有關(guān)小學(xué)奧數(shù)數(shù)論類試題解析
把一個數(shù)由右邊向左邊數(shù),將奇位上的數(shù)字與偶位上的數(shù)字分別加起來,再求它們的差,如果這個差是11的倍數(shù)(包括0),那么,原來這個數(shù)就一定能被11整除.
例如:判斷491678能不能被11整除.
—→奇位數(shù)字的和9+6+8=23
—→偶位數(shù)位的和4+1+7=1223-12=11
因此,491678能被11整除.
這種方法叫"奇偶位差法".
除上述方法外,還可以用割減法進(jìn)行判斷.即:從一個數(shù)里減去11的10倍,20倍,30倍……到余下一個100以內(nèi)的數(shù)為止.如果余數(shù)能被11整除,那么,原來這個數(shù)就一定能被11整除.
又如:判斷583能不能被11整除.
用583減去11的50倍(583-11×50=33)余數(shù)是33,33能被11整除,583也一定能被11整除.
(1)1與0的特性:
1是任何整數(shù)的.約數(shù),即對于任何整數(shù)a,總有1|a.
0是任何非零整數(shù)的倍數(shù),a≠0,a為整數(shù),則a|0.
(2)若一個整數(shù)的末位是0、2、4、6或8,則這個數(shù)能被2整除。
(3)若一個整數(shù)的數(shù)字和能被3整除,則這個整數(shù)能被3整除。
(4)若一個整數(shù)的末尾兩位數(shù)能被4整除,則這個數(shù)能被4整除。
(5)若一個整數(shù)的末位是0或5,則這個數(shù)能被5整除。
(6)若一個整數(shù)能被2和3整除,則這個數(shù)能被6整除。
【小學(xué)奧數(shù)數(shù)論類試題解析】相關(guān)文章:
小學(xué)奧數(shù)試題及解析03-29
關(guān)于小學(xué)奧數(shù)數(shù)論試題:數(shù)的整除06-13
小學(xué)奧數(shù)試題解析03-28
奧數(shù)類試題03-27
關(guān)于奧數(shù)行程問題的試題及解析06-12
2018最新奧數(shù)試題解析06-12