- 《背影》說課稿 推薦度:
- 說課稿 推薦度:
- 《秋天》說課稿 推薦度:
- 美術(shù)說課稿 推薦度:
- 《海燕》說課稿 推薦度:
- 相關(guān)推薦
《勾股定理》的說課稿
在教學(xué)工作者實(shí)際的教學(xué)活動(dòng)中,就有可能用到說課稿,認(rèn)真擬定說課稿,那么大家知道正規(guī)的說課稿是怎么寫的嗎?以下是小編為大家收集的《勾股定理》的說課稿,歡迎大家借鑒與參考,希望對大家有所幫助。
《勾股定理》的說課稿1
一、教材分析
。ㄒ唬┙滩牡匚慌c作用
勾股定理它揭示的是直角三角形中三邊的數(shù)量關(guān)系。它在數(shù)學(xué)的發(fā)展中起過重要的作用,在現(xiàn)時(shí)世界中也有著廣泛的作用。學(xué)生通過對勾股定理的學(xué)習(xí),可以在原有的基礎(chǔ)上對直角三角形有進(jìn)一步的認(rèn)識和理解。
。ǘ┙虒W(xué)目標(biāo)知識與能力:掌握勾股定理,并能運(yùn)用勾股定理解決一些簡單實(shí)際問題。過程與方法:經(jīng)歷探索及驗(yàn)證勾股定理的過程,了解利用拼圖驗(yàn)證勾股定理的方法,發(fā)展學(xué)生的合情推理意識、主動(dòng)探究的習(xí)慣,感受數(shù)形結(jié)合和從特殊到一般的思想。情感態(tài)度與價(jià)值觀:激發(fā)愛國熱情,體驗(yàn)自己努力得到結(jié)論的成就感,體驗(yàn)數(shù)學(xué)充滿探索和創(chuàng)造,體驗(yàn)數(shù)學(xué)的美感,從而了解數(shù)學(xué),喜歡數(shù)學(xué)。
(三)教學(xué)重點(diǎn):經(jīng)歷探索及驗(yàn)證勾股定理的過程,并能用它來解決一些簡單的實(shí)際問題。
教學(xué)難點(diǎn):用面積法(拼圖法)發(fā)現(xiàn)勾股定理。
突出重點(diǎn)、突破難點(diǎn)的辦法:發(fā)揮學(xué)生的主體作用,通過學(xué)生動(dòng)手實(shí)驗(yàn),讓學(xué)生在實(shí)驗(yàn)中探索、在探索中領(lǐng)悟、在領(lǐng)悟中理解。
二、教法與學(xué)法分析:
學(xué)情分析:七年級學(xué)生已經(jīng)具備一定的觀察、歸納、猜想和推理的能力。他們在小學(xué)已學(xué)習(xí)了一些幾何圖形的面積計(jì)算方法(包括割補(bǔ)、拼接),但運(yùn)用面積法和割補(bǔ)思想來解決問題的意識和能力還不夠。另外,學(xué)生普遍學(xué)習(xí)積極性較高,課堂活動(dòng)參與較主動(dòng),但合作交流的能力還有待加強(qiáng)。
教法分析:結(jié)合七年級學(xué)生和本節(jié)教材的特點(diǎn),在教學(xué)中采用“問題情境----建立模型----解釋應(yīng)用---拓展鞏固”的模式,選擇引導(dǎo)探索法。把教學(xué)過程轉(zhuǎn)化為學(xué)生親身觀察,大膽猜想,自主探究,合作交流,歸納總結(jié)的過程。
學(xué)法分析:在教師的組織引導(dǎo)下,學(xué)生采用自主探究合作交流的研討式學(xué)習(xí)方式,使學(xué)生真正成為學(xué)習(xí)的主人。
三、教學(xué)過程設(shè)計(jì)
1、創(chuàng)設(shè)情境,提出問題
2、實(shí)驗(yàn)操作,模型構(gòu)建
3、回歸生活,應(yīng)用新知
4、知識拓展,鞏固深化
5、感悟收獲,布置作業(yè)
。ㄒ唬﹦(chuàng)設(shè)情境提出問題
(1)圖片欣賞:勾股定理數(shù)形圖xxxx年希臘發(fā)行。美麗的勾股樹20xx年國際數(shù)學(xué)的一枚紀(jì)念郵票。
設(shè)計(jì)意圖:通過圖形欣賞,感受數(shù)學(xué)美,感受勾股定理的文化價(jià)值。
(2)某樓房三樓失火,消防隊(duì)員趕來救火,了解到每層樓高3米,消防隊(duì)員取來6.5米長的云梯,如果梯子的底部離墻基的距離是2.5米,請問消防隊(duì)員能否進(jìn)入三樓滅火?
設(shè)計(jì)意圖:以實(shí)際問題為切入點(diǎn)引入新課,反映了數(shù)學(xué)來源于實(shí)際生活,產(chǎn)生于人的需要,也體現(xiàn)了知識的發(fā)生過程,解決問題的過程也是一個(gè)“數(shù)學(xué)化”的過程,從而引出下面的環(huán)節(jié)。
(二)實(shí)驗(yàn)操作模型構(gòu)建
1、等腰直角三角形(數(shù)格子)
2、一般直角三角形(割補(bǔ))
問題一:對于等腰直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積有何關(guān)系?設(shè)計(jì)意圖:這樣做利于學(xué)生參與探索,利于培養(yǎng)學(xué)生的語言表達(dá)能力,體會數(shù)形結(jié)合的思想。
問題二:對于一般的直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積也有這個(gè)關(guān)系嗎?(割補(bǔ)法是本節(jié)的難點(diǎn),組織學(xué)生合作交流)
設(shè)計(jì)意圖:不僅有利于突破難點(diǎn),而且為歸納結(jié)論打下基礎(chǔ),讓學(xué)生的分析問題解決問題的能力在無形中得到提高。
通過以上實(shí)驗(yàn)歸納總結(jié)勾股定理。
設(shè)計(jì)意圖:學(xué)生通過合作交流,歸納出勾股定理的雛形,培養(yǎng)學(xué)生抽象、概括的能力,同時(shí)發(fā)揮了學(xué)生的主體作用,體驗(yàn)了從特殊——一般的認(rèn)知規(guī)律。
。ㄈ┗貧w生活應(yīng)用新知
讓學(xué)生解決開頭情景中的問題,前呼后應(yīng),增強(qiáng)學(xué)生學(xué)數(shù)學(xué)、用數(shù)學(xué)的意識,增加學(xué)以致用的樂趣和信心。
。ㄋ模┲R拓展鞏固深化
基礎(chǔ)題,情境題,探索題。
設(shè)計(jì)意圖:給出一組題目,分三個(gè)梯度,由淺入深層層練習(xí),照顧學(xué)生的個(gè)體差異,關(guān)注學(xué)生的個(gè)性發(fā)展。知識的運(yùn)用得到升華。
基礎(chǔ)題:直角三角形的一直角邊長為3,斜邊為5,另一直角邊長為X,你可以根據(jù)條件提出多少個(gè)數(shù)學(xué)問題?你能解決所提出的問題嗎?
