男人天堂日韩,中文字幕18页,天天伊人网,成人性生交大片免费视频

《三角函數(shù)》復(fù)習(xí)題

時間:2021-06-13 14:24:03 試題 我要投稿
  • 相關(guān)推薦

《三角函數(shù)》復(fù)習(xí)題

  第一節(jié) 角的概念的推廣與弧度制

  A組

  1.點(diǎn)P從(-1,0)出發(fā),沿單位圓x2+y2=1順時針方向運(yùn)動3弧長到達(dá)Q點(diǎn),則Q點(diǎn)的坐標(biāo)為________.

  解析:由于點(diǎn)P從(-1,0)出發(fā),順時針方向運(yùn)動3弧長到達(dá)Q點(diǎn),如圖,因此Q點(diǎn)的坐標(biāo)為(cos23,sin23),即Q(-12,32).答案:(-12,32)

  2.設(shè)為第四象限角,則下列函數(shù)值一定是負(fù)值的是________.

 、賢an2 ②sin2 ③cos2 ④cos2

  解析:為第四象限角,則2為第二、四象限角,因此tan0恒成立,應(yīng)填①,其余三個符號可正可負(fù).答案:①

  3.若sin0且tan0,則是第_______象限的角.

  答案:三

  4.函數(shù)y=|sinx|sinx+cosx|cosx|+|tanx|tanx的值域?yàn)開_______.

  解析:當(dāng)x為第一象限角時,sinx0,cosx0,tanx

  當(dāng)x為第二象限角時,sinx0,cosx0,tanx0,y=-1;

  當(dāng)x為第三象限角時,sinx0,cosx0,tanx0,y=-1;

  當(dāng)x為第四象限角時,sinx0,cosx0,tanx0,y=-1.答案:{-1,3}

  5.若一個角的終邊上有一點(diǎn)P(-4,a),且sincos=34,則a的值為________.

  解析:依題意可知角的終邊在第三象限,點(diǎn)P(-4,a)在其終邊上且sincos=34,易得tan=3或33,則a=-43或-433.答案:-43或-433

  6.已知角的終邊上的一點(diǎn)P的坐標(biāo)為(-3,y)(y0),且sin=24y,求cos,tan的值.

  解:因?yàn)閟in=24y=y(-3)2+y2,所以y2=5,

  當(dāng)y=5時,cos=-64,tan=-153;

  當(dāng)y=-5時,cos=-64,tan=153.

  B組

  1.已知角的終邊過點(diǎn)P(a,|a|),且a0,則sin的值為________.

  解析:當(dāng)a0時,點(diǎn)P(a,a)在第一象限,sin

  當(dāng)a0時,點(diǎn)P(a,-a)在第二象限,sin=22.答案:22

  2.已知扇形的周長為6 cm,面積是2 cm2,則扇形的圓心角的弧度數(shù)是_____.

  解析:設(shè)扇形的圓心角為 rad,半徑為R,則

  2R+R=612R2=2,解得=1或=4.答案:1或4

  3.如果一扇形的圓心角為120,半徑等于 10 cm,則扇形的面積為________.

  解析:S=12||r2=1223100=1003(cm2).答案:1003 cm2

  4.若角的終邊與168角的終邊相同,則在0~360內(nèi)終邊與3角的終邊相同的角的集合為__________.答案:{56,176,296}

  5.若=k180+45(kZ),則是第________象限.

  解析:當(dāng)k=2m+1(mZ)時,=2m180+225=m360+225,故為第三象限角;當(dāng)k=2m(mZ)時,=m360+45,故為第一象限角.

  答案:一或三

  6.設(shè)角的終邊經(jīng)過點(diǎn)P(-6a,-8a)(a0),則sin-cos的值是________.

  解析:∵x=-6a,y=-8a,r=(-6a)2+(-8a)2=10|a|,

  sin-cos=yr-xr=-8a+6a10|a|=-a5|a|=15.答案:15

  7.若點(diǎn)A(x,y)是300角終邊上異于原點(diǎn)的一點(diǎn),則yx的值為________.

  解析:yx=tan300=-tan60=-3.答案:-3

  8.已知點(diǎn)P(sin34,cos34)落在角的終邊上,且[0,2),則的值為________.

