《函數(shù)的概念》說課稿(通用9篇)
作為一位兢兢業(yè)業(yè)的人民教師,通常需要準備好一份說課稿,說課稿有助于提高教師的語言表達能力。那么你有了解過說課稿嗎?以下是小編整理的《函數(shù)的概念》說課稿,供大家參考借鑒,希望可以幫助到有需要的朋友。
《函數(shù)的概念》說課稿 篇1
一、說教材
首先談?wù)勎覍滩牡睦斫猓逗瘮?shù)的概念》是北師大版必修一第二章2.1的內(nèi)容,本節(jié)課的內(nèi)容是函數(shù)概念。函數(shù)內(nèi)容是高中數(shù)學學習的一條主線,它貫穿整個高中數(shù)學學習中。又是溝通代數(shù)、方程、不等式、數(shù)列、三角函數(shù)、解析幾何、導數(shù)等內(nèi)容的橋梁,同時也是今后進一步學習高等數(shù)學的基礎(chǔ)。函數(shù)學習過程經(jīng)歷了直觀感知、觀察分析、歸納類比、抽象概括等思維過程,通過學習可以提高了學生的數(shù)學思維能力。
二、說學情
接下來談?wù)剬W生的實際情況。新課標指出學生是教學的主體,所以要成為符合新課標要求的教師,深入了解所面對的學生可以說是必修課。本階段的學生已經(jīng)具備了一定的分析能力,以及邏輯推理能力。所以,學生對本節(jié)課的學習是相對比較容易的。
三、說教學目標
根據(jù)以上對教材的分析以及對學情的把握,我制定了如下三維教學目標:
(一)知識與技能
理解函數(shù)的概念,能對具體函數(shù)指出定義域、對應(yīng)法則、值域,能夠正確使用“區(qū)間”符號表示某些函數(shù)的定義域、值域。
(二)過程與方法
通過實例,進一步體會函數(shù)是描述變量之間的依賴關(guān)系的重要數(shù)學模型,在此基礎(chǔ)上學習用集合與對應(yīng)的語言來刻畫函數(shù),體會對應(yīng)關(guān)系在刻畫函數(shù)概念中的作用進一步加深集合與對應(yīng)數(shù)學思想方法。
(三)情感態(tài)度價值觀
在自主探索中感受到成功的喜悅,激發(fā)學習數(shù)學的興趣。
四、說教學重難點
我認為一節(jié)好的數(shù)學課,從教學內(nèi)容上說一定要突出重點、突破難點。而教學重點的確立與我本節(jié)課的內(nèi)容肯定是密不可分的。那么根據(jù)授課內(nèi)容可以確定本節(jié)課的教學重點是:函數(shù)的模型化思想,函數(shù)的三要素。本節(jié)課的教學難點是:符號“y=f(x)”的含義,函數(shù)定義域、值域的區(qū)間表示,從具體實例中抽象出函數(shù)概念。
五、說教法和學法
現(xiàn)代教學理論認為,在教學過程中,學生是學習的主體,教師是學習的組織者、引導者,教學的一切活動都必須以強調(diào)學生的主動性、積極性為出發(fā)點。根據(jù)這一教學理念,結(jié)合本節(jié)課的內(nèi)容特點和學生的心理特征與認知規(guī)律以問題為主線,我采用啟發(fā)法、講授法、小組合作、自主探究等教學方法。
六、說教學過程
下面我將重點談?wù)勎覍虒W過程的設(shè)計。
(一)新課導入
首先是導入環(huán)節(jié),提問:關(guān)于函數(shù)你知道什么?在初中階段對函數(shù)是如何下定義的?你能否舉一個例子。從而引出本節(jié)課的課題《函數(shù)概念》。
利用初中的函數(shù)概念進行導入,拉近學生與新知識之間的距離,幫助學生進一步完善知識框架行程知識體系。
(二)新知探索
接下來是教學中最重要的新知探索環(huán)節(jié),我主要采用講解法、小組合作、自主探究法等。
首先利用多媒體展示生活實例
(1)某山的海拔高度與氣溫的變化關(guān)系;
(2)汽車勻速行駛,路程和時間的變化關(guān)系;
(3)沸點和氣壓的變化關(guān)系。
引導學生分析歸納以上三個實例,他們之間有什么共同點,并根據(jù)初中所學函數(shù)的概念,判斷各個實例中的兩個變量之間的關(guān)系是否為函數(shù)關(guān)系。
預設(shè):
、俣加袃蓚非空數(shù)集A、B;
、趦蓚數(shù)集之間都有一種確定的對應(yīng)關(guān)系;
、蹖τ跀(shù)集A中的每一個x,按照某種對應(yīng)關(guān)系f,在數(shù)集B中都有唯一確定的y值和它對應(yīng)。
接下來引導學生思考通過對上述實例的共同點并結(jié)合課本歸納函數(shù)的概念。組織學生閱讀課本,在閱讀過程中注意思考以下問題
問題1:函數(shù)的概念是什么?初中與高中對函數(shù)概念的定義的異同點是什么?符號“x”的含義是什么?
問題2:構(gòu)成函數(shù)的三要素是什么?
問題3:區(qū)間的概念是什么?區(qū)間與集合的關(guān)系是什么?在數(shù)軸上如何表示區(qū)間?
十分鐘過后,組織學生進行全班交流。
預設(shè):函數(shù)的概念:給定兩個非空數(shù)集A和B,如果按照某個對應(yīng)關(guān)系f,對于集合A中任何一個數(shù)x,在集合B中都存在唯一確定的數(shù)f(x)與之對應(yīng),那么就把這對應(yīng)關(guān)系f叫作定義在幾何A上的函數(shù),記作f:A→B,或y=f(x),x∈A。此時,x叫做自變量,集合A叫做函數(shù)的定義域,集合{f(x)▏x∈A}叫作函數(shù)的值域。
函數(shù)的三要素包括:定義域、值域、對應(yīng)法則。
區(qū)間:
為了使得學生對函數(shù)概念的本質(zhì)了解的更加深入此時進行追問
追問1:初中的函數(shù)概念與高中的函數(shù)概念有什么異同點?
講解過程中注意強調(diào),函數(shù)的本質(zhì)為兩個數(shù)集之間都有一種確定的對應(yīng)關(guān)系,而且是一對一,或者多對一,不能一對多。
追問2:符號“y=f(x)”的含義是什么?“y=g(x)”可以表示函數(shù)嗎?
講解過程中注意強調(diào),符號“y=f(x)”是函數(shù)符號,可以用任意的字母表示,f(x)表示與x對應(yīng)的函數(shù)值,一個數(shù)不是f與x相乘。
追問3:對應(yīng)關(guān)系f可以是什么形式?
