《等差數(shù)列的前n項(xiàng)和》說(shuō)課稿
作為一位不辭辛勞的人民教師,常常要根據(jù)教學(xué)需要編寫(xiě)說(shuō)課稿,借助說(shuō)課稿可以有效提升自己的教學(xué)能力。怎么樣才能寫(xiě)出優(yōu)秀的說(shuō)課稿呢?以下是小編收集整理的《等差數(shù)列的前n項(xiàng)和》說(shuō)課稿,歡迎大家借鑒與參考,希望對(duì)大家有所幫助。
一、教材分析
地位和作用
數(shù)列是刻畫(huà)離散現(xiàn)象的函數(shù),是一種重要的屬性模型。人們往往通過(guò)離散現(xiàn)象認(rèn)識(shí)連續(xù)現(xiàn)象,因此就有必要研究數(shù)列。
高中數(shù)列研究的主要對(duì)象是等差、等比兩個(gè)基本數(shù)列。本節(jié)課的教學(xué)內(nèi)容是等差數(shù)列前n項(xiàng)和公式的推導(dǎo)及其簡(jiǎn)單應(yīng)用。
在推導(dǎo)等差數(shù)列前n項(xiàng)和公式的過(guò)程中,采用了:
1、從特殊到一般的研究方法;
2、倒敘相加求和。不僅得出來(lái)等差數(shù)列前n項(xiàng)和公式,而且對(duì)以后推導(dǎo)等比數(shù)列前n項(xiàng)和公式有一定的啟發(fā),也是一種常用的數(shù)學(xué)思想方法。等差數(shù)列的前n項(xiàng)和是學(xué)習(xí)極限、微積分的基礎(chǔ),與數(shù)學(xué)課程的其他內(nèi)容(函數(shù)、三角、不等式等)有著密切的聯(lián)系。
二、目標(biāo)分析
。ㄒ唬、教學(xué)目標(biāo)
1、知識(shí)與技能
掌握等差數(shù)列的前n項(xiàng)和公式,能較熟練應(yīng)用等差數(shù)列的前n項(xiàng)和公式求和。
2、過(guò)程與方法
經(jīng)歷公式的推導(dǎo)過(guò)程,體會(huì)數(shù)形結(jié)合的數(shù)學(xué)思想,體驗(yàn)從特殊到一般的研究方法,學(xué)會(huì)觀(guān)察、歸納、反思。
3、情感、態(tài)度與價(jià)值觀(guān)
獲得發(fā)現(xiàn)的成就感,逐步養(yǎng)成科學(xué)嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)態(tài)度,提高代數(shù)推理的能力。
。ǘ⒔虒W(xué)重點(diǎn)、難點(diǎn)
1、重點(diǎn):等差數(shù)列的前n項(xiàng)和公式。
2、難點(diǎn):獲得等差數(shù)列的前n項(xiàng)和公式推導(dǎo)的思路。
三、教法學(xué)法分析
。ㄒ唬、教法
教學(xué)過(guò)程分為問(wèn)題呈現(xiàn)階段、探索與發(fā)現(xiàn)階段、應(yīng)用知識(shí)階段。
探索與發(fā)現(xiàn)公式推導(dǎo)的思路是教學(xué)的重點(diǎn)。如果直接介紹“倒敘相加”求和,無(wú)疑就像波利亞所說(shuō)的“帽子里跳出來(lái)的兔子”。所以在教學(xué)中采用以問(wèn)題驅(qū)動(dòng)、層層鋪墊,從特殊到一般啟發(fā)學(xué)生獲得公式的推導(dǎo)方法。
應(yīng)用公式也是教學(xué)的重點(diǎn)。為了讓學(xué)生較熟練掌握公式,可采用設(shè)計(jì)變式題的教學(xué)手段,通過(guò)“選擇公式”,“變用公式”,“知三求二”三個(gè)層次來(lái)促進(jìn)學(xué)生新的認(rèn)知結(jié)構(gòu)的形成。
。ǘW(xué)法
建構(gòu)主義學(xué)習(xí)理論認(rèn)為,學(xué)習(xí)是學(xué)生積極主動(dòng)地建構(gòu)知識(shí)的過(guò)程,學(xué)習(xí)應(yīng)該與學(xué)生熟悉的背景相聯(lián)系。在教學(xué)中,讓學(xué)生在問(wèn)題情境中,經(jīng)歷知識(shí)的形成和發(fā)展,通過(guò)觀(guān)察、操作、歸納、探索、交流、反思參與學(xué)習(xí),認(rèn)識(shí)和理解數(shù)學(xué)知識(shí),學(xué)會(huì)學(xué)習(xí),發(fā)展能力。
四、教學(xué)過(guò)程分析
。ㄒ唬、教學(xué)過(guò)程設(shè)計(jì)
1、問(wèn)題呈現(xiàn)階段
泰姬陵坐落于印度古都阿格,是世界七大奇跡之一。傳說(shuō)陵寢中有一個(gè)三角形圖案,以相同大小的圓寶石鑲飾而成共有100層。你知道這個(gè)圖案一共花了多少寶石嗎?