設(shè)計(jì)意圖:這道題立足于雙基。通過學(xué)生自己創(chuàng)設(shè)情境,鍛煉了發(fā)散思維。
情境題:小明媽媽買了一部29英寸(74厘米)的電視機(jī)。小明量了電視機(jī)的屏幕后,發(fā)現(xiàn)屏幕只有58厘米長和46厘米寬,他覺得一定是售貨員搞錯(cuò)了。你同意他的想法嗎?
設(shè)計(jì)意圖:增加學(xué)生的生活常識,也體現(xiàn)了數(shù)學(xué)源于生活,并用于生活。
探索題:做一個(gè)長,寬,高分別為50厘米,40厘米,30厘米的木箱,一根長為70厘米的木棒能否放入,為什么?試用今天學(xué)過的知識說明。
設(shè)計(jì)意圖:探索題的難度相對大了些,但教師利用教學(xué)模型和學(xué)生合作交流的方式,拓展學(xué)生的思維、發(fā)展空間想象能力。
。ㄎ澹└形蚴斋@布置作業(yè):這節(jié)課你的收獲是什么?
作業(yè):
1、課本習(xí)題2、1
2、搜集有關(guān)勾股定理證明的資料。
板書設(shè)計(jì)
探索勾股定理
如果直角三角形兩直角邊分別為a,b,斜邊為c,那么a2、b2、c2。
設(shè)計(jì)說明:
1、探索定理采用面積法,為學(xué)生創(chuàng)設(shè)一個(gè)和諧、寬松的情境,讓學(xué)生體會數(shù)形結(jié)合及從特殊到一般的思想方法。
2、讓學(xué)生人人參與,注重對學(xué)生活動(dòng)的評價(jià),一是學(xué)生在活動(dòng)中的投入程度;二是學(xué)生在活動(dòng)中表現(xiàn)出來的思維水平、表達(dá)水平。
《勾股定理》的說課稿2
各位考官,大家好,我是X號考生,今天我說課的內(nèi)容是《勾股定理的逆定理》。根據(jù)新課程標(biāo)準(zhǔn),我將以教什么,怎么教,為什么這么教為思路開展我的說課,首先,我先來說說我對教材的理解。
教材分析是上好一堂課的前提條件,在上好一堂課之前,我首先談一談對教材的理解。
一、說教材
“勾股定理的逆定理”一節(jié)?是在上節(jié)“勾股定理”之后繼續(xù)學(xué)習(xí)的一個(gè)直角三角形的判斷定理,它是前面知識的繼續(xù)和深化。勾股定理的逆定理是初中幾何學(xué)習(xí)中的重要內(nèi)容之一,是今后判斷某三角形是直角三角形的重要方法之一,在以后的解題中將有十分廣泛的應(yīng)用,同時(shí)在應(yīng)用中滲透了利用代數(shù)計(jì)算的方法證明幾何問題的思想,為將來學(xué)習(xí)解析幾何埋下了伏筆,所以本節(jié)也是本章的重要內(nèi)容之一。
二、說學(xué)情
中學(xué)生心理學(xué)研究指出,初中階段是智力發(fā)展的關(guān)鍵年齡,學(xué)生邏輯思維從經(jīng)驗(yàn)型逐步向理論型發(fā)展,觀察能力、記憶能力和想象能力也隨著迅速發(fā)展。學(xué)生此前學(xué)習(xí)了三角形有關(guān)的知識,掌握了直角三角形的性質(zhì)和勾股定理,學(xué)生在此基礎(chǔ)上學(xué)習(xí)勾股定理的逆定理可以加深理解。
三、說教學(xué)目標(biāo)
根據(jù)數(shù)學(xué)課標(biāo)的要求和教材的具體內(nèi)容結(jié)合學(xué)生實(shí)際我確定了如下教學(xué)目標(biāo)。
【知識與技能】
理解勾股定理的逆定理的證明方法并能證明勾股定理的逆定理。利用勾股定理的逆定理判定一個(gè)三角形是不是直角三角形。
【過程與方法】
通過勾股定理的逆定理的證明,體會數(shù)與形結(jié)合方法在問題解決中的作用,并能運(yùn)用勾股定理的逆定理解決相關(guān)問題。
【情感態(tài)度與價(jià)值觀】
通過一系列富有探究性的問題,滲透與他人交流、合作的意識和探究精神。
四、說教學(xué)重難點(diǎn)
重點(diǎn):勾股定理逆定理的應(yīng)用;
難點(diǎn):探究勾股定理逆定理的證明過程。
五、說教學(xué)方法
科學(xué)合理的教學(xué)方法能使教學(xué)效果事半功倍,達(dá)到教與學(xué)的和諧完美統(tǒng)一。基于此,我準(zhǔn)備采用的教法是講練結(jié)合法,小組討論法。
六、說教學(xué)過程
(一)導(dǎo)入新課
在導(dǎo)入新課環(huán)節(jié),我會采用溫故知新的導(dǎo)入方法,先讓學(xué)生回顧勾股定理有關(guān)知識,并引入本節(jié)課的課題——勾股定理逆定理。