  解析:由sin30,cos30知角在第四象限,∵tan=cos34sin34=-1,[0,2),=74.答案:74

  9.已知角的始邊在x軸的非負(fù)半軸上,終邊在直線y=kx上,若sin=25,且cos0,則k的值為________.

  解析:設(shè)終邊上任一點(diǎn)P(x,y),且|OP|0,y=kx,

  r=x2+(kx)2=1+k2|x|.又sin0,cos0.x0,y0,

  r=-1+k2x,且k0.sin=yr=kx-1+k2x=-k1+k2,又sin=25.

  -k1+k2=25,k=-2.答案:-2

  10.已知一扇形的中心角是,所在圓的半徑是R.若=60,R=10 cm,求扇形的弧長及該弧所在的弓形面積.

  解:設(shè)弧長為l,弓形面積為S弓,∵=603,R=10,l=103(cm),

  S弓=S扇-S△=1210310-12102sin60=50(3-32)(cm2).

  11.扇形AOB的周長為8 cm.

  (1)若這個扇形的面積為3 cm2,求圓心角的大小;

  (2)求這個扇形的面積取得最大值時圓心角的大小和弦長AB.

  解:設(shè)扇形AOB的半徑為r,弧長為l,圓心角為,

  (1)由題意可得2r+l=8,12lr=3,解得r=3,l=2,或r=1l=6,

  =lr=23或=lr=6.

  (2)∵2r+l=2r+r=8,r=82+.S扇=12r2=1264(2+)2=32+4+44,

  當(dāng)且僅當(dāng)=4,即=2時,扇形面積取得最大值4.此時,r=82+2=2 (cm),

  |AB|=22sin1=4 sin1 (cm).

  12.(1)角的終邊上一點(diǎn)P(4t,-3t)(t0),求2sin+cos的值;

  (2)已知角的終邊在直線y=3x上,用三角函數(shù)定義求sin的值.

  解:(1)根據(jù)題意,有x=4t,y=-3t,所以r=(4t)2+(-3t)2=5|t|,

 、佼(dāng)t0時,r=5t,sin=-35,cos=45,所以2sin+cos=-65+45=-25.

 、诋(dāng)t0時,r=-5t,sin=-3t-5t=35,cos=4t-5t=-45,

  所以2sin+cos=65-45=25.

  (2)設(shè)P(a,3a)(a0)是角終邊y=3x上一點(diǎn),若a0,則是第三象限角,r=-2a,此時sin=3a-2a=-32;若a0,則是第一象限角,r=2a,

  此時sin=3a2a=32.

  第二節(jié) 正弦函數(shù)和余弦函數(shù)的定義及誘導(dǎo)公式

  A組

  1.若cos=-35,2,),則tan=________.

  解析:cos=-35,2,),所以sin=45,tan=sincos=-43.

  答案:-43

  2.若sin=-45,tan0,則cos=________.

  解析:由sin=-450,tan0知,是第三象限角,故cos=-35.

  答案:-35

  3.若sin(6+)=35,則cos(3-)=________.

  解析:cos(3-)=cos[6+)]=sin(6+)=35.答案:35

  4.已知sinx=2cosx,則5sinx-cosx2sinx+cosx=______.

  解析:∵sinx=2cosx,tanx=2,5sinx-cosx2sinx+cosx=5tanx-12tanx+1=95.

  答案:95

  5.(原創(chuàng)題)若cos2+cos=0,則sin2+sin=________.

  解析:由cos2+cos=0,得2cos2-1+cos=0,所以cos=-1或cos=12,當(dāng)cos=-1時,有sin=0,當(dāng)cos=12時,有sin=32.于是sin2+sin=sin(2cos+1)=0或3或-3.答案:0或3或-3

  6.已知sin()cos(-8)=60169,且4,2),求cos,sin的值.

  解:由題意,得2sincos=120169.①又∵sin2+cos2=1,②

 、+②得:(sin+cos)2=289169,②-①得:(sin-cos)2=49169.

  又∵4,2),sincos0,即sin+cos0,sin-cos0,

  sin+cos=1713.③sin-cos=713,④

 、+④得:sin=1213.③-④得:cos=513.