設(shè)計(jì)意圖:
(1)、源于歷史,富有人文氣息。
。2)、承上啟下,探討高斯算法。
2、探究發(fā)現(xiàn)階段
。1)、學(xué)生敘述高斯首尾配對(duì)的方法(學(xué)生對(duì)高斯的算法是熟悉的,知道采用首尾配對(duì)的方法來(lái)求和,但是他們對(duì)這種方法的認(rèn)識(shí)可能處于模仿、記憶的階段。)
(2)、為了促進(jìn)學(xué)生對(duì)這種算法的進(jìn)一步理解,設(shè)計(jì)了下面的問(wèn)題。
問(wèn)題1:圖案中,第1層到第21層共有多少顆寶石?(這是奇數(shù)個(gè)項(xiàng)和的問(wèn)題,不能簡(jiǎn)單模仿偶數(shù)個(gè)項(xiàng)求和的方法,需要把中間項(xiàng)11看成是首、尾兩項(xiàng)1和21的等差中項(xiàng)。
通過(guò)前后比較得出認(rèn)識(shí):高斯“首尾配對(duì)”的算法還得分奇數(shù)、偶數(shù)個(gè)項(xiàng)的情況求和。
。3)、進(jìn)而提出有無(wú)簡(jiǎn)單的'方法。
借助幾何圖形的直觀(guān)性,引導(dǎo)學(xué)生使用熟悉的幾何方法:把“全等三角形”倒置,與原圖補(bǔ)成平行四邊形。
獲得算法:S21=
設(shè)計(jì)意圖:
幾何直觀(guān)能啟迪思路,幫助理解,因此,借助幾何直觀(guān)學(xué)習(xí)和理解數(shù)學(xué),是數(shù)學(xué)學(xué)習(xí)中的重要方面,只有做到了直觀(guān)上的理解,才是真正的理解。因此在教學(xué)中,要鼓勵(lì)學(xué)生借助幾何直觀(guān)進(jìn)行思考,揭示研究對(duì)象的性質(zhì)和關(guān)系,從而滲透了數(shù)形結(jié)合的數(shù)學(xué)思想。
問(wèn)題2:求1到n的正整數(shù)之和。即Sn=1+2+3+…+n
∵Sn=n+(n—1)+(n—2)+…+1
∴2Sn=(n+1)+(n+1)+…。+(n+1)
Sn=(從求確定的前n個(gè)正整數(shù)之和到求一般項(xiàng)數(shù)的前n個(gè)正整數(shù)之和,旨在讓學(xué)生體驗(yàn)“倒敘相加求和”這一算法的合理性,從心理上完成對(duì)“首尾配對(duì)求和”算法的改進(jìn))
由于前面的鋪墊,學(xué)生容易得出如下過(guò)程:
∵Sn=an+an—1+an—2+…a1,
∴Sn=。
圖形直觀(guān)
等差數(shù)列的性質(zhì)(如果m+n=p+q,那么am+an=ap+aq。)
設(shè)計(jì)意圖:
一言以蔽之,數(shù)學(xué)教學(xué)應(yīng)努力做到:以簡(jiǎn)馭繁,平實(shí)近人,退樸歸真,循循善誘,引人入勝。
3、公式應(yīng)用階段
。1)、選用公式
公式1Sn=;
公式2Sn=na1+。
。2)、變用公式
。3)、知三求二
例1
某長(zhǎng)跑運(yùn)動(dòng)員7天里每天的訓(xùn)練量如下7500m,8000m,8500m,9000m,9500m,10000m,10500m。這位長(zhǎng)跑運(yùn)動(dòng)員7天共跑了多少米?(本例提供了許多數(shù)據(jù)信息,學(xué)生可以從首項(xiàng)、尾項(xiàng)、項(xiàng)數(shù)出發(fā),使用公式1,也可以從首項(xiàng)、公差、項(xiàng)數(shù)出發(fā),使用公式2求和。達(dá)到學(xué)生熟悉公式的要素與結(jié)構(gòu)的教學(xué)目的。
通過(guò)兩種方法的比較,引導(dǎo)學(xué)生應(yīng)該根據(jù)信息選擇適當(dāng)?shù)墓,以便于?jì)算。)
例2
等差數(shù)列—10,—6,—2,2,…的前多少項(xiàng)和為54?(本例已知首項(xiàng),前n項(xiàng)和、并且可以求出公差,利用公式2求項(xiàng)數(shù)。
事實(shí)上,在兩個(gè)求和公式中包含四個(gè)元素,從方程的角度,知三必能求余一。)
變式練習(xí):在等差數(shù)列{an}中,a1=20,an=54,Sn=999,求n。
知三求二:
例3
在等差數(shù)列{an}中,已知d=20,n=37,Sn=629,求a1及an。(本例是使用等差數(shù)列的求和公式和通項(xiàng)公式求未知元。