【設(shè)計(jì)意圖】通過復(fù)習(xí)回顧能很好地將新舊知識聯(lián)系起來,使學(xué)生形成對知識的系統(tǒng)的認(rèn)識。并且由舊知開始,能很好地幫助學(xué)生克服畏難情緒。
(二)探究新知
一開課我就提出了與本節(jié)課關(guān)系密切、學(xué)生用現(xiàn)有的知識可探索卻又解決不好的問題去提示本節(jié)課的探究宗旨,演示古代埃及人把一根長繩打上等距離的13個(gè)結(jié),然后便得到一個(gè)直角三角形這是為什么?這個(gè)問題一出現(xiàn),馬上激起學(xué)生已有知識與待研究知識的認(rèn)識沖突,引起了學(xué)生的重視激發(fā)了學(xué)生的興趣,因而全身心地投入到學(xué)習(xí)中來創(chuàng)造了我要學(xué)的氣氛,同時(shí)也說明了幾何知識來源于實(shí)踐不失時(shí)機(jī)地讓學(xué)生感到數(shù)學(xué)就在身邊。
因?yàn)閹缀蝸碓从诂F(xiàn)實(shí)生活,對初二學(xué)生來說選擇適當(dāng)?shù)臅r(shí)機(jī)讓他們從個(gè)體實(shí)踐經(jīng)驗(yàn)中開始學(xué)習(xí)可以提高學(xué)習(xí)的主動(dòng)性和參與意識,所以勾股定理的逆定理不是由教師直接給出的,而是讓學(xué)生通過動(dòng)手折紙?jiān)诰唧w的實(shí)踐中觀察滿足條件的三角形直觀感覺上是什么三角形,再用直角三角形插入去驗(yàn)證猜想。
這樣設(shè)計(jì)是因?yàn)楣垂啥ɡ砟娑ɡ淼淖C明方法是學(xué)生第一次見,它要求按照已知條件作一個(gè)直角三角形,根據(jù)學(xué)生的智能狀況學(xué)生是不容易想到的,為了突破這個(gè)難點(diǎn),我讓學(xué)生動(dòng)手裁出了一個(gè)兩直角邊與所折三角形兩條較小邊相等的直角三角形,通過操作驗(yàn)證兩三角形全等,從而不僅顯示了符合條件的三角形是直角三角形,還孕育了輔助線的添法,為后面進(jìn)行邏輯推理論證提供了直觀的數(shù)學(xué)模型。
接下來就是利用這個(gè)數(shù)學(xué)模型,從理論上證明這個(gè)定理。從動(dòng)手操作到證明,學(xué)生自然地聯(lián)想到了全等三角形的性質(zhì),證明它與一個(gè)直角三角形全等順利作出了輔助直角三角形,整個(gè)證明過程自然無神秘感,實(shí)現(xiàn)了從生動(dòng)直觀向抽象思維的轉(zhuǎn)化,同時(shí)學(xué)生親身體會了動(dòng)手操作——觀察——猜測——探索——論證的全過程。這樣學(xué)生不是被動(dòng)接受勾股定理的逆定理?因而使學(xué)生感到自然、親切。學(xué)生的學(xué)習(xí)興趣和學(xué)習(xí)積極性有所提高,使學(xué)生確實(shí)在學(xué)習(xí)過程中享受到自我創(chuàng)造的快樂。
在同學(xué)們完成證明之后,可讓他們對照課本把證明過程嚴(yán)格的閱讀一遍充分發(fā)揮教科書的作用養(yǎng)成學(xué)生看書的習(xí)慣這也是在培養(yǎng)學(xué)生的自學(xué)能力。
(三)鞏固提高
本著由淺入深的原則安排了三個(gè)題目。演示第一題比較簡單(判斷下列三條線段組成的三角形是不是直角三角形,比如15、8、17;13、14、15等等)讓學(xué)生口答讓所有的學(xué)生都能完成。
第二題則進(jìn)了一層用字母代替了數(shù)字,繞了一個(gè)彎,既可以檢查本課知識又可以提高靈活運(yùn)用以往知識的能力。
思維提高了課堂教學(xué)的效果和利用率。在變式訓(xùn)練中我還采用講、說、練結(jié)合的方法,教師通過觀察、提問、巡視、談話等活動(dòng)、及時(shí)了解學(xué)生的學(xué)習(xí)過程,隨時(shí)反饋調(diào)節(jié)教法同時(shí)注意加強(qiáng)有針對性的個(gè)別指導(dǎo)把發(fā)展學(xué)生的思維和隨時(shí)把握學(xué)生的學(xué)習(xí)效果結(jié)合起來。
(四)小結(jié)作業(yè)
在小結(jié)環(huán)節(jié),我會隨機(jī)詢問學(xué)生勾股定理的逆定理是什么?如果判斷一個(gè)三角形是不是直角三角形,以及勾股定理的逆定理的應(yīng)用需要注意點(diǎn)什么等問題,先讓學(xué)生歸納本節(jié)知識和技能,然后教師作必要的補(bǔ)充,尤其是注意總結(jié)思想方法培養(yǎng)能力方面比如輔助線的添法。
設(shè)計(jì)意圖:這樣設(shè)計(jì)可以幫助學(xué)生以反思的形式回憶本節(jié)課所學(xué)的知識,加深對知識的印象,有利于學(xué)生良好的數(shù)學(xué)學(xué)習(xí)習(xí)慣的養(yǎng)成。