  B組

  1.已知sinx=2cosx,則sin2x+1=________.

  解析:由已知,得tanx=2,所以sin2x+1=2sin2x+cos2x=2sin2x+cos2xsin2x+cos2x=2tan2x+1tan2x+1=95.答案:95

  2. cos103=________.

  解析:cos103=cos43=-cos3=-12.答案:-12

  3.已知sin=35,且2,),那么sin2cos2的值等于________.

  解析:cos=-1-sin2=-45, sin2cos2=2sincoscos2=2sincos=235-45=-32.

  答案:-32

  4.若tan=2,則sin+cossin-cos+cos2=_________________.

  解析:sin+cossin-cos+cos2=sin+cossin-cos+cos2sin2+cos2=tan+1tan-1+1tan2+1=165.答案:165

  5.已知tanx=sin(x+2),則sinx=___________________.

  解析:∵tanx=sin(x+2)=cosx,sinx=cos2x,sin2x+sinx-1=0,解得sinx=5-12.答案:5-12

  6.若[0,),且cos(sin+cos)=1,則=________.

  解析:由cos(sin+cos)=1sincos=1-cos2=sin2sin(sin-cos)=0sin=0或sin-cos=0,又∵[0,),=0或4.答案:0或4

  7.已知sin(12)=13,則cos(+712)的值等于________.

  解析:由已知,得cos(+712)=cos[(12)+2]=-sin(12)=-13.

  答案:-13

  8.若cos+2sin=-5,則tan=________.

  解析:由cos+2sin=-5,①sin2+cos2=1, ②

  將①代入②得(5sin+2)2=0,sin=-255,cos=-55,tan=2.

  答案:2

  9.已知f()=sin()cos(2)tan(-+32)cos(-),則f(-313)的值為________.

  解析:∵f()=sincoscot-cos=-cos,f(-313)=-cos3=-12.答案:-12

  10.求sin(2n3)cos(n3)(nZ)的值.

  解:(1)當(dāng)n為奇數(shù)時,sin(2n3)cos(n3)=sin2cos[(n+1)3]

  =sin(3)cos3=sincos3=3212=34.

  (2)當(dāng)n為偶數(shù)時,sin(2n3)cos(n3)=sin2cos43=sin(3)cos(3)=sin(-cos3)=32(-12)=-34.

  11.在△ABC中,若sin(2-A)=-2sin(-B),3cosA=-2cos(-B),求△ABC的三內(nèi)角.

  解:由已知,得sinA=2sinB,①3cosA=2cosB, ②

  ①2+②2得:2cos2A=1,即cosA=22.

  (1)當(dāng)cosA=22時,cosB=32,又A、B是三角形內(nèi)角,A=4,B=6,C=-(A+B)=712.(2)當(dāng)cosA=-22時,cosB=-32.又A、B是三角形內(nèi)角,A=34,B=56,不合題意.綜上知,A=4,B=6,C=712.

  12.已知向量a=(3,1),向量b=(sin-m,cos).

  (1)若a∥b,且[0,2),將m表示為的函數(shù),并求m的最小值及相應(yīng)的(2)若ab,且m=0,求cos(2-)sin(+2)cos()的值.

  解:(1)∵a∥b,3cos-1(sin-m)=0,m=sin-3cos=2sin(3).

  又∵[0,2),當(dāng)sin(3)=-1時,mmin=-2.

  此時3=32,即=116.

  (2)∵ab,且m=0,3sin+cos=0.tan=-33.

  cos(2-)sin(+2)cos()=sin(-sin2)-cos=tan2sincos

  =tan2sincossin2+cos2=tan2tan1+tan2=12.

  第三節(jié) 正弦函數(shù)與余弦函數(shù)的圖像與性質(zhì)

  A組

  1.已知函數(shù)f(x)=sin(x-2)(xR),下面結(jié)論錯誤的是.

 、俸瘮(shù)f(x)的最小正周期為2②函數(shù)f(x)在區(qū)間[0,2]上是增函數(shù)

 、酆瘮(shù)f(x)的圖象關(guān)于直線x=0對稱④函數(shù)f(x)是奇函數(shù)

  解析:∵y=sin(x-2)=-cosx,y=-cosx為偶函數(shù),

  T=2,在[0,2]上是增函數(shù),圖象關(guān)于y軸對稱.答案:④

  2.函數(shù)y=2cos2(x-4)-1是________.

