20
變量與函數(shù)說課稿課件03-23
認(rèn)識小數(shù)說課稿課件03-23