講解過程中注意強調(diào),對應(yīng)關(guān)系f可以是解析式、圖象、表格
追問4:函數(shù)的三要素可以缺失嗎?指出三個實例中的三要素分別是什么。
講解過程中注意強調(diào),函數(shù)的三要素缺一不可。
追問5:用區(qū)間表示三個實例的定義域和值域。
設(shè)計意圖:在這個過程當中我將課堂完全交給學生,教師發(fā)揮組織者,引導者的作用,在運用啟發(fā)性的原則,學生能夠獨立思考問題,動手操作,還能在這個過程中和同學之間討論,加強了學生們之間的交流,這樣有利于培養(yǎng)學生們的合作意識和探究能力。
(三)課堂練習
接下來是鞏固提高環(huán)節(jié)。
組織學生自己列舉幾個生活中有關(guān)函數(shù)的例子,并用定義加以描述,指出函數(shù)的定義域和值域并用區(qū)間表示。
這樣的問題的設(shè)置,讓學生對知識進一步鞏固,讓學生逐漸熟練掌握。
(四)小結(jié)作業(yè)
在課程的最后我會提問:今天有什么收獲?
引導學生回顧:函數(shù)的概念、函數(shù)的三要素、區(qū)間的表示。
本節(jié)課的課后作業(yè)我設(shè)計為:
1.求解下列函數(shù)的值
已知f(x)=5x-3,求發(fā)(x)=4。
2.如圖,某灌溉渠道的橫截面是等腰梯形,底寬2m,渠深1.8m,邊坡的傾角是45°
(1)試用解析表達式將橫截面中水的面積A表示成水深h的函數(shù)
(2)確定函數(shù)的定義域和值域
(3)嘗試繪制函數(shù)的圖象
這樣的設(shè)計能讓學生理解本節(jié)課的核心,并為下節(jié)課學習函數(shù)的表示方法做鋪墊。
《函數(shù)的概念》說課稿 篇2
一、說課內(nèi)容:
蘇教版九年級數(shù)學下冊第六章第一節(jié)的二次函數(shù)的概念及相關(guān)習題二、教材分析:
1、教材的地位和作用這節(jié)課是在學生已經(jīng)學習了一次函數(shù)、正比例函數(shù)、反比例函數(shù)的基礎(chǔ)上,來學習二次函數(shù)的概念。二次函數(shù)是初中階段研究的最后一個具體的函數(shù),也是最重要的,在歷年來的中考題中占有較大比例。同時,二次函數(shù)和以前學過的一元二次方程、一元二次不等式有著密切的聯(lián)系。進一步學習二次函數(shù)將為它們的解法提供新的方法和途徑,并使學生更為深刻的理解“數(shù)形結(jié)合”的重要思想。而本節(jié)課的二次函數(shù)的概念是學習二次函數(shù)的基礎(chǔ),是為后來學習二次函數(shù)的圖象做鋪墊。所以這節(jié)課在整個教材中具有承上啟下的重要作用。
2、教學目標和要求:
。1)知識與技能:使學生理解二次函數(shù)的概念,掌握根據(jù)實際問題列出二次函數(shù)關(guān)系式的方法,并了解如何根據(jù)實際問題確定自變量的取值范圍。
。2)過程與方法:復習舊知,通過實際問題的引入,經(jīng)歷二次函數(shù)概念的探索過程,提高學生解決問題的能力。
。3)情感、態(tài)度與價值觀:通過觀察、操作、交流歸納等數(shù)學活動加深對二次函數(shù)概念的理解,發(fā)展學生的數(shù)學思維,增強學好數(shù)學的愿望與信心。
3、教學重點:對二次函數(shù)概念的理解。
4、教學難點:由實際問題確定函數(shù)解析式和確定自變量的取值范圍。
二、教法學法設(shè)計:
1、從創(chuàng)設(shè)情境入手,通過知識再現(xiàn),孕伏教學過程。
2、從學生活動出發(fā),通過以舊引新,順勢教學過程。
3、利用探索、研究手段,通過思維深入,領(lǐng)悟教學過程四。
三、教學過程:
(一)復習提問
1.什么叫函數(shù)?我們之前學過了那些函數(shù)?(一次函數(shù),正比例函數(shù),反比例函數(shù))
2.它們的形式是怎樣的?(y=kx+b,k≠0;y=kx,k≠0;y=,k≠0)3.一次函數(shù)(y=kx+b)的自變量是什么?函數(shù)是什么?常量是什么?為什么要有k≠0的條件?k值對函數(shù)性質(zhì)有什么影響?
。ǘ┰O(shè)計意圖
復習這些問題是為了幫助學生弄清自變量、函數(shù)、常量等概念,加深對函數(shù)定義的理解.強調(diào)k≠0的條件,以備與二次函數(shù)中的a進行比較。
引入新課函數(shù)是研究兩個變量在某變化過程中的相互關(guān)系,我們已學過正比例函數(shù),反比例函數(shù)和一次函數(shù)。
看下面三個例子中兩個變量之間存在怎樣的關(guān)系:
例1、圓的半徑是r(cm)時,面積s(cm)與半徑之間的關(guān)系是什么?解:s=πr(r>0)。
例2、用周長為20m的籬笆圍成矩形場地,場地面積y(m)與矩形一邊長x(m)之間的關(guān)系是什么?解:y=x(20/2-x)=x(10-x)=-x+10x(0<x<10)。
例3、設(shè)人民幣一年定期儲蓄的年利率是x,一年到期后,銀行將本金和利息自動按一年定期儲蓄轉(zhuǎn)存。如果存款額是100元,那么請問兩年后的本息和y(元)與x之間的關(guān)系是什么(不考慮利息稅)?解:y=100(1+x)=100(x+2x+1)=100x+200x+100(0<x<1)。
教師提問:以上三個例子所列出的函數(shù)與一次函數(shù)有何相同點與不同點?
。ㄈ┲v解新課以上函數(shù)不同于我們所學過的一次函數(shù),正比例函數(shù),反比例函數(shù),我們就把這種函數(shù)稱為二次函數(shù)。
二次函數(shù)的定義:形如y=ax2+bx+c(a≠0,a,b,c為常數(shù))的函數(shù)叫做二次函數(shù)。
鞏固對二次函數(shù)概念的理解:
1、強調(diào)“形如”,即由形來定義函數(shù)名稱。二次函數(shù)即y是關(guān)于x的二次多項式(關(guān)于的x代數(shù)式一定要是整式)。
2、在y=ax2+bx+c中自變量是x,它的取值范圍是一切實數(shù)。但在實際問題中,自變量的取值范圍是使實際問題有意義的值。(如例1中要求r>0)
3、為什么二次函數(shù)定義中要求a≠0?(若a=0,ax2+bx+c就不是關(guān)于x的二次多項式了)
4、在例3中,二次函數(shù)y=100x2+200x+100中,a=100,b=200,c=100.