 、僮钚≌芷跒榈钠婧瘮(shù) ②最小正周期為的偶函數(shù) ③最小正周期為2的奇函數(shù) ④最小正周期為2的偶函數(shù)

  解析:y=2cos2(x-4)-1=cos(2x-2)=sin2x,T=,且為奇函數(shù).

  答案:①

  3.若函數(shù)f(x)=(1+3tanx)cosx,02,則f(x)的最大值為________.

  解析:f(x)=(1+3sinxcosx)cosx=cosx+3sinx=2sin(x+6),

  ∵02,663,當(dāng)x+2時,f(x)取得最大值2.答案:2

  4.已知函數(shù)f(x)=asin2x+cos2x(aR)圖象的一條對稱軸方程為x=12,則a的值為________.

  解析:∵x=12是對稱軸,f(0)=f(6),即cos0=asin3+cos3,a=33.

  答案:33

  5.設(shè)f(x)=Asin(x+0,0)的圖象關(guān)于直線x=3對稱,它的最小正周期是,則f(x)圖象上的一個對稱中心是________(寫出一個即可).

  解析:∵T=2=,=2,又∵函數(shù)的圖象關(guān)于直線x=3對稱,所以有sin(23+)=1,-6(k1Z),由sin(2x+k16)=0得2x+k16=k2(k2Z),x=12+(k2-k1)2,當(dāng)k1=k2時,x=12,f(x)圖象的一個對稱中心為(12,0).答案:(12,0)

  6.設(shè)函數(shù)f(x)=3cos2x+sinxcosx-32.

  (1)求函數(shù)f(x)的最小正周期T,并求出函數(shù)f(x)的`單調(diào)遞增區(qū)間;

  (2)求在[0,3)內(nèi)使f(x)取到最大值的所有x的和.

  解:(1)f(x)=32(cos2x+1)+12sin2x-32=32cos2x+12sin2x=sin(2x+3),

  故T=.由2k23+2(kZ),得kk12,

  所以單調(diào)遞增區(qū)間為[k,k12](kZ).

  (2)令f(x)=1,即sin(2x+3)=1,則2x++2(kZ).于是x=k12(kZ),∵03,且kZ,k=0,1,2,則+12)+(212)=134.

  在[0,3)內(nèi)使f(x)取到最大值的所有x的和為134.

  B組

  1.函數(shù)f(x)=sin(23x+2)+sin23x的圖象相鄰的兩條對稱軸之間的距離是________.

  解析:f(x)=cos2x3+sin2x3=2sin(2x3+4),相鄰的兩條對稱軸之間的距離是半個周期,T=2,T2=32.答案:32

  2.給定性質(zhì):a最小正周期為b圖象關(guān)于直線x=3對稱.則下列四個函數(shù)中,同時具有性質(zhì)ab的是________.

  ①y=sin(x2+6)②y=sin(2x+6) ③y=sin|x| ④y=sin(2x-6)

  解析:④中,∵T=2=,=2.又23-2,所以x=3為對稱軸.

  答案:④

  3.若4

  解析:41,令tan2x-1=t0,則y=tan2xtan3x=2tan4x1-tan2x=2(t+1)2-t=-2(t+1t+2)-8,故填-8.答案:-8

  4.(函數(shù)f(x)=sin2x+2cosx在區(qū)間[-23,]上的最大值為1,則的值是________.

  解析:因?yàn)閒(x)=sin2x+2cosx=-cos2x+2cosx+1=-(cosx-1)2+2,又其在區(qū)間[-23,]上的最大值為1,可知只能取-2. 答案:-2

  5.若函數(shù)f(x)=2sinx(0)在[-23,23]上單調(diào)遞增,則的最大值為________.

  解析:由題意,得23,034,則的最大值為34.答案:34

  6.設(shè)函數(shù)y=2sin(2x+3)的圖象關(guān)于點(diǎn)P(x0,0)成中心對稱,若x02,0],則x0=________.

