《探索勾股定理》七年級數(shù)學(xué)說課稿
一、教材分析
。ㄒ唬┙滩牡匚:這節(jié)課是九年制義務(wù)教育初級中學(xué)教材北師大版七年級第二章第一節(jié)《探索勾股定理》第一課時,勾股定理是幾何中幾個重要定理之一,它揭示的是直角三角形中三邊的數(shù)量關(guān)系。它在數(shù)學(xué)的發(fā)展中起過重要的作用,在現(xiàn)時世界中也有著廣泛的作用。學(xué)生通過對勾股定理的學(xué)習(xí),可以在原有的基礎(chǔ)上對直角三角形有進(jìn)一步的認(rèn)識和理解。
。ǘ┙虒W(xué)目標(biāo):
知識與能力:掌握勾股定理,并能運(yùn)用勾股定理解決一些簡單實際問題.
過程與方法:經(jīng)歷探索及驗證勾股定理的過程,了解利用拼圖驗證勾股定理的方法,發(fā)展學(xué)生的合情推理意識、主動探究的習(xí)慣,感受數(shù)形結(jié)合和從特殊到一般的思想.
情感態(tài)度與價值觀:激發(fā)學(xué)生愛國熱情,讓學(xué)生體驗自己努力得到結(jié)論的成就感,體驗數(shù)學(xué)充滿探索和創(chuàng)造,體驗數(shù)學(xué)的美感,從而了解數(shù)學(xué),喜歡數(shù)學(xué).
(三)教學(xué)重點(diǎn):經(jīng)歷探索及驗證勾股定理的過程,并能用它來解決一些簡單的實際問題。
教學(xué)難點(diǎn):用面積法(拼圖法)發(fā)現(xiàn)勾股定理。
突出重點(diǎn)、突破難點(diǎn)的辦法:發(fā)揮學(xué)生的主體作用,通過學(xué)生動手實驗,讓學(xué)生在實驗中探索、在探索中領(lǐng)悟、在領(lǐng)悟中理解.
二、教法與學(xué)法分析:
學(xué)情分析:七年級學(xué)生已經(jīng)具備一定的觀察、歸納、猜想和推理的能力.他們在小學(xué)已學(xué)習(xí)了一些幾何圖形的面積計算方法(包括割補(bǔ)、拼接),但運(yùn)用面積法和割補(bǔ)思想來解決問題的意識和能力還不夠.另外,學(xué)生普遍學(xué)習(xí)積極性較高,課堂活動參與較主動,但合作交流的能力還有待加強(qiáng).
教法分析:結(jié)合七年級學(xué)生和本節(jié)教材的特點(diǎn),在教學(xué)中采用“問題情境----建立模型----解釋應(yīng)用---拓展鞏固”的模式,選擇引導(dǎo)探索法。把教學(xué)過程轉(zhuǎn)化為學(xué)生親身觀察,大膽猜想,自主探究,合作交流,歸納總結(jié)的過程。
學(xué)法分析:在教師的組織引導(dǎo)下,學(xué)生采用自主探究合作交流的研討式學(xué)習(xí)方式,使學(xué)生真正成為學(xué)習(xí)的主人.
三、教學(xué)過程設(shè)計
1.創(chuàng)設(shè)情境,提出問題
2.實驗操作,模型構(gòu)建
3.回歸生活,應(yīng)用新知
4.知識拓展,鞏固深化
5.感悟收獲,布置作業(yè)
(一)創(chuàng)設(shè)情境提出問題
(1)圖片欣賞勾股定理數(shù)形圖1955年希臘發(fā)行美麗的勾股樹2002年國際數(shù)學(xué)的一枚紀(jì)念郵票大會會標(biāo)
設(shè)計意圖:通過圖形欣賞,感受數(shù)學(xué)美,感受勾股定理的文化價值.
(2)某樓房三樓失火,消防隊員趕來救火,了解到每層樓高3米,消防隊員取來6.5米長的云梯,如果梯子的底部離墻基的距離是2.5米,請問消防隊員能否進(jìn)入三樓滅火?