5、b和c是否可以為零?
。ㄋ模╈柟叹毩
已知一個直角三角形的兩條直角邊長的和是10cm。
(1)當它的一條直角邊的長為4.5cm時,求這個直角三角形的面積;
。2)設(shè)這個直角三角形的面積為Scm2,其中一條直角邊為xcm,求S關(guān)于x的函數(shù)關(guān)系式。
此題由具體數(shù)據(jù)逐步過渡到用字母表示關(guān)系式,讓學生經(jīng)歷由具體到抽象的過程,從而降低學生學習的難度。
。ㄎ澹┬〗Y(jié)思考:本節(jié)課你有哪些收獲?還有什么不清楚的地方?
讓學生來談本節(jié)課的收獲,培養(yǎng)學生自我檢查、自我小結(jié)的良好習慣,將知識進行整理并系統(tǒng)化。而且由此可了解到學生還有哪些不清楚的地方,以便在今后的教學中補充。
。┳鳂I(yè)布置
必做題:
正方形的邊長為4,如果邊長增加x,則面積增加y,求y關(guān)于x的函數(shù)關(guān)系式。這個函數(shù)是二次函數(shù)嗎?
在長20cm,寬15cm的矩形木板的四角上各鋸掉一個邊長為xcm的正方形,寫出余下木板的面積y(cm2)與正方形邊長x(cm)之間的函數(shù)關(guān)系,并注明自變量的取值范圍?
選做題:
1.已知函數(shù)是二次函數(shù),求m的值?
2.試在平面直角坐標系畫出二次函數(shù)y=x2和y=-x2圖象?
作業(yè)中分為必做題與選做題,實施分層教學,體現(xiàn)新課標人人學有價值的數(shù)學,不同的人得到不同的發(fā)展。另外補充第4題,旨在激發(fā)學生繼續(xù)學習二次函數(shù)圖象的興趣。
《函數(shù)的概念》說課稿 篇3
一、教材分析
1、教材的地位和作用:
函數(shù)是數(shù)學中最主要的概念之一,而函數(shù)概念貫穿在中學數(shù)學的始終,概念是數(shù)學的基礎(chǔ),概念性強是函數(shù)理論的一個顯著特點,只有對概念作到深刻理解,才能正確靈活地加以應(yīng)用。本課中學生對函數(shù)概念理解的程度會直接影響數(shù)學其它知識的學習,所以函數(shù)的第一課時非常的重要。
2、教學目標及確立的依據(jù):
教學目標:
。1)教學知識目標:了解對應(yīng)和映射概念、理解函數(shù)的近代定義、函數(shù)三要素,以及對函數(shù)抽象符號的理解。
。2)能力訓練目標:通過教學培養(yǎng)學生的抽象概括能力、邏輯思維能力。
。3)德育滲透目標:使學生懂得一切事物都是在不斷變化、相互聯(lián)系和相互制約的辯證唯物主義觀點。
教學目標確立的依據(jù):
函數(shù)是數(shù)學中最主要的概念之一,而函數(shù)概念貫穿整個中學數(shù)學,如:數(shù)、式、方程、函數(shù)、排列組合、數(shù)列極限等都是以函數(shù)為中心的代數(shù)。加強函數(shù)教學可幫助學生學好其他的數(shù)學內(nèi)容。而掌握好函數(shù)的概念是學好函數(shù)的基石。
3、教學重點難點及確立的依據(jù):
教學重點:映射的概念,函數(shù)的近代概念、函數(shù)的三要素及函數(shù)符號的理解。
教學難點:映射的概念,函數(shù)近代概念,及函數(shù)符號的理解。
重點難點確立的依據(jù):
映射的概念和函數(shù)的近代定義抽象性都比較強,要求學生的理性認識的能力也比較高,對于剛剛升入高中不久的學生來說不易理解。而且由于函數(shù)在高考中可以以低、中、高擋題出現(xiàn),所以近年來高考有一種“函數(shù)熱”的趨勢,所以本節(jié)的重點難點必然落在映射的概念和函數(shù)的近代定義及函數(shù)符號的理解與運用上。
二、教材的處理:
將映射的定義及類比手法的運用作為本課突破難點的關(guān)鍵。函數(shù)的定義,是以集合、映射的觀點給出,這與初中教材變量值與對應(yīng)觀點給出不一樣了,從而給本身就很抽象的函數(shù)概念的理解帶來更大的困難。為解決這難點,主要是從實際出發(fā)調(diào)動學生的學習熱情與參與意識,運用引導對比的手法,啟發(fā)引導學生進行有目的的反復比較幾個概念的異同,使學生真正對函數(shù)的概念有很準確的認識。
三、教學方法和學法
教學方法:講授為主,學生自主預習為輔。
依據(jù)是:因為以新的觀點認識函數(shù)概念及函數(shù)符號與運用時,更重要的是必須給學生講清楚概念及注意事項,并通過師生的共同討論來幫助學生深刻理解,這樣才能使函數(shù)的概念及符號的運用在學生的思想和知識結(jié)構(gòu)中打上深刻的烙印,為學生能學好后面的知識打下堅實的基礎(chǔ)。
四、教學程序
一、課程導入
通過舉以下一個通俗的例子引出通過某個對應(yīng)法則可以將兩個非空集合聯(lián)系在一起。
例1:把高一(12)班和高一(11)全體同學分別看成是兩個集合,問,通過“找好朋友”這個對應(yīng)法則是否能將這兩個集合的某些元素聯(lián)系在一起?