  解析:因?yàn)閳D象的對稱中心是其與x軸的交點(diǎn),所以由y=2sin(2x0+3)=0,x02,0],得x0=-6.答案:-6

  7.已知函數(shù)y=Asin(x+)+m的最大值為4,最小值為0,最小正周期為2,直線x=3是其圖象的一條對稱軸,則下面各式中符合條件的解析式是________.

  ①y=4sin(4x+6)②y=2sin(2x+3)+2③y=2sin(4x+3)+2 ④y=2sin(4x+6)+2

  解析:因?yàn)橐阎瘮?shù)的最大值為4,最小值為0,所以A+m=4m-A=0,解得A=m=2,又最小正周期為2=2,所以=4,又直線x=3是其圖象的一條對稱軸,將x=3代入得sin(43+)=1,所以3=k2(kZ),即-56(kZ),當(dāng)k=1時,6.答案:④

  8.有一種波,其波形為函數(shù)y=sin2x的圖象,若在區(qū)間[0,t]上至少有2個波峰(圖象的最高點(diǎn)),則正整數(shù)t的最小值是________.

  解析:函數(shù)y=sin2x的周期T=4,若在區(qū)間[0,t]上至少出現(xiàn)兩個波峰,則t54T=5.答案:5

  9.已知函數(shù)f(x)=3sinx+cosx(0),y=f(x)的圖象與直線y=2的兩個相鄰交點(diǎn)的距離等于,則f(x)的單調(diào)遞增區(qū)間是________.

  解析:∵y=3sinx+cosx=2sin(x+6),且由函數(shù)y=f(x)與直線y=2的兩個相鄰交點(diǎn)間的距離為知,函數(shù)y=f(x)的周期T=,T=2=,解得=2,f(x)=2sin(2x+6).令2k26+2(kZ),得k3k6(kZ).答案:[k3,k6](kZ)

  10.已知向量a=(2sinx,cos2x),向量b=(cosx,23),其中0,函數(shù)f(x)=ab,若f(x)圖象的相鄰兩對稱軸間的距離為.(1)求f(x)的解析式;(2)若對任意實(shí)數(shù)x6,3],恒有|f(x)-m|2成立,求實(shí)數(shù)m的取值范圍.

  解:(1)f(x)=ab=(2sinx,cos2x)(cosx,23)=sin2x+3(1+cos2x)=2sin(2x+3)+3.∵相鄰兩對稱軸的距離為,2=2,=12,

  f(x)=2sin(x+3)+3.

  (2)∵x6,3],x+[2,23],232+3.又∵|f(x)-m|2,

  -2+m

  -2+m23,2+m2+3,解得32+23.

  11.設(shè)函數(shù)f(x)=ab,其中向量a=(2cosx,1),b=(cosx,3sin2x+m).

  (1)求函數(shù)f(x)的最小正周期和在[0,]上的單調(diào)遞增區(qū)間;

  (2)當(dāng)x[0,6]時,f(x)的最大值為4,求m的值.

  解:(1)∵f(x)=ab=2cos2x+3sin2x+m=2sin(2x+6)+m+1,

  函數(shù)f(x)的最小正周期T=2.

  在[0,]上的單調(diào)遞增區(qū)間為[0,6],[2].

  (2)當(dāng)x[0,6]時,∵f(x)單調(diào)遞增,當(dāng)x=6時,f(x)取得最大值為m+3,即m+3=4,解之得m=1,m的值為1.

  12.已知函數(shù)f(x)=3sinx-2sin2x2+m(0)的最小正周期為3,且當(dāng)x[0,]時,函數(shù) f(x)的最小值為0.(1)求函數(shù)f(x)的表達(dá)式;(2)在△ABC中,若f(C)=1,且2sin2B=cosB+cos(A-C),求sinA的值.

  解:(1)f(x)=3sinx+cosx-1+m=2sin(x+6)-1+m.

  依題意,函數(shù)f(x)的最小正周期為3,即2=3,解得=23.

  f(x)=2sin(2x3+6)-1+m.

  當(dāng)x[0,]時,2x3+56,12sin(2x3+1,

  f(x)的最小值為m.依題意,m=0.f(x)=2sin(2x3+6)-1.