設(shè)計意圖:以實際問題為切入點(diǎn)引入新課,反映了數(shù)學(xué)來源于實際生活,產(chǎn)生于人的需要,也體現(xiàn)了知識的發(fā)生過程,解決問題的過程也是一個“數(shù)學(xué)化”的過程,從而引出下面的環(huán)節(jié).
二、實驗操作模型構(gòu)建
1.等腰直角三角形(數(shù)格子)2.一般直角三角形(割補(bǔ))
問題一:對于等腰直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積有何關(guān)系?
設(shè)計意圖:這樣做利于學(xué)生參與探索,利于培養(yǎng)學(xué)生的語言表達(dá)能力,體會數(shù)形結(jié)合的思想.
問題二:對于一般的直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積也有這個關(guān)系嗎?(割補(bǔ)法是本節(jié)的難點(diǎn),組織學(xué)生合作交流)
設(shè)計意圖:不僅有利于突破難點(diǎn),而且為歸納結(jié)論打下基礎(chǔ),讓學(xué)生的分析問題解決問題的能力在無形中得到提高.
通過以上實驗歸納總結(jié)勾股定理.
設(shè)計意圖:學(xué)生通過合作交流,歸納出勾股定理的雛形,培養(yǎng)學(xué)生抽象、概括的能力,同時發(fā)揮了學(xué)生的主體作用,體驗了從特殊——一般的認(rèn)知規(guī)律.
三.回歸生活應(yīng)用新知
讓學(xué)生解決開頭情景中的.問題,前呼后應(yīng),增強(qiáng)學(xué)生學(xué)數(shù)學(xué)、用數(shù)學(xué)的意識,增加學(xué)以致用的樂趣和信心.
四、知識拓展鞏固深化
基礎(chǔ)題,情境題,探索題.
設(shè)計意圖:給出一組題目,分三個梯度,由淺入深層層練習(xí),照顧學(xué)生的個體差異,關(guān)注學(xué)生的個性發(fā)展.知識的運(yùn)用得到升華.
基礎(chǔ)題:直角三角形的一直角邊長為3,斜邊為5,另一直角邊長為X,你可以根據(jù)條件提出多少個數(shù)學(xué)問題?你能解決所提出的問題嗎?
設(shè)計意圖:這道題立足于雙基.通過學(xué)生自己創(chuàng)設(shè)情境,鍛煉了發(fā)散思維.
情境題:小明媽媽買了一部29英寸(74厘米)的電視機(jī).小明量了電視機(jī)的屏幕后,發(fā)現(xiàn)屏幕只有58厘米長和46厘米寬,他覺得一定是售貨員搞錯了.你同意他的想法嗎?
設(shè)計意圖:增加學(xué)生的生活常識,也體現(xiàn)了數(shù)學(xué)源于生活,并用于生活。
探索題:做一個長,寬,高分別為50厘米,40厘米,30厘米的木箱,一根長為70厘米的木棒能否放入,為什么?試用今天學(xué)過的知識說明。
設(shè)計意圖:探索題的難度相對大了些,但教師利用教學(xué)模型和學(xué)生合作交流的方式,拓展學(xué)生的思維、發(fā)展空間想象能力.
五、感悟收獲布置作業(yè):
這節(jié)課你的收獲是什么?
作業(yè):
1、課本習(xí)題2.1
2、搜集有關(guān)勾股定理證明的資料.
板書設(shè)計探索勾股定理
如果直角三角形兩直角邊分別為a,b,斜邊為c,那么
設(shè)計說明:
1.探索定理采用面積法,為學(xué)生創(chuàng)設(shè)一個和諧、寬松的情境,讓學(xué)生體會數(shù)形結(jié)合及從特殊到一般的思想方法.
2.讓學(xué)生人人參與,注重對學(xué)生活動的評價,一是學(xué)生在活動中的投入程度;二是學(xué)生在活動中表現(xiàn)出來的思維水平、表達(dá)水平.
【《探索勾股定理》七年級數(shù)學(xué)說課稿】相關(guān)文章:
《探索勾股定理》的說課稿11-30
《探索勾股定理》說課稿06-26
探索勾股定理說課稿04-25
探索勾股定理的說課稿06-19
初中數(shù)學(xué)說課稿《探索勾股定理》12-31
數(shù)學(xué)勾股定理說課稿04-20
探索勾股定理的說課稿(通用3篇)12-08