二.新課講授:
。1)接著再通過幻燈片給出六組學生熟悉的數(shù)集的對應(yīng)關(guān)系引導學生總結(jié)歸納它們的共同性質(zhì)(一對一,多對一),進而給出映射的概念,表示符號f:A→B,及原像和像的定義。強調(diào)指出非空集合A到非空集合B的映射包括三部分即非空集合A、B和A到B的對應(yīng)法則f。進一步引導學生總結(jié)判斷一個從A到B的對應(yīng)是否為映射的關(guān)鍵是看A中的任意一個元素通過對應(yīng)法則f在B中是否有唯一確定的元素與之對應(yīng)。
。2)鞏固練習課本52頁第八題。
此練習能讓學生更深刻的認識到映射可以“一對多,多對一”但不能是“一對多”。
例1.給出學生初中學過的函數(shù)的傳統(tǒng)定義和幾個簡單的一次、二次函數(shù),通過畫圖表示這些函數(shù)的對應(yīng)關(guān)系,引導學生發(fā)現(xiàn)它們是特殊的映射進而給出函數(shù)的近代定義(設(shè)A、B是兩個非空集合,如果按照某種對應(yīng)法則f,使得A中的任何一個元素在集合B中都有唯一的元素與之對應(yīng)則這樣的對應(yīng)叫做集合A到集合B的映射,它包括非空集合A和B以及從A到B的對應(yīng)法則f),并說明把函f:A→B記為y=f(x),其中自變量x的取值范圍A叫做函數(shù)的定義域,與x的值相對應(yīng)的y(或f(x))值叫做函數(shù)值,函數(shù)值的集合{f(x):x∈A}叫做函數(shù)的值域。
三.講解例題
例1.問y=1(x∈A)是不是函數(shù)?
解:y=1可以化為y=0+1
畫圖可以知道從x的取值范圍到y(tǒng)的取值范圍的對應(yīng)是“多對一”是從非空數(shù)集到非空數(shù)集的映射,所以它是函數(shù)。
[注]:引導學生從集合,映射的觀點認識函數(shù)的定義。
四.課時小結(jié):
1.映射的定義。
2.函數(shù)的近代定義。
3.函數(shù)的三要素及符號的正確理解和應(yīng)用。
4.函數(shù)近代定義的五大注意點。
五.課后作業(yè)及板書設(shè)計
書本P51習題2.1的1、2寫在書上3、4、5上交。
預習函數(shù)三要素的定義域,并能求簡單函數(shù)的定義域。
《函數(shù)的概念》說課稿 篇4
一、教材分析
本節(jié)課選自《普通高中課程標準數(shù)學教科書-必修1》(人教A版)《1.2.1 函數(shù)的概念》共3課時,本節(jié)課是第1課時。
托馬斯說:“函數(shù)概念是近代數(shù)學思想之花”。 生活中的許多現(xiàn)象如物體運動,氣溫升降,投資理財?shù)榷伎梢杂煤瘮?shù)的模型來刻畫,是我們更好地了解自己、認識世界和預測未來的重要工具。
函數(shù)是數(shù)學的重要的基礎(chǔ)概念之一,是高等數(shù)學重多學科的基礎(chǔ)概念和重要的研究對象。同時函數(shù)也是物理學等其他學科的重要基礎(chǔ)知識和研究工具,教學內(nèi)容中蘊涵著極其豐富的辯證思想。函數(shù)的的重要性正如恩格斯所說:“數(shù)學中的轉(zhuǎn)折點是笛卡爾的變數(shù),有了變數(shù),運動就進入了數(shù)學;有了變數(shù),辯證法就進入了數(shù)學”。
二、學生學習情況分析
函數(shù)是中學數(shù)學的主體內(nèi)容,學生在中學階段對函數(shù)的認識分三個階段:
(一)初中從運動變化的角度來刻畫函數(shù),初步認識正比例、反比例、一次和二次函數(shù);
(二)高中用集合與對應(yīng)的觀點來刻畫函數(shù),研究函數(shù)的性質(zhì),學習典型的對、指、冪和三解函數(shù);
(三)高中用導數(shù)工具研究函數(shù)的單調(diào)性和最值。
1.有利條件
現(xiàn)代教育心理學的研究認為,有效的概念教學是建立在學生已有知識結(jié)構(gòu)的基礎(chǔ)上的,因此教師在設(shè)計教學的過程中必須注意在學生已有知識結(jié)構(gòu)中尋找新概念的固著點,引導學生通過同化或順應(yīng),掌握新概念,進而完善知識結(jié)構(gòu)。
初中用運動變化的觀點對函數(shù)進行定義的,它反映了歷史上人們對它的一種認識,而且這個定義較為直觀,易于接受,因此按照由淺入深、力求符合學生認知規(guī)律的內(nèi)容編排原則,函數(shù)概念在初中介紹到這個程度是合適的。也為我們用集合與對應(yīng)的觀點研究函數(shù)打下了一定的基礎(chǔ)。
2.不利條件
用集合與對應(yīng)的觀點來定義函數(shù),形式和內(nèi)容上都是比較抽象的,這對學生的理解能力是一個挑戰(zhàn),是本節(jié)課教學的一個不利條件。
三、教學目標分析
課標要求:通過豐富實例,進一步體會函數(shù)是描述變量之間的依賴關(guān)系的重要數(shù)學模型,在此基礎(chǔ)上學習用集合與對應(yīng)的語言來刻畫函數(shù),體會對應(yīng)關(guān)系在刻畫函數(shù)概念中的作用;了解構(gòu)成函數(shù)的要素,會求一些簡單函數(shù)的定義域和值域.
1.知識與能力目標:
、拍軓募吓c對應(yīng)的角度理解函數(shù)的概念,更要理解函數(shù)的本質(zhì)屬性;
、评斫夂瘮(shù)的三要素的含義及其相互關(guān)系;
⑶會求簡單函數(shù)的定義域和值域
2.過程與方法目標:
、磐ㄟ^豐富實例,使學生建立起函數(shù)概念的背景,體會函數(shù)是描述變量之間依賴關(guān)系的數(shù)學模型;
⑵在函數(shù)實例中,通過對關(guān)鍵詞的強調(diào)和引導使學發(fā)現(xiàn)它們的共同特征,在此基礎(chǔ)上再用集合與對應(yīng)的語言來刻畫函數(shù),體會對應(yīng)關(guān)系在刻畫函數(shù)概念中的作用.
3.情感、態(tài)度與價值觀目標:
感受生活中的數(shù)學,感悟事物之間聯(lián)系與變化的辯證唯物主義觀點。
四、教學重點、難點分析
1.教學重點:對函數(shù)概念的理解,用集合與對應(yīng)的語言來刻畫函數(shù);
重點依據(jù):初中是從變量的角度來定義函數(shù),高中是用集合與對應(yīng)的語言來刻畫函數(shù)。二者反映的本質(zhì)是一致的,即“函數(shù)是一種對應(yīng)關(guān)系”。 但是,初中定義并未完全揭示出函數(shù)概念的本質(zhì),對y?1這樣的函數(shù)用運動變化的觀點也很難解釋。在以函數(shù)為重要內(nèi)容的高中階段,課本應(yīng)將函數(shù)定義為兩個數(shù)集之間的一種對應(yīng)關(guān)系,按照這種觀點,使我們對函數(shù)概念有了更深一層的認識,也很容易說明y?1這函數(shù)表達式。因此,分析兩種函數(shù)概念的關(guān)系,讓學生融會貫通地理解函數(shù)的概念應(yīng)為本節(jié)課的重點。
突出重點:重點的突出依賴于對函數(shù)概念本質(zhì)屬性的把握,使學生通過表面的語言描述抓住概念的精髓。
2.教學難點:
第一:從實際問題中提煉出抽象的概念;
第二:符號“y=f(x)”的含義的理解.