  (2)由題意,得f(C)=2sin(2C3+6)-1=1,sin(2C3+6)=1.

  而2C3+56,2C3+2,解得C=2.A+B=2.

  在Rt△ABC中,∵A+B=2,2sin2B=cosB+cos(A-C).

  2cos2A-sinA-sinA=0,解得sinA=-152.∵0

  第四節(jié) 函數(shù)f(x)=Asin(x+)的圖像

  A組

  1.已知a是實(shí)數(shù),則函數(shù)f(x)=1+asinax的圖象不可能是________.

  解析:函數(shù)的最小正周期為T=2|a|,當(dāng)|a|1時,T.當(dāng)01時,T,觀察圖形中周期與振幅的關(guān)系,發(fā)現(xiàn)④不符合要求.答案:④

  2.將函數(shù)y=sinx的圖象向左平移2)個單位后,得到函數(shù)y=sin(x-6)的圖象,則等于________.

  解析:y=sin(x-6)=sin(x-)=sin(x+116).答案:116

  3.將函數(shù)f(x)=3sinx-cosx的圖象向右平移0)個單位,所得圖象對應(yīng)的函數(shù)為奇函數(shù),則的最小值為________.

  解析:因?yàn)閒(x)=3sinx-cosx=2sin(x-6),f(x)的圖象向右平移個單位所得圖象對應(yīng)的函數(shù)為奇函數(shù),則的最小值為56.

  答案:56

  4.如圖是函數(shù)f(x)=Asin(x+0,0,-),xR的部分圖象,則下列命題中,正確命題的序號為________.

 、俸瘮(shù)f(x)的最小正周期為

 、诤瘮(shù)f(x)的振幅為23;

  ③函數(shù)f(x)的一條對稱軸方程為x=712

 、芎瘮(shù)f(x)的單調(diào)遞增區(qū)間為[12,712

  ⑤函數(shù)的解析式為f(x)=3sin(2x-23).

  解析:據(jù)圖象可得:A=3,T2=53,故=2,又由f(712)=3sin(212+)=1,解得-23(kZ),又-,故3,故f(x)=3sin(2x-23),依次判斷各選項(xiàng),易知①②是錯誤的,由圖象易知x=712是函數(shù)圖象的一條對稱軸,故③正確,④函數(shù)的單調(diào)遞增區(qū)間有無窮多個,區(qū)間[12,712]只是函數(shù)的一個單調(diào)遞增區(qū)間,⑤由上述推導(dǎo)易知正確.答案:③⑤

  5.已知函數(shù)f(x)=sinx+cosx,如果存在實(shí)數(shù)x1,使得對任意的實(shí)數(shù)x,都有f(x1)f(x1+2010)成立,則的最小值為________.

  解析:顯然結(jié)論成立只需保證區(qū)間[x1,x1+2010]能夠包含函數(shù)的至少一個完整的單調(diào)區(qū)間即可,且f(x)=sinx+cosx=2sin(x+4),則201022010.答案:2010

  6.已知函數(shù)f(x)=sin2x+3sinxsin(x+2)+2cos2x,xR(0),在y軸右側(cè)的第一個最高點(diǎn)的橫坐標(biāo)為6. (1)求

  (2)若將函數(shù)f(x)的圖象向右平移6個單位后,再將得到的圖象上各點(diǎn)橫坐標(biāo)伸長到原來的4倍,縱坐標(biāo)不變,得到函數(shù)y=g(x)的圖象,求函數(shù)g(x)的最大值及單調(diào)遞減區(qū)間.

  解:(1)f(x)=32sin2x+12cos2x+32=sin(2x+6)+32,

  令2x+2,將x=6代入可得:=1.

  (2)由(1)得f(x)=sin(2x+6)+32,

  經(jīng)過題設(shè)的變化得到的函數(shù)g(x)=sin(12x-6)+32,

  當(dāng)x=4k,kZ時,函數(shù)取得最大值52.

  令2k26+32Z),

  4k34k(kZ).

  即x[4k3,4k],kZ為函數(shù)的單調(diào)遞減區(qū)間.

  B組

  1.已知函數(shù)y=sin(x+)(0,-)的圖象如圖所示,則=________.