由于學(xué)生的思維素質(zhì)存在一定的差異,教學(xué)要貫徹“因材施教”的原則,為此我安排了兩組作業(yè)。第一組是基礎(chǔ)題,我會用ppt出示關(guān)于勾股定理的逆定理的計(jì)算題目,這樣有利于學(xué)生學(xué)習(xí)習(xí)慣的培養(yǎng),以及提高他們學(xué)好數(shù)學(xué)的信心。第二組是開放性題目,讓學(xué)生課后思考總結(jié)一下判定一個(gè)三角形是直角三角形的方法。
《勾股定理》的說課稿3
一、教材分析
勾股定理是學(xué)生在已經(jīng)掌握了直角三角形的有關(guān)性質(zhì)的基礎(chǔ)上進(jìn)行學(xué)習(xí)的,它是直角三角形的一條非常重要的性質(zhì),是幾何中最重要的定理之一,它揭示了一個(gè)三角形三條邊之間的數(shù)量關(guān)系,它可以解決直角三角形中的計(jì)算問題,是解直角三角形的主要根據(jù)之一,在實(shí)際生活中用途很大,我們的教材在編寫時(shí)注意培養(yǎng)大家的動(dòng)手操作能力和分析問題的能力,通過實(shí)際分析、拼圖等活動(dòng),使學(xué)生獲得較為直觀的印象;通過聯(lián)系和比較,理解勾股定理,以利于正確的進(jìn)行運(yùn)用。
據(jù)此,制定教學(xué)目標(biāo)如下:
1、理解并且掌握勾股定理及其證明。
2、能夠靈活地運(yùn)用勾股定理及其計(jì)算。
3、主要就是培養(yǎng)學(xué)生觀察、比較、分析、推理的能力。
4、通過介紹我們中國古代勾股方面的成就,激發(fā)學(xué)生熱愛祖國與熱愛祖國悠久文化的思想感情,培養(yǎng)他們的民族自豪感和鉆研精神。
教學(xué)重點(diǎn):
勾股定理的證明和應(yīng)用。
教學(xué)難點(diǎn):
勾股定理的證明。
二、教法和學(xué)法
教法和學(xué)法是體現(xiàn)在整個(gè)教學(xué)過程中的,本課的教法和學(xué)法體現(xiàn)如下特點(diǎn):
1、以自學(xué)輔導(dǎo)為主,充分發(fā)揮教師的主導(dǎo)作用,運(yùn)用各種手段激發(fā)學(xué)生學(xué)習(xí)欲望和興趣,組織學(xué)生活動(dòng),讓學(xué)生主動(dòng)參與學(xué)習(xí)全過程。
2、切實(shí)體現(xiàn)學(xué)生的主體地位,讓學(xué)生通過觀察、分析、討論、操作、歸納,理解定理,提高學(xué)生動(dòng)手操作能力,以及分析問題和解決問題的能力。
3、通過演示實(shí)物,引導(dǎo)學(xué)生觀察、操作、分析、證明,使學(xué)生得到獲得新知的成功感受,從而激發(fā)學(xué)生鉆研新知的欲望。
三、教學(xué)程序
本節(jié)內(nèi)容的教學(xué)主要體現(xiàn)在學(xué)生動(dòng)手、動(dòng)腦方面,根據(jù)學(xué)生的認(rèn)知規(guī)律和學(xué)習(xí)心理,教學(xué)程序設(shè)計(jì)如下:
。ㄒ唬﹦(chuàng)設(shè)情境 以古引新
1、由故事引入,3000多年前有個(gè)叫商高的人對周公說,把一根直尺折成直角,兩端連接得到一個(gè)直角三角形,如果勾是3,股是4,那么弦等于5,小學(xué)數(shù)學(xué)教案《數(shù)學(xué) - 勾股定理說課稿》。這樣引起學(xué)生學(xué)習(xí)興趣,激發(fā)學(xué)生求知欲。
2、是不是所有的直角三角形都有這個(gè)性質(zhì)呢?教師要善于激疑,使學(xué)生進(jìn)入樂學(xué)狀態(tài)。
3、板書課題,出示學(xué)習(xí)目標(biāo)。
。ǘ┏醪礁兄 理解教材
教師指導(dǎo)學(xué)生自學(xué)教材,通過自學(xué)感悟理解新知,體現(xiàn)了學(xué)生的自主學(xué)習(xí)意識,鍛煉學(xué)生主動(dòng)探究知識,養(yǎng)成良好的自學(xué)習(xí)慣。
(三)質(zhì)疑解難 討論歸納
1、教師設(shè)疑或?qū)W生提疑。如:
怎樣證明勾股定理?學(xué)生通過自學(xué),中等以上的學(xué)生基本掌握,這時(shí)能激發(fā)學(xué)生的表現(xiàn)欲。
2、教師引導(dǎo)學(xué)生按照要求進(jìn)行拼圖,觀察并分析;
。1)這兩個(gè)圖形有什么特點(diǎn)?
。2)你能寫出這兩個(gè)圖形的面積嗎?
。3)如何運(yùn)用勾股定理?是否還有其他形式?