難點依據(jù):數(shù)學語言的抽象概括難度較大,對符號y=f(x)的理解會受到以前知識的負遷移。
突破難點:難點的突破要依托豐富的實例,從集合與對應(yīng)的角度恰當?shù)匾龑,而對抽象符號的理解則要結(jié)合函數(shù)的三要素和小例子進行說明。
五、教法與學法分析
1.教法分析
本節(jié)課我主要采用教師導學法、知識遷移法和知識對比法,從學生熟悉的豐富實例出發(fā),關(guān)注學生的原有的知識基礎(chǔ),注重概念的形成過程,從初中的函數(shù)概念自然過度到函數(shù)的近代定我。
2.學法分析
在教學過程中我注意在教學中引導學生用模型法分析函數(shù)問題、通過自主學習法總結(jié)“區(qū)間”的知識。
《函數(shù)的概念》說課稿 篇5
一、教材分析及處理
函數(shù)是高中數(shù)學的重要內(nèi)容之一,函數(shù)的基礎(chǔ)知識在數(shù)學和其他許多學科中有著廣泛的應(yīng)用;函數(shù)與代數(shù)式、方程、不等式等內(nèi)容聯(lián)系非常密切;函數(shù)是近一步學習數(shù)學的重要基礎(chǔ)知識;函數(shù)的概念是運動變化和對立統(tǒng)一等觀點在數(shù)學中的具體體現(xiàn);函數(shù)概念及其反映出的數(shù)學思想方法已廣泛滲透到數(shù)學的各個領(lǐng)域,《函數(shù)》教學設(shè)計。
對函數(shù)概念本質(zhì)的理解,首先應(yīng)通過與初中定義的比較、與其他知識的聯(lián)系以及不斷地應(yīng)用等,初步理解用集合與對應(yīng)語言刻畫的函數(shù)概念.其次在后續(xù)的學習中通過基本初等函數(shù),引導學生以具體函數(shù)為依托、反復地、螺旋式上升地理解函數(shù)的本質(zhì)。
教學重點是函數(shù)的概念,難點是對函數(shù)概念的本質(zhì)的理解。
學生現(xiàn)狀
學生在第一章的時候已經(jīng)學習了集合的概念,同時在初中時已學過一次函數(shù)、反比例函數(shù)和二次函數(shù),那么如何用集合知識來理解函數(shù)概念,結(jié)合原有的知識背景,活動經(jīng)驗和理解走入今天的課堂,如何有效地激活學生的學習興趣,讓學生積極參與到學習活動中,達到理解知識、掌握方法、提高能力的目的,使學生獲得有益有效的學習體驗和情感體驗,是在教學設(shè)計中應(yīng)思考的。
二、教學三維目標分析
1、知識與技能(重點和難點)
(1)、通過實例讓學生能夠進一步體會到函數(shù)是描述變量之間的依賴關(guān)系的重要數(shù)學模型。并且在此基礎(chǔ)上學習應(yīng)用集合與對應(yīng)的語言來刻畫函數(shù),體會對應(yīng)關(guān)系在刻畫函數(shù)概念中的作用。不但讓學生能完成本節(jié)知識的學習,還能較好的復習前面內(nèi)容,前后銜接。
(2)、了解構(gòu)成函數(shù)的三要素,缺一不可,會求簡單函數(shù)的定義域、值域、判斷兩個函數(shù)是否相等等。
(3)、掌握定義域的表示法,如區(qū)間形式等。
(4)、了解映射的概念。
2、過程與方法
函數(shù)的概念及其相關(guān)知識點較為抽象,難以理解,學習中應(yīng)注意以下問題:
(1)、首先通過多媒體給出實例,在讓學生以小組的形式開展討論,運用猜想、觀察、分析、歸納、類比、概括等方法,探索發(fā)現(xiàn)知識,找出不同點與相同點,實現(xiàn)學生在教學中的主體地位,培養(yǎng)學生的創(chuàng)新意識。
(2)、面向全體學生,根據(jù)課本大綱要求授課。
(3)、加強學法指導,既要讓學生學會本節(jié)知識點,也要讓學生會自我主動學習。
3、情感態(tài)度與價值觀
(1)、通過多媒體給出實例,學生小組討論,給出自己的結(jié)論和觀點,加上老師的輔助講解,培養(yǎng)學生的實踐能力和和大膽創(chuàng)新意識
(2)、讓學生自己討論給出結(jié)論,培養(yǎng)學生的自我動手能力和小組團結(jié)能力。
三、教學器材
多媒體ppt課件
四、教學過程
教學內(nèi)容教師活動學生活動設(shè)計意圖
《函數(shù)》課題的引入(用時一分鐘)配著簡單的音樂,從簡單的例子引入函數(shù)應(yīng)用的廣泛,將同學們的視線引入函數(shù)的學習上聽著悠揚的音樂,讓同學們的視線全注意在老師所講的內(nèi)容上從貼近學生生活入手,符合學生的認知特點。讓學生在領(lǐng)略大自然的美妙與和諧中進入函數(shù)的世界,體現(xiàn)了新課標的理念:從知識走向生活
知識回顧:初中所學習的函數(shù)知識(用時兩分鐘)回顧初中函數(shù)定義及其性質(zhì),簡單回顧一次函數(shù)、二次函數(shù)、正比例函數(shù)、反比例函數(shù)的性質(zhì)、定義及簡單作圖認真聽老師回顧初中知識,發(fā)現(xiàn)異同在初中知識的基礎(chǔ)上引導學生向更深的內(nèi)容探索、求知。即復習了所學內(nèi)容又做了即將所學內(nèi)容的鋪墊
思考與討論:通過給出的問題,引出本節(jié)課的主要內(nèi)容(用時四分鐘)給出兩個簡單的問題讓同學們思考,講述初中內(nèi)容無法給出正確答案,需要從新的高度來認識函數(shù)結(jié)合老師所回顧的知識,結(jié)合自己所掌握的知識,思考老師給出的問題,小組形式作討論,從簡單問題入手,循序漸進,引出本節(jié)主要知識,回顧前一節(jié)的集合感念,應(yīng)用到本節(jié)知識,前后聯(lián)系、銜接
新知識的講解:從概念開始講解本節(jié)知識(用時三分鐘)詳細講解函數(shù)的知識,包括定義域,值域等,回到開始提問部分作答做筆記,專心聽講講解函數(shù)概念,由知識講解回到問題身上,解決問題
