數(shù)學的小論文范文
導語:“數(shù)學小論文”是讓學生以日記的形式描述他們發(fā)現(xiàn)的數(shù)學問題及其解決,是學生數(shù)學學習經(jīng)歷的一種書面寫作記錄。它可以是學生對某一個數(shù)學問題的理解、評價,可以是數(shù)學活動中的真實心態(tài)和想法,可以是進行數(shù)學綜合實踐活動遇到的問題,也可以是利用所學的數(shù)學知識解決生活中數(shù)學問題的經(jīng)過等。以下是小編整理數(shù)學的小論文范文,以供參考。
1證明一個三角形是直角三角形
2用于直角三角形中的相關計算
3有利于你記住余弦定理,它是余弦定理的一種特殊情況。中國最早的一部數(shù)學著作——《周髀算經(jīng)》的開頭,記載著一段周公向商高請教數(shù)學知識的對話:
周公問:“我聽說您對數(shù)學非常精通,我想請教一下:天沒有梯子可以上去,地也沒法用尺子去一段一段丈量,那么怎樣才能得到關于天地得到數(shù)據(jù)呢?”
商高回答說:“數(shù)的產(chǎn)生來源于對方和圓這些形體餓認識。其中有一條原理:當直角三角形‘矩’得到的一條直角邊‘勾’等于3,另一條直角邊‘股’等于4的時候,那么它的斜邊‘弦’就必定是5。這個原理是大禹在治水的時候就總結出來的呵。”
從上面所引的這段對話中,我們可以清楚地看到,我國古代的人民早在幾千年以前就已經(jīng)發(fā)現(xiàn)并應用勾股定理這一重要懂得數(shù)學原理了。稍懂平面幾何餓讀者都知道,所謂勾股定理,就是指在直角三角形中,兩條直角邊的平方和等于斜邊的'平方
用勾(a)和股(b)分別表示直角三角形得到兩條直角邊,用弦(c)來表示斜邊,則可得:
勾2+股2=弦2
亦即:
a2+b2=c2
勾股定理在西方被稱為畢達哥拉斯定理,相傳是古希臘數(shù)學家兼哲學家畢達哥拉斯于公元前550年首先發(fā)現(xiàn)的。其實,我國古代得到人民對這一數(shù)學定理的發(fā)現(xiàn)和應用,遠比畢達哥拉斯早得多。如果說大禹治水因年代久遠而無法確切考證的話,那么周公與商高的對話則可以確定在公元前1100年左右的西周時期,比畢達哥拉斯要早了五百多年。其中所說的勾3股4弦5,正是勾股定理的一個應用特例(32+42=52)。所以現(xiàn)在數(shù)學界把它稱為勾股定理,應該是非常恰當?shù)摹?/p>
在稍后一點的《九章算術一書》中,勾股定理得到了更加規(guī)范的一般性表達。書中的《勾股章》說;“把勾和股分別自乘,然后把它們的積加起來,再進行開方,便可以得到弦!卑堰@段話列成算式,即為:
弦=(勾2+股2)(1/2)
即:
c=(a2+b2)(1/2)
定理:
如果直角三角形兩直角邊分別為a,b,斜邊為c,那么a^平方+b^平方=c^平方;即直角三角形兩直角邊的平方和等于斜邊的平方。
如果三角形的三條邊a,b,c滿足a^2+b^2=c^2,如:一條直角邊是3,一條直角邊是四,斜邊就是3*3+4*4=X*X,X=5。那么這個三角形是直角三角形。(稱勾股定理的逆定理)
來源:
畢達哥拉斯樹是一個基本的幾何定理,傳統(tǒng)上認為是由古希臘的畢達哥拉斯所證明。據(jù)說畢達哥拉斯證明了這個定理后,即斬了百頭牛作慶祝,因此又稱“百牛定理”。在中國,《周髀算經(jīng)》記載了勾股定理的一個特例,相傳是在商代由商高發(fā)現(xiàn),故又有稱之為商高定理;三國時代的趙爽對《周髀算經(jīng)》內(nèi)的勾股定理作出了詳細注釋,作為一個證明。法國和比利時稱為驢橋定理,埃及稱為埃及三角形。我國古代把直角三角形中較短得直角邊叫做勾,較長的直角邊叫做股,斜邊叫做弦。
【數(shù)學的小論文范文】相關文章:
數(shù)學小論文范文(精選62篇)01-27
小善大愛議論文范文03-16
數(shù)學本科畢業(yè)論文范文01-21
數(shù)學小謎語大全05-04
數(shù)學小幽默故事10-14
數(shù)學小論文怎么寫08-04
數(shù)學小謎語及答案08-27
數(shù)學小故事讀后感04-06
數(shù)學小論文(精選14篇)01-24
數(shù)學小日記范文九篇04-28