這時(shí)教師組織學(xué)生分組討論,調(diào)動(dòng)全體學(xué)生的積極性,達(dá)到人人參與的效果,接著全班交流。先有某一組代表發(fā)言,說明本組對問題的理解程度,其他各組作評價(jià)和補(bǔ)充。教師及時(shí)進(jìn)行富有啟發(fā)性的點(diǎn)撥,最后,師生共同歸納,形成一致意見,最終解決疑難。
。ㄋ模╈柟叹毩(xí) 強(qiáng)化提高
1、出示練習(xí),學(xué)生分組解答,并由學(xué)生總結(jié)解題規(guī)律。課堂教學(xué)中動(dòng)靜結(jié)合,以免引起學(xué)生的疲勞。
2、出示例1學(xué)生試解,師生共同評價(jià),以加深對例題的理解與運(yùn)用。針對例題再次出現(xiàn)鞏固練習(xí),進(jìn)一步提高學(xué)生運(yùn)用知識的能力,對練習(xí)中出現(xiàn)的情況可采取互評、互議的形式,在互評互議中出現(xiàn)的具有代表性的問題,教師可以采取全班討論的形式予以解決,以此突出教學(xué)重點(diǎn)。
(五)歸納總結(jié) 練習(xí)反饋
引導(dǎo)學(xué)生對知識要點(diǎn)進(jìn)行總結(jié),梳理學(xué)習(xí)思路。分發(fā)自我反饋練習(xí),學(xué)生獨(dú)立完成。
本課意在創(chuàng)設(shè)愉悅和諧的樂學(xué)氣氛,優(yōu)化教學(xué)手段,借助電教手段提高課堂教學(xué)效率,建立平等、民主、和諧的師生關(guān)系。加強(qiáng)師生間的合作,營造一種學(xué)生敢想、感說、感問的課堂氣氛,讓全體學(xué)生都能生動(dòng)活潑、積極主動(dòng)地教學(xué)活動(dòng),在學(xué)習(xí)中創(chuàng)新精神和實(shí)踐能力得到培養(yǎng)。
《勾股定理》的說課稿4
各位專家領(lǐng)導(dǎo),上午好:今天我說課的課題是《勾股定理》
一、教材分析:
。ㄒ唬┍竟(jié)內(nèi)容在全書和章節(jié)的地位
這節(jié)課是九年制義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(華東版),八年級第十九章第二節(jié)“勾股定理”第一課時(shí)。勾股定理是學(xué)生在已經(jīng)掌握了直角三角形有關(guān)性質(zhì)的基礎(chǔ)上進(jìn)行學(xué)習(xí)的,它是直角三角形的一條非常重要的性質(zhì),是幾何中最重要的定理之一,它揭示了一個(gè)三角形三條邊之間的數(shù)量關(guān)系,它可以解決直角三角形的主要依據(jù)之一,在實(shí)際生活中用途很大。教材在編寫時(shí)注意培養(yǎng)學(xué)生的動(dòng)手操作能力和觀察分析問題的能力;通過實(shí)際分析,拼圖等活動(dòng),使學(xué)生獲得較為直觀的印象;通過聯(lián)系比較,理解勾股定理,以便于正確的進(jìn)行運(yùn)用。
。ǘ┤S教學(xué)目標(biāo):
1.【知識與能力目標(biāo)】
⒈理解并掌握勾股定理的內(nèi)容和證明,能夠靈活運(yùn)用勾股定理及其計(jì)算;
⒉通過觀察分析,大膽猜想,并探索勾股定理,培養(yǎng)學(xué)生動(dòng)手操作、合作交流、邏輯推理的能力。
2. 【過程與方法目標(biāo)】
在探索勾股定理的過程中,讓學(xué)生經(jīng)歷“觀察-猜想-歸納-驗(yàn)證”的數(shù)學(xué)思想,并體會數(shù)形結(jié)合和從特殊到一般的思想方法。
3.【情感態(tài)度與價(jià)值觀】
通過介紹中國古代勾股方面的成就,激發(fā)學(xué)生熱愛祖國和熱愛祖國悠久文化的思想感情,培養(yǎng)學(xué)生的民族自豪感和鉆研精神。
。ㄈ┙虒W(xué)重點(diǎn)、難點(diǎn):
【教學(xué)重點(diǎn)】
勾股定理的證明與運(yùn)用
【教學(xué)難點(diǎn)】
用面積法等方法證明勾股定理
【難點(diǎn)成因】
對于勾股定理的得出,首先需要學(xué)生通過動(dòng)手操作,在觀察的基礎(chǔ)上,大膽猜想數(shù)學(xué)結(jié)論,而這需要學(xué)生具備一定的分析、歸納的思維方法和運(yùn)用數(shù)學(xué)的思想意識,但學(xué)生在這一方面的可預(yù)見性和耐挫折能力并不是很成熟,從而形成困難。
【突破措施】
、眲(chuàng)設(shè)情景,激發(fā)思維:創(chuàng)設(shè)生動(dòng)、啟發(fā)性的問題情景,激發(fā)學(xué)生的問題沖突,讓學(xué)生在感到“有趣”、“有意思”的狀態(tài)下進(jìn)入學(xué)習(xí)過程;
、沧灾魈剿鳎矣诓孪耄撼浞肿屪约簞(dòng)手操作,大膽猜想數(shù)學(xué)問題的結(jié)論,老師是整個(gè)活動(dòng)的組織者,更是一位參入者,學(xué)生之間相互交流、協(xié)作,從而形成生動(dòng)的課堂環(huán)境;
、硰垞P(yáng)個(gè)性,展示風(fēng)采:實(shí)行“小組合作制”,各小組中自己推薦一人擔(dān)任“發(fā)言人”,一人擔(dān)任“書記員”,在討論結(jié)束后,由小組的“發(fā)言人”匯報(bào)本小組的討論結(jié)果,并可上臺利用“多媒體視頻展示臺”展示本組的優(yōu)秀作品,其他小組給予評價(jià)。這樣既保證討論的有效性,也調(diào)動(dòng)了學(xué)生的學(xué)習(xí)積極性。
二、教法與學(xué)法分析
【教法分析】
數(shù)學(xué)是一門培養(yǎng)人的思維,發(fā)展人的思維的重要學(xué)科,因此在教學(xué)中,不僅要使學(xué)生“知其然”,而且還要使學(xué)生“知其所以然”。針對初二年級學(xué)生的認(rèn)知結(jié)構(gòu)和心理特征,本節(jié)課可選擇“引導(dǎo)探索法”,由淺到深,由特殊到一般的提出問題。引導(dǎo)學(xué)生自主探索,合作交流,這種教學(xué)理念緊隨新課改理念,也反映了時(shí)代精神。基本的教學(xué)程序是“創(chuàng)設(shè)情景-動(dòng)手操作-歸納驗(yàn)證-問題解決-課堂小結(jié)-布置作業(yè)”六個(gè)方面。
【學(xué)法分析】
新課標(biāo)明確提出要培養(yǎng)“可持續(xù)發(fā)展的學(xué)生”,因此教師要有組織、有目的、有針對性的引導(dǎo)學(xué)生并參入到學(xué)習(xí)活動(dòng)中,鼓勵(lì)學(xué)生采用自主探索,合作交流的研討式學(xué)習(xí)方式,培養(yǎng)學(xué)生“動(dòng)手”、“動(dòng)腦”、“動(dòng)口”的習(xí)慣與能力,使學(xué)生真正成為學(xué)習(xí)的主人。
三、教學(xué)過程設(shè)計(jì)
。ㄒ唬﹦(chuàng)設(shè)情景
多媒體課件演示FLASH小動(dòng)畫片:某樓房三樓失火,消防隊(duì)員趕來救火,了解到每層樓高3米,消防隊(duì)員取來6.5米長的云梯,如果梯子的底部離墻基的距離是2.5米,請問消防隊(duì)員能否進(jìn)入三樓滅火?