對提問的回答(用時五分鐘)引導學生自己解決開始所提的兩個問題,然后同個互動給出最后答案通過與老師共同討論回答開始問題,總結(jié)更好的掌握函數(shù)概念,通過問題來更好的掌握知識
函數(shù)區(qū)間(用時五分鐘)引入函數(shù)定義域的表示方法簡潔明了的方法表示函數(shù)的定義域或值域,在集合表示方法的基礎(chǔ)上引入另一種方法
注意點(用時三分鐘)做個簡單的的回顧新內(nèi)容,把難點重點提出來,讓同學們記住通過問題回答,概念解答,把重難點給出,提醒學生注意內(nèi)容和知識點
習題(用時十分鐘)給出習題,分析題意在稿紙上簡單作答,回答問題通過習題練習明確重難點,把不懂的地方記住,課后學生在做進一步的聯(lián)系
映射(用時兩分鐘)從概念方面講解映射的意義,象與原象在新知識的基礎(chǔ)上了解更多知識,映射的學習給以后的知識內(nèi)容做更好的鋪墊
小結(jié)(用時五分鐘)簡單講述本節(jié)的知識點,重難點做筆記前后知識的連貫,總結(jié),使學生更明白知識點
五、教學評價
為了使學生了解函數(shù)概念產(chǎn)生的背景,豐富函數(shù)的感性認識,獲得認識客觀世界的體驗,本課采用"突出主題,循序漸進,反復應(yīng)用"的方式,在不同的場合考察問題的不同側(cè)面,由淺入深。本課在教學時采用問題探究式的教學方法進行教學,逐層深入,這樣使學生對函數(shù)概念的理解也逐層深入,從而準確理解函數(shù)的概念。函數(shù)引入中的三種對應(yīng),與初中時學習函數(shù)內(nèi)容相聯(lián)系,這樣起到了承上啟下的作用。這三種對應(yīng)既是函數(shù)知識的生長點,又突出了函數(shù)的本質(zhì),為從數(shù)學內(nèi)部研究函數(shù)打下了基礎(chǔ)。
在培養(yǎng)學生的能力上,本課也進行了整體設(shè)計,通過探究、思考,培養(yǎng)了學生的實踐能力、觀察能力、判斷能力;通過揭示對象之間的內(nèi)在聯(lián)系,培養(yǎng)了學生的辨證思維能力;通過實際問題的解決,培養(yǎng)了學生的'分析問題、解決問題和表達交流能力;通過案例探究,培養(yǎng)了學生的創(chuàng)新意識與探究能力。
雖然函數(shù)概念比較抽象,難以理解,但是通過這樣的教學設(shè)計,學生基本上能很好地理解了函數(shù)概念的本質(zhì),達到了課程標準的要求,體現(xiàn)了課改的教學理念。
《函數(shù)的概念》說課稿 篇6
教學目標:
1.通過現(xiàn)實生活中豐富的實例,讓學生了解函數(shù)概念產(chǎn)生的背景,進一步體會函數(shù)是描述變量之間的依賴關(guān)系的重要數(shù)學模型,在此基礎(chǔ)上學習用集合與對應(yīng)的語言來刻畫函數(shù)的概念,掌握函數(shù)是特殊的數(shù)集之間的對應(yīng);
2.了解構(gòu)成函數(shù)的要素,理解函數(shù)的定義域、值域的定義,會求一些簡單函數(shù)的定義域和值域;
3.通過教學,逐步培養(yǎng)學生由具體逐步過渡到符號化,代數(shù)式化,并能對以往學習過的知識進行理性化思考,對事物間的聯(lián)系的一種數(shù)學化的思考.
教學重點:
兩集合間用對應(yīng)來描述函數(shù)的概念;求基本函數(shù)的定義域和值域.
教學過程:
一、問題情境
1.情境.
正方形的邊長為a,則正方形的周長為 ,面積為 .
2.問題.
在初中,我們曾認識利用函數(shù)來描述兩個變量之間的關(guān)系,如何定義函數(shù)?常見的函數(shù)模型有哪些?
二、學生活動
1.復述初中所學函數(shù)的概念;
2.閱讀課本23頁的問題(1)、(2)、(3),并分別說出對其理解;
3.舉出生活中的實例,進一步說明函數(shù)的對應(yīng)本質(zhì).
三、數(shù)學建構(gòu)
1.用集合的語言分別闡述23頁的問題(1)、(2)、(3);
問題1 某城市在某一天24小時內(nèi)的氣溫變化情況如下圖所示,試根據(jù)函數(shù)圖象回答下列問題:
。1)這一變化過程中,有哪幾個變量?
(2)這幾個變量的范圍分別是多少?
問題2 略.
問題3 略(詳見23頁).
2.函數(shù):一般地,設(shè)A、B是兩個非空的數(shù)集,如果按某種對應(yīng)法則f,對于集合A中的每一個元素x,在集合B中都有惟一的元素和它對應(yīng),這樣的對應(yīng)叫做從A到B的一個函數(shù),通常記為=f(x),x∈A.其中,所有輸入值x組成的集合A叫做函數(shù)=f(x)的定義域.
。1)函數(shù)作為一種數(shù)學模型,主要用于刻畫兩個變量之間的關(guān)系;
(2)函數(shù)的本質(zhì)是一種對應(yīng);
(3)對應(yīng)法則f可以是一個數(shù)學表達式,也可是一個圖形或是一個表格
。4)對應(yīng)是建立在A、B兩個非空的數(shù)集之間.可以是有限集,當然也就可以是單元集,如f(x)=2x,(x=0).
3.函數(shù)=f(x)的定義域:
。1)每一個函數(shù)都有它的定義域,定義域是函數(shù)的生命線;
。2)給定函數(shù)時要指明函數(shù)的定義域,對于用解析式表示的集合,如果沒
有指明定義域,那么就認為定義域為一切實數(shù).
四、數(shù)學運用
例1.判斷下列對應(yīng)是否為集合A 到 B的函數(shù):
。1)A={1,2,3,4,5},B={2,4,6,8,10},f:x→2x;
(2)A={1,2,3,4,5},B={0,2,4,6,8},f:x→2x;
。3)A={1,2,3,4,5},B=N,f:x→2x.