事實(shí)上,在求和公式、通項(xiàng)公式中共有首項(xiàng)、公差、項(xiàng)數(shù)、尾項(xiàng)、前n項(xiàng)和五個(gè)元素,如果已知其中三個(gè),連列方程組,就可以求出其余兩個(gè)。)
4、當(dāng)堂訓(xùn)練,鞏固深化。
通過(guò)學(xué)生的主體性參與,使學(xué)生深刻體會(huì)到本節(jié)課的主要內(nèi)容和思想方法,從而實(shí)現(xiàn)對(duì)知識(shí)的再次深化。
采用課后習(xí)題1,2,3。
5、小結(jié)歸納,回顧反思。
小結(jié)歸納不僅是對(duì)知識(shí)的簡(jiǎn)單回顧,還要發(fā)揮學(xué)生的主體地位,從知識(shí)、方法、經(jīng)驗(yàn)等方面進(jìn)行總結(jié)。
。1)、課堂小結(jié)
、佟⒒仡檹奶厥獾揭话愕难芯糠椒;
②、體會(huì)等差數(shù)列的基本元素的表示方法,倒敘相加的算法,以及數(shù)形結(jié)合的數(shù)學(xué)思想。
、邸⒄莆盏炔顢(shù)列的兩個(gè)球和公式及簡(jiǎn)單應(yīng)用
。2)、反思
我設(shè)計(jì)了三個(gè)問(wèn)題
、佟⑼ㄟ^(guò)本節(jié)課的學(xué)習(xí),你學(xué)到了哪些知識(shí)?
、、通過(guò)本節(jié)課的學(xué)習(xí),你最大的體驗(yàn)是什么?
、邸⑼ㄟ^(guò)本節(jié)課的學(xué)習(xí),你掌握了哪些技能?
(二)、作業(yè)設(shè)計(jì)
作業(yè)分為必做題和選做題,必做題是對(duì)本節(jié)課學(xué)生知識(shí)水平的反饋,選做題是對(duì)本節(jié)課內(nèi)容的延伸與連貫,強(qiáng)調(diào)學(xué)以致用。通過(guò)作業(yè)設(shè)置,使不同層次的學(xué)生都可以獲得成功的喜悅,看到自己的潛能,從而激發(fā)學(xué)生飽滿(mǎn)的學(xué)習(xí)興趣,促進(jìn)學(xué)生的自主發(fā)展、合作探究的學(xué)習(xí)氛圍的形成。
我設(shè)計(jì)了以下作業(yè):
1、必做題:課本p118,練習(xí)1,2,3;
習(xí)題3.3第2題(3,4)。
2、選做題:
在等差數(shù)列中,
。1)、已知a2+a5+a12+a15=36,求是S16。
。2)、已知a6=20,求s11。
。ㄈ、板書(shū)設(shè)計(jì)
板書(shū)要基本體現(xiàn)課堂的內(nèi)容和方法,體現(xiàn)課堂進(jìn)程,能簡(jiǎn)明扼要反映知識(shí)結(jié)構(gòu)及其相互關(guān)系:能指導(dǎo)教師的教學(xué)進(jìn)程、引導(dǎo)學(xué)生探索知識(shí);通過(guò)使用幻燈片輔助板書(shū),節(jié)省課堂時(shí)間,使課堂進(jìn)程更加連貫。
五、評(píng)價(jià)分析
學(xué)生學(xué)習(xí)的結(jié)果評(píng)價(jià)固然重要,但是更重要的是學(xué)生學(xué)習(xí)的過(guò)程評(píng)價(jià)。我采用了及時(shí)點(diǎn)評(píng)、延時(shí)點(diǎn)評(píng)與學(xué)生互評(píng)相結(jié)合,全面考查學(xué)生在知識(shí)、思想、能力等方面的發(fā)展情況,在質(zhì)疑探究的過(guò)程中,評(píng)價(jià)學(xué)生是否有積極的情感態(tài)度和頑強(qiáng)的理性精神,在概念反思過(guò)程中評(píng)價(jià)學(xué)生的歸納猜想能力是否得到發(fā)展,通過(guò)鞏固練習(xí)考查學(xué)生對(duì)本節(jié)是否有一個(gè)完整的集訓(xùn),并進(jìn)行及時(shí)的調(diào)整和補(bǔ)充。
【《等差數(shù)列的前n項(xiàng)和》說(shuō)課稿】相關(guān)文章:
等差數(shù)列的前n項(xiàng)和說(shuō)課稿11-04
等比數(shù)列的前n項(xiàng)和說(shuō)課稿11-04
等比數(shù)列的前n項(xiàng)和教學(xué)反思12-20
前鼻韻母an en in un ün說(shuō)課稿11-04
《在馬克思墓前的講話(huà)》說(shuō)課稿11-23
和項(xiàng)王歌原文翻譯及賞析02-11