問題的設(shè)計(jì)有一定的挑戰(zhàn)性,目的是激發(fā)學(xué)生的探究欲望,老師要注意引導(dǎo)學(xué)生將實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題,也就是“已知一直角三角形的兩邊,求第三邊?”的問題。學(xué)生會感到一些困難,從而老師指出學(xué)習(xí)了今天的這節(jié)課后,同學(xué)們就會有辦法解決了。這種以實(shí)際問題作為切入點(diǎn)導(dǎo)入新課,不僅自然,而且也反映了“數(shù)學(xué)來源于生活”,學(xué)習(xí)數(shù)學(xué)是為更好“服務(wù)于生活”。
。ǘ﹦(dòng)手操作
、闭n件出示課本P99圖19.2.1:
觀察圖中用陰影畫出的三個(gè)正方形,你從中能夠得出什么結(jié)論?
學(xué)生可能考慮到各種不同的思考方法,老師要給予肯定,并鼓勵(lì)學(xué)生用語言進(jìn)行描述,引導(dǎo)學(xué)生發(fā)現(xiàn)SP+SQ=SR(此時(shí)讓小組“發(fā)言人”發(fā)言),從而讓學(xué)生通過正方形的面積之間的關(guān)系發(fā)現(xiàn):對于等腰直角三角形,其兩直角邊的平方和等于斜邊的平方,即當(dāng)∠C=90°,AC=BC時(shí),則AC2+BC2=AB2。這樣做有利于學(xué)生參與探索,感受數(shù)學(xué)學(xué)習(xí)的過程,也有利于培養(yǎng)學(xué)生的語言表達(dá)能力,體會數(shù)形結(jié)合的思想。
⒉緊接著讓學(xué)生思考:上述是在等腰直角三角形中的情況,那么在一般情況下的直角三角形中,是否也存在這一結(jié)論呢?于是再利用多媒體投影出P100圖19.2.2(一般直角三角形)。學(xué)生可以同樣求出正方形P和Q的面積,只是求正方形R的面積有一些困難,這時(shí)可讓學(xué)生在預(yù)先準(zhǔn)備的方格紙上畫出圖形,再剪一剪、拼一拼,通過小組合作、交流后,學(xué)生就能夠發(fā)現(xiàn):對于一般的以整數(shù)為邊長的直角三角形也存在兩直角邊的平方和等于斜邊的平方。通過學(xué)生的動(dòng)手操作、合作交流,來獲取知識,這樣設(shè)計(jì)有利于突破難點(diǎn),也讓學(xué)生體會到觀察、猜想、歸納的數(shù)學(xué)思想及學(xué)習(xí)過程,提高學(xué)生的分析問題和解決問題的能力。
、吃賳枺寒(dāng)邊長不為整數(shù)的直角三角形是否也存在這一結(jié)論呢?投影例題:一個(gè)邊長分別為1.5,3.6,3.9這種含有小數(shù)的直角三角形,讓學(xué)生計(jì)算。這樣設(shè)計(jì)的目的是讓學(xué)生體會到“從特殊到一般”的情形,這樣歸納的結(jié)論更具有一般性。
。ㄈw納驗(yàn)證
【歸納】通過動(dòng)手操作、合作交流,探索邊長為整數(shù)的等腰直角三角形到一般的直角三角形,再到邊長為小數(shù)的直角三角形的兩直角邊與斜邊的關(guān)系,讓學(xué)生在整個(gè)學(xué)習(xí)過程中感受學(xué)數(shù)學(xué)的樂趣,,使學(xué)生學(xué)會“文字語言”與“數(shù)學(xué)語言”這兩種表達(dá)方式,各小組“發(fā)言人”的積極表現(xiàn),整堂課充分發(fā)揮學(xué)生的主體作用,真正獲取知識,解決問題。
【驗(yàn)證】先后三次驗(yàn)證“勾股定理”這一結(jié)論,期間學(xué)生動(dòng)手進(jìn)行了畫圖、剪圖、拼圖,還有測量、計(jì)算等活動(dòng),使學(xué)生從中體會到數(shù)形結(jié)合和從特殊到一般的數(shù)學(xué)思想,而且這一過程也有利于培養(yǎng)學(xué)生嚴(yán)謹(jǐn)、科學(xué)的學(xué)習(xí)態(tài)度。
(四)問題解決
、弊寣W(xué)生解決開始上課前所提出的問題,前后呼應(yīng),讓學(xué)生體會到成功的快樂。
、沧詫W(xué)課本P101例1,然后完成P102練習(xí)。
(五)課堂小結(jié)
1.小組成員從內(nèi)容、數(shù)學(xué)思想方法、獲取知識的途徑進(jìn)行小結(jié),后由“發(fā)言人”匯報(bào),小組間要互相比一比,看看哪一個(gè)小組表現(xiàn)最佳。
2.教師用多媒體介紹“勾股定理史話”
①《周髀算徑》:西周的商高(公元一千多年前)發(fā)現(xiàn)了“勾三股四弦五”這一規(guī)律。
、诳滴鯏(shù)學(xué)專著《勾股圖解》有五種求解直角三角形的方法,積求勾股法是其獨(dú)創(chuàng)。
目的是對學(xué)生進(jìn)行愛國主義教育,激勵(lì)學(xué)生奮發(fā)向上。
(六)布置作業(yè)
課本P104習(xí)題19.2中的第1.2.3題。目的一方面是鞏固“勾股定理”,另一方面是讓學(xué)生進(jìn)一步體會定理與實(shí)際生活的聯(lián)系。
以上內(nèi)容,我僅從“說教材”,“說學(xué)情”、“說教法”、“說學(xué)法”、“說教學(xué)過程”上來說明這堂課“教什么”和“怎么教”,也闡述了“為什么這樣教”,希望各位專家領(lǐng)導(dǎo)對本次說課提出寶貴的意見,謝謝!