練習:判斷下列對應(yīng)是否為函數(shù):
。1)x→2x,x≠0,x∈R;
。2)x→,這里2=x,x∈N,∈R。
例2 求下列函數(shù)的定義域:
(1)f(x)=x—1;(2)g(x)=x+1+1x。
例3 下列各組函數(shù)中,是否表示同一函數(shù)?為什么?
A.=x與=(x)2; B.=x2與=3x3;
C.=2x-1(x∈R)與=2t-1(t∈R); D.=x+2x-2與=x2-4
練習:課本26頁練習1~4,6.
五、回顧小結(jié)
1.生活中兩個相關(guān)變量的刻畫→函數(shù)→對應(yīng)(A→B)
2.函數(shù)的對應(yīng)本質(zhì);
3.函數(shù)的對應(yīng)法則和定義域.
《函數(shù)的概念》說課稿 篇7
教材分析:函數(shù)是描述客觀世界變化規(guī)律的重要數(shù)學模型.高中階段不僅把函數(shù)看成變量之間的依賴關(guān)系,同時還用集合與對應(yīng)的語言刻畫函數(shù),高中階段更注重函數(shù)模型化的思想.
教學目的:
。1)通過豐富實例,進一步體會函數(shù)是描述變量之間的依賴關(guān)系的重要數(shù)學模型,在此基礎(chǔ)上學習用集合與對應(yīng)的語言來刻畫函數(shù),體會對應(yīng)關(guān)系在刻畫函數(shù)概念中的作用;
。2)了解構(gòu)成函數(shù)的要素;
(3)會求一些簡單函數(shù)的定義域和值域;
(4)能夠正確使用“區(qū)間”的符號表示某些函數(shù)的定義域;
教學重點:理解函數(shù)的模型化思想,用合與對應(yīng)的語言來刻畫函數(shù);
教學難點:符號“y=f(x)”的含義,函數(shù)定義域和值域的區(qū)間表示;
教學過程:
一、引入課題
1.復習初中所學函數(shù)的概念,強調(diào)函數(shù)的模型化思想;
2.閱讀課本引例,體會函數(shù)是描述客觀事物變化規(guī)律的數(shù)學模型的思想:
。1)炮彈的射高與時間的變化關(guān)系問題;
。2)南極臭氧空洞面積與時間的變化關(guān)系問題;
(3)“八五”計劃以來我國城鎮(zhèn)居民的恩格爾系數(shù)與時間的變化關(guān)系問題
3.引導學生應(yīng)用集合與對應(yīng)的語言描述各個實例中兩個變量間的依賴關(guān)系;
4.根據(jù)初中所學函數(shù)的概念,判斷各個實例中的兩個變量間的關(guān)系是否是函數(shù)關(guān)系.
二、新課教學
。ㄒ唬┖瘮(shù)的有關(guān)概念
1.函數(shù)的概念:
設(shè)A、B是非空的數(shù)集,如果按照某個確定的對應(yīng)關(guān)系f,使對于集合A中的任意一個數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對應(yīng),那么就稱f:A→B為從集合A到集合B的一個函數(shù)(function).
記作:y=f(x),x∈A.
其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域(domain);與x的值相對應(yīng)的y值叫做函數(shù)值,函數(shù)值的集合{f(x)|x∈A}叫做函數(shù)的值域(range).
注意:
○1“y=f(x)”是函數(shù)符號,可以用任意的字母表示,如“y=g(x)”;
○2函數(shù)符號“y=f(x)”中的f(x)表示與x對應(yīng)的函數(shù)值,一個數(shù),而不是f乘x.
2.構(gòu)成函數(shù)的三要素:
定義域、對應(yīng)關(guān)系和值域
3.區(qū)間的概念
。1)區(qū)間的分類:開區(qū)間、閉區(qū)間、半開半閉區(qū)間;
。2)無窮區(qū)間;
(3)區(qū)間的數(shù)軸表示.
4.一次函數(shù)、二次函數(shù)、反比例函數(shù)的定義域和值域討論
。ㄓ蓪W生完成,師生共同分析講評)
。ǘ┑湫屠}
1.求函數(shù)定義域
課本P20例1
解:(略)
說明:
○1函數(shù)的定義域通常由問題的實際背景確定,如果課前三個實例;
○2如果只給出解析式y(tǒng)=f(x),而沒有指明它的定義域,則函數(shù)的定義域即是指能使這個式子有意義的實數(shù)的集合;
○3函數(shù)的定義域、值域要寫成集合或區(qū)間的形式.
鞏固練習:課本P22第1題
2.判斷兩個函數(shù)是否為同一函數(shù)
課本P21例2
解:(略)
說明:
○1構(gòu)成函數(shù)三個要素是定義域、對應(yīng)關(guān)系和值域.由于值域是由定義域和對應(yīng)關(guān)系決定的,所以,如果兩個函數(shù)的定義域和對應(yīng)關(guān)系完全一致,即稱這兩個函數(shù)相等(或為同一函數(shù))
○2兩個函數(shù)相等當且僅當它們的定義域和對應(yīng)關(guān)系完全一致,而與表示自變量和函數(shù)值的字母無關(guān)。
鞏固練習:
○1課本P22第2題
○2判斷下列函數(shù)f(x)與g(x)是否表示同一個函數(shù),說明理由?
。1)f(x)=(x-1)0;g(x)=1
。2)f(x)=x;g(x)=
。3)f(x)=x2;f(x)=(x+1)2
。4)f(x)=|x|;g(x)=
三、歸納小結(jié),強化思想
從具體實例引入了函數(shù)的的概念,用集合與對應(yīng)的語言描述了函數(shù)的定義及其相關(guān)概念,介紹了求函數(shù)定義域和判斷同一函數(shù)的典型題目,引入了區(qū)間的概念來表示集合。
四、作業(yè)布置
課本P28習題1.2(A組)第1—7題(B組)第1題
《函數(shù)的概念》說課稿 篇8
教學目標:
1.進一步理解用集合與對應(yīng)的語言來刻畫的函數(shù)的概念,進一步理解函數(shù)的本質(zhì)是數(shù)集之間的對應(yīng);
2.進一步熟悉與理解函數(shù)的定義域、值域的定義,會利用函數(shù)的定義域與對應(yīng)法則判定有關(guān)函數(shù)是否為同一函數(shù);
3.通過教學,進一步培養(yǎng)學生由具體逐步過渡到符號化,代數(shù)式化,并能對以往學習過的知識進行理性化思考,對事物間的聯(lián)系的一種數(shù)學化的思考.
教學重點:
用對應(yīng)來進一步刻畫函數(shù);求基本函數(shù)的定義域和值域.