  解析:由圖可知,T2=2,

  T=52,2=52,=45,

  y=sin(45x+).

  又∵sin(4534)=-1,

  sin(35)=-1,

  35=32,kZ.

  ∵-,=910. 答案:910

  2.已知函數(shù)y=sin(x+)(0,|)的圖象如圖所示,則=________.

  解析:由圖象知T=2(26)=.

  =2T=2,把點(diǎn)(6,1)代入,可得26+2,6.答案:6

  3.已知函數(shù)f(x)=sin(x+4)(xR,0)的最小正周期為,為了得到函數(shù)g(x)=cosx的圖象,只要將y=f(x)的圖象________.

  解析:∵f(x)=sin(x+4)(xR,0)的最小正周期為,

  2=,故=2.

  又f(x)=sin(2x+4)g(x)=sin[2(x+4]=sin(2x+2)=cos2x.

  答案:向左平移8個單位長度

  4.已知函數(shù)f(x)=Acos(x+) 的圖象如圖所示,f(2)=-23,則f(0)=________.

  解析:T2=1112=3,=2T=3.

  又(712,0)是函數(shù)的一個上升段的零點(diǎn),

  3712=3(kZ),得4+2k,kZ,

  代入f(2)=-23,得A=223,f(0)=23. 答案:23

  5.將函數(shù)y=sin(2x+3)的圖象向________平移________個單位長度后所得的圖象關(guān)于點(diǎn)(-12,0)中心對稱.

  解析:由y=sin(2x+3)=sin2(x+6)可知其函數(shù)圖象關(guān)于點(diǎn)(-6,0)對稱,因此要使平移后的圖象關(guān)于(-12,0)對稱,只需向右平移12即可.答案:右 12

  6.定義行列式運(yùn)算:a1 a2a3 a4=a1a4-a2a3,將函數(shù)f(x)=3 cosx1 sinx的圖象向左平移m個單位(m0),若所得圖象對應(yīng)的函數(shù)為偶函數(shù),則m的最小值是________.

  解析:由題意,知f(x)=3sinx-cosx=2(32sinx-12cosx)=2sin(x-6),

  其圖象向左平移m個單位后變?yōu)閥=2sin(x-6+m),平移后其對稱軸為x-6+m=k2,kZ.若為偶函數(shù),則x=0,所以m=k3(kZ),故m的最小值為23.答案:23

  7.若將函數(shù)y=tan(x+4)(0)的圖象向右平移6個單位長度后,與函數(shù)y=tan(x+6)的圖象重合,則的最小值為________.

  解析:y=tan(x+4)向右平移6個單位長度后得到函數(shù)解析式y(tǒng)=tan[(x-4],即y=tan(x+6),顯然當(dāng)6=(kZ)時,兩圖象重合,此時=12-6k(kZ).∵0,k=0時,的最小值為12.答案:12

  8.給出三個命題:①函數(shù)y=|sin(2x+3)|的最小正周期是②函數(shù)y=sin(x-32)在區(qū)間[2]上單調(diào)遞增;③x=54是函數(shù)y=sin(2x+56)的圖象的一條對稱軸.其中真命題的個數(shù)是________.

  解析:由于函數(shù)y=sin(2x+3)的最小正周期是,故函數(shù)y=|sin(2x+3)|的最小正周期是2,①正確;y=sin(x-32)=cosx,該函數(shù)在[2)上單調(diào)遞增, ②正確;當(dāng)x=54時,y=sin(2x+56)=sin(56)=sin(6)=cos56=-32,不等于函數(shù)的最值,故x=54不是函數(shù)y=sin(2x+56)的圖象的一條對稱軸,③不正確.答案:2

  9.當(dāng)01時,不等式sinkx恒成立,則實(shí)數(shù)k的取值范圍是________.

  解析:當(dāng)01時,y=sinx2的圖象如圖所示,y=kx的圖象在[0,1]之間的部分應(yīng)位于此圖象下方,當(dāng)k0時,y=kx在[0,1]上的圖象恒在x軸下方,原不等式成立.

  當(dāng)k0,kxx2時,在x[0,1]上恒成立,k1即可.