《勾股定理》的說課稿5
一、說教材
勾股定理是學(xué)生在已經(jīng)掌握了直角三角形的有關(guān)性質(zhì)的基礎(chǔ)上進(jìn)行學(xué)習(xí)的,它是直角三角形的一條非常重要的性質(zhì),是幾何中最重要的定理之一,它揭示了一個(gè)三角形三條邊之間的數(shù)量關(guān)系,它可以解決直角三角形中的計(jì)算問題,是解直角三角形的主要根據(jù)之一,在實(shí)際生活中用途很大。教材在編寫時(shí)注意培養(yǎng)學(xué)生的動(dòng)手操作能力和分析問題的能力,通過實(shí)際分析、拼圖等活動(dòng),使學(xué)生獲得較為直觀的印象;通過聯(lián)系和比較,理解勾股定理,以利于正確的進(jìn)行運(yùn)用。
據(jù)此,制定教學(xué)目標(biāo)如下:
1、理解并掌握勾股定理及其證明。
2、能夠靈活地運(yùn)用勾股定理及其計(jì)算。
3、培養(yǎng)學(xué)生觀察、比較、分析、推理的能力。
4、通過介紹中國古代勾股方面的成就,激發(fā)學(xué)生熱愛祖國與熱愛祖國悠久文化的思想感情,培養(yǎng)他們的民族自豪感和鉆研精神。
教學(xué)重點(diǎn):勾股定理的證明和應(yīng)用。
教學(xué)難點(diǎn):勾股定理的證明。
二、說教法和學(xué)法
教法和學(xué)法是體現(xiàn)在整個(gè)教學(xué)過程中的,本課的教法和學(xué)法體現(xiàn)如下特點(diǎn):
1、以自學(xué)輔導(dǎo)為主,充分發(fā)揮教師的主導(dǎo)作用,運(yùn)用各種手段激發(fā)學(xué)生學(xué)習(xí)欲望和興趣,組織學(xué)生活動(dòng),讓同學(xué)們主動(dòng)參與學(xué)習(xí)全過程。
2、切實(shí)體現(xiàn)學(xué)生的主體地位,讓學(xué)生通過觀察、分析、討論、操作、歸納,理解定理,提高學(xué)生動(dòng)手操作能力,以及分析問題和解決問題的能力。
3、通過演示實(shí)物,引導(dǎo)學(xué)生觀察、操作、分析、證明,使學(xué)生得到獲得新知的成功感受,從而激發(fā)學(xué)生鉆研新知的欲望。
三、教學(xué)程序
本節(jié)內(nèi)容的教學(xué)主要體現(xiàn)在學(xué)生動(dòng)手、動(dòng)腦方面,根據(jù)學(xué)生的認(rèn)知規(guī)律和學(xué)習(xí)心理,教學(xué)程序設(shè)計(jì)如下:
。ㄒ唬﹦(chuàng)設(shè)情境 以古引新
1、由故事引入,3000多年前有個(gè)叫商高的人對周公說,把一根直尺折成直角,兩端連接得到一個(gè)直角三角形,如果勾是3,股是4,那么弦等于5。這樣引起學(xué)生學(xué)習(xí)興趣,激發(fā)學(xué)生求知欲。
2、是不是所有的直角三角形都有這個(gè)性質(zhì)呢?教師要善于激疑,使學(xué)生進(jìn)入樂學(xué)狀態(tài)。
3、板書課題,出示學(xué)習(xí)目標(biāo)。
。ǘ┏醪礁兄 理解教材
教師指導(dǎo)學(xué)生自學(xué)教材,通過自學(xué)感悟理解新知,體現(xiàn)了學(xué)生的自主學(xué)習(xí)意識,鍛煉學(xué)生主動(dòng)探究知識,養(yǎng)成良好的自學(xué)習(xí)慣。
。ㄈ┵|(zhì)疑解難 討論歸納
1、教師設(shè)疑或?qū)W生提疑。如:如何證明勾股定理?學(xué)生通過自學(xué),中等以上的學(xué)生基本掌握,這時(shí)能激發(fā)同學(xué)們的表現(xiàn)欲。
2、教師引導(dǎo)學(xué)生按照要求進(jìn)行拼圖,觀察并分析;
(1)這兩個(gè)圖形有什么特點(diǎn)?
。2)你能寫出這兩個(gè)圖形的面積嗎?
(3)如何運(yùn)用勾股定理?是否還有其他形式?