教學過程:
一、問題情境
1.情境.
復述函數(shù)及函數(shù)的定義域的概念.
2.問題.
概念中集合A為函數(shù)的定義域,集合B的作用是什么呢?
二、學生活動
1.理解函數(shù)的值域的概念;
2.能利用觀察法求簡單函數(shù)的值域;
3.探求簡單的復合函數(shù)f(f(x))的定義域與值域.
三、數(shù)學建構(gòu)
1.函數(shù)的值域:
。1)按照對應(yīng)法則f,對于A中所有x的值的對應(yīng)輸出值組成的集合稱之
為函數(shù)的值域;
(2)值域是集合B的子集.
2.x g(x) f(x) f(g(x)),其中g(shù)(x)的值域即為f(g(x))的定義域;
四、數(shù)學運用
。ㄒ唬├}.
例1 已知函數(shù)f (x)=x2+2x,求 f (-2),f (-1),f (0),f (1).
例2 根據(jù)不同條件,分別求函數(shù)f(x)=(x-1)2+1的值域.
(1)x∈{-1,0,1,2,3};
(2)x∈R;
(3)x∈[-1,3];
。4)x∈(-1,2];
。5)x∈(-1,1).
例3 求下列函數(shù)的值域:
、伲 ;
、冢 .
例4 已知函數(shù)f(x)與g(x)分別由下表給出:
x1234x1234
f(x)2341g(x)2143
分別求f (f (1)),f (g (2)),g(f (3)),g (g (4))的值.
(二)練習.
。1)求下列函數(shù)的值域:
、伲2-x2;
②=3-|x|.
。2)已知函數(shù)f(x)=3x2-5x+2,求f(3)、f(-2)、f(a)、f(a+1).
。3)已知函數(shù)f(x)=2x+1,g(x)=x2-2x+2,試分別求出g(f(x))和f(g(x))的值域,比較一下,看有什么發(fā)現(xiàn).
(4)已知函數(shù)=f(x)的定義域為[-1,2],求f(x)+f(-x)的定義域.
。5)已知f(x)的定義域為[-2,2],求f(2x),f(x2+1)的定義域.
五、回顧小結(jié)
函數(shù)的對應(yīng)本質(zhì),函數(shù)的定義域與值域;
利用分解的思想研究復合函數(shù).
六、作業(yè)
課本P31-5,8,9.
《函數(shù)的概念》說課稿 篇9
【高考要求】:三角函數(shù)的有關(guān)概念(B).
【教學目標】:理解任意角的概念;理解終邊相同的角的意義;了解弧度的意義,并能進行弧度與角度的互化.
理解任意角三角函數(shù)(正弦、余弦、正切)的定義;初步了解有向線段的概念,會利用單位圓中的三角函數(shù)線表示任意角的正弦、余弦、正切.
【教學重難點】: 終邊相同的角的意義和任意角三角函數(shù)(正弦、余弦、正切)的定義.
【知識復習與自學質(zhì)疑】
一、問題.
1、角的概念是什么?角按旋轉(zhuǎn)方向分為哪幾類?
2、在平面直角坐標系內(nèi)角分為哪幾類?與 終邊相同的角怎么表示?
3、什么是弧度和弧度制?弧度和角度怎么換算?弧度和實數(shù)有什么樣的關(guān)系?
4、弧度制下圓的弧長公式和扇形的面積公式是什么?
5、任意角的三角函數(shù)的定義是什么?在各象限的符號怎么確定?
6、你能在單位圓中畫出正弦、余弦和正切線嗎?
7、同角三角函數(shù)有哪些基本關(guān)系式?
二、練習.
1.給出下列命題:
(1)小于 的角是銳角;
(2)若 是第一象限的角,則 必為第一象限的角;
(3)第三象限的角必大于第二象限的角;
(4)第二象限的角是鈍角;
(5)相等的角必是終邊相同的角;終邊相同的角不一定相等;
(6)角2 與角 的終邊不可能相同;
(7)若角 與角 有相同的終邊,則角( 的終邊必在 軸的非負半軸上。其中正確的命題的序號是
2.設(shè)P 點是角終邊上一點,且滿足 則 的值是
3.一個扇形弧AOB 的面積是1 ,它的周長為4 ,則該扇形的中心角= 弦AB長=
4.若 則角 的終邊在 象限。
5.在直角坐標系中,若角 與角 的終邊互為反向延長線,則角 與角 之間的關(guān)系是
6.若 是第三象限的角,則- , 的終邊落在何處?
【交流展示、互動探究與精講點撥】
例1.如圖, 分別是角 的終邊.
。1)求終邊落在陰影部分(含邊界)的所有角的集合;
(2)求終邊落在陰影部分、且在 上所有角的集合;
(3)求始邊在OM位置,終邊在ON位置的所有角的集合.
例2.
。1)已知角的終邊在直線 上,求 的值;
(2)已知角的終邊上有一點A ,求 的值。
例3.若 ,則 在第 象限.
例4.若一扇形的周長為20 ,則當扇形的圓心角 等于多少弧度時,這個扇形的面積最大?最大面積是多少?
【矯正反饋】
1、若銳角 的終邊上一點的坐標為 ,則角 的弧度數(shù)為 .
2、若 ,又 是第二,第三象限角,則 的取值范圍是 .
3、一個半徑為 的扇形,如果它的周長等于弧所在半圓的弧長,那么該扇形的圓心角度數(shù)是 弧度或角度,該扇形的面積是 .
4、已知點P 在第三象限,則 角終邊在第 象限.
5、設(shè)角 的終邊過點P ,則 的值為 .
6、已知角 的終邊上一點P 且 ,求 和 的值.
【遷移應(yīng)用】
1、經(jīng)過3小時35分鐘,分針轉(zhuǎn)過的角的弧度是 .時針轉(zhuǎn)過的角的弧度數(shù)是 .
2、若點P 在第一象限,則在 內(nèi) 的取值范圍是 .
3、若點P從(1,0)出發(fā),沿單位圓 逆時針方向運動 弧長到達Q點,則Q點坐標為 .
4、如果 為小于360 的正角,且角 的7倍數(shù)的角的終邊與這個角的終邊重合,求角 的值.
【《函數(shù)的概念》說課稿】相關(guān)文章:
《函數(shù)的概念》說課稿01-31
《函數(shù)概念》說課稿07-07
蘇教版《函數(shù)概念》說課稿07-07
高中函數(shù)概念說課稿02-19
高中函數(shù)的概念說課稿01-14
高中函數(shù)的概念說課稿04-01
高中函數(shù)的概念說課稿范文12-02
二次函數(shù)概念的說課稿07-06