  故k1時,x[0,1]上恒有sinkx.答案:k1

  10.設(shè)函數(shù)f(x)=(sinx+cosx)2+2cos2x(0)的最小正周期為23.(1)求的值;(2)若函數(shù)y=g(x)的圖象是由y=f(x)的圖象向右平移2個單位長度得到,求y=g(x)的單調(diào)增區(qū)間.

  解:(1)f(x)=sin2x+cos2x+2sinxcosx+1+cos2x=sin2x+cos2x+2=2sin(2x+4)+2,依題意,得2=23,故=32.

  (2)依題意,得g(x)=2sin[3(x-4]+2=2sin(3x-54)+2.

  由2k24+2(kZ),解得23k423k12(kZ).

  故g(x)的單調(diào)增區(qū)間為[23k4,23k12](kZ).

  11.已知函數(shù)f(x)=Asin(x+),xR(其中A0,0,02)的周期為,且圖象上一個最低點(diǎn)為M(23,-2).

  (1)求f(x)的解析式;(2)當(dāng)x[0,12]時,求f(x)的最值.

  解:(1)由最低點(diǎn)為M(23,-2)得 A=2.由T=得=2=2.

  由點(diǎn)M(23,-2)在圖象上得2sin(4)=-2,即sin(4)=-1,

  4=2k2(kZ),即-116,kZ.又(0,2),6,

  f(x)=2sin(2x+6).

  (2)∵x[0,12],2x+[3],當(dāng)2x+6,即x=0時,f(x)取得最小值1;當(dāng)2x+3,即x=12時,f(x)取得最大值3.

  12.已知函數(shù)f(x)=sin(x+),其中0,|2.

  (1)若cos4cos-sin34sin=0,求

  (2)在(1)的條件下,若函數(shù)f(x)的圖象的相鄰兩條對稱軸之間的距離等于3,求函數(shù)f(x)的解析式;并求最小正實(shí)數(shù)m,使得函數(shù)f(x)的圖象向左平移m個單位后所對應(yīng)的函數(shù)是偶函數(shù).

  解:法一:(1)由cos4cos-sin34sin=0得cos4cos-sin4sin=0,

  即cos()=0.又|2,4.

  (2)由(1)得,f(x)=sin(x+4).依題意,T2=3,又T=2,故=3,

  f(x)=sin(3x+4).函數(shù)f(x)的圖象向左平移m個單位后所對應(yīng)的函數(shù)為

  g(x)=sin[3(x+m)+4],g(x)是偶函數(shù)當(dāng)且僅當(dāng)3m++2(kZ),

  即m=k12(kZ).從而,最小正實(shí)數(shù)m=12.

  法二:(1)同法一.

  (2)由(1)得 ,f(x)=sin(x+4).依題意,T2=3.又T=2,故=3,

  f(x)=sin(3x+4).

  函數(shù)f(x)的圖象向左平移m個單位后所對應(yīng)的函數(shù)為g(x)=sin[3(x+m)+4].

  g(x)是偶函數(shù)當(dāng)且僅當(dāng)g(-x)=g(x)對xR恒成立,

  亦即sin(-3x+3m+4)=sin(3x+3m+4)對xR恒成立.

  sin(-3x)cos(3m+4)+cos(-3x)sin(3m+4)

  =sin3xcos(3m+4)+cos3xsin(3m+4),

  即2sin3xcos(3m+4)=0對xR恒成立.cos(3m+4)=0,故3m++2(kZ),m=k12(kZ),從而,最小正實(shí)數(shù)m=12.

【《三角函數(shù)》復(fù)習(xí)題】相關(guān)文章:

反三角函數(shù)與三角函數(shù)的轉(zhuǎn)換09-25

《三角函數(shù)》說課稿06-15

三角函數(shù)教學(xué)課件03-30

三角函數(shù)值表09-26

反三角函數(shù)的性質(zhì)09-28

三角函數(shù)說課稿08-12

三角函數(shù)復(fù)習(xí)教案10-17

三角函數(shù)誘導(dǎo)公式推導(dǎo),三角函數(shù)誘導(dǎo)公式有哪些10-10

三角函數(shù)的教學(xué)設(shè)計范文04-15