這時(shí)教師組織學(xué)生分組討論,調(diào)動(dòng)全體學(xué)生的積極性,達(dá)到人人參與的效果,接著全班交流。先有某一組代表發(fā)言,說明本組對問題的理解程度,其他各組作評價(jià)和補(bǔ)充。教師及時(shí)進(jìn)行富有啟發(fā)性的點(diǎn)撥,最后,師生共同歸納,形成一致意見,最終解決疑難。
(四)鞏固練習(xí) 強(qiáng)化提高
1、出示練習(xí),學(xué)生分組解答,并由學(xué)生總結(jié)解題規(guī)律。課堂教學(xué)中動(dòng)靜結(jié)合,以免引起學(xué)生的疲勞。
2、出示例1學(xué)生試解,師生共同評價(jià),以加深對例題的理解與運(yùn)用。針對例題再次出現(xiàn)鞏固練習(xí),進(jìn)一步提高學(xué)生運(yùn)用知識的能力,對練習(xí)中出現(xiàn)的情況可采取互評、互議的形式,在互評互議中出現(xiàn)的具有代表性的問題,教師可以采取全班討論的形式予以解決,以此突出教學(xué)重點(diǎn)。
。ㄎ澹w納總結(jié) 練習(xí)反饋
引導(dǎo)同學(xué)們對知識要點(diǎn)進(jìn)行總結(jié),梳理學(xué)習(xí)思路。分發(fā)自我反饋練習(xí),同學(xué)們獨(dú)立完成。
本課意在創(chuàng)設(shè)愉悅和諧的樂學(xué)氣氛,優(yōu)化教學(xué)手段,借助電教手段提高課堂教學(xué)效率,建立平等、民主、和諧的師生關(guān)系。加強(qiáng)師生間的合作,營造一種學(xué)生敢想、感說、感問的課堂氣氛,讓全體學(xué)生都能生動(dòng)活潑、積極主動(dòng)地教學(xué)活動(dòng),在學(xué)習(xí)中創(chuàng)新精神和實(shí)踐能力得到培養(yǎng)。
《勾股定理》的說課稿6
一、說教材分析
本節(jié)研究的是勾股定理的探索及其應(yīng)用。它從邊的角度進(jìn)一步對直角三角形的特征進(jìn)行了刻畫。 它的主要內(nèi)容是探索勾股定理,驗(yàn)證勾股定理的正確性,在此基礎(chǔ)上,讓學(xué)生利用勾股定理來解決一些實(shí)際問題。本節(jié)課是在學(xué)生認(rèn)識直角三角形的基礎(chǔ)上,在了解正方形和等腰直角三角形以后進(jìn)行學(xué)習(xí)的,它是前面所學(xué)知識的延伸和拓展,又是后面學(xué)習(xí)勾股定理逆定理的基礎(chǔ),具有承上啟下的作用。
二、說教學(xué)目標(biāo)
教學(xué)目標(biāo)的確定:教學(xué)目標(biāo)是一堂課的中心任務(wù),它只有在豐富多彩的數(shù)學(xué)活動(dòng)中才能充分實(shí)現(xiàn)。一堂課的教學(xué)目標(biāo)應(yīng)全面、適度、明確、具體,便于檢測。因此根據(jù)學(xué)生已有的認(rèn)知基礎(chǔ)和新課程標(biāo)準(zhǔn),我確定了本節(jié)課教學(xué)目標(biāo)為:
1、知識技能:
(1)了解勾股定理的文化背景,體驗(yàn)勾股定理的探索和驗(yàn)證過程。
。2)運(yùn)用勾股定理進(jìn)行簡單的計(jì)算和解釋生活中的實(shí)際問題。
(3)運(yùn)用勾股定理會在數(shù)軸上畫出表示無理數(shù)的點(diǎn)。
2、數(shù)學(xué)思考:
在勾股定理的探索、從實(shí)際問題抽象出直角三角形和在數(shù)軸上畫出表示無理數(shù)的點(diǎn)的過程中,發(fā)展合情推理能力,初步體會、掌握轉(zhuǎn)化和數(shù)形結(jié)合的思想方法。
3、解決問題:
通過拼圖、探究活動(dòng),體驗(yàn)數(shù)學(xué)思維的嚴(yán)謹(jǐn)性,發(fā)展形象思維。學(xué)會與人合作并能與他人交流思維的過程和探究的結(jié)果。能夠運(yùn)用勾股定理解決直角三角形,在數(shù)軸上畫出表示無理數(shù)的點(diǎn)等有關(guān)實(shí)際問題。
4、情感態(tài)度:
。ǎ保┩ㄟ^對勾股定理歷史的了解和實(shí)例應(yīng)用,體會勾股定理的文化價(jià)值,感受數(shù)學(xué)文化,激發(fā)學(xué)習(xí)熱情。
(2)通過獲得成功的經(jīng)驗(yàn)和克服困難的經(jīng)歷,增進(jìn)數(shù)學(xué)學(xué)習(xí)的信心。
。3)通過研究一系列富有探究性的問題,培養(yǎng)學(xué)生與他人交流、合作的意識和品質(zhì)。
三、說教學(xué)重、難點(diǎn)
教學(xué)重、難點(diǎn)的確定:關(guān)注學(xué)生是否能與同伴進(jìn)行有效的合作交流;關(guān)注學(xué)生是否積極的進(jìn)行思考;關(guān)注學(xué)生能否探索出解決問題的方法。
重點(diǎn):通過探索、拼圖驗(yàn)證勾股定理及勾股定理的應(yīng)用過程,使學(xué)生獲得一些研究問題與合作交流的方法經(jīng)驗(yàn)。
難點(diǎn):利用數(shù)形結(jié)合的方法探索發(fā)現(xiàn)、驗(yàn)證勾股定理及其在實(shí)際生活中的應(yīng)用。
四、知識反映出來的技能、能力、方法、德育等因素
本節(jié)知識通過 “ 探索發(fā)現(xiàn)---拼圖實(shí)踐—探索驗(yàn)證—分析結(jié)果—運(yùn)用定理 ” 等活動(dòng)過程,使學(xué)生進(jìn)一步理解勾股定理,并從中學(xué)會思考,學(xué)會探索,學(xué)會運(yùn)用,學(xué)會交流,體會知識反映出來的豐富的文化內(nèi)涵,指導(dǎo)學(xué)生認(rèn)識現(xiàn)實(shí)世界中蘊(yùn)涵著的數(shù)學(xué)信息。
五、教學(xué)方法
數(shù)學(xué)知識、數(shù)學(xué)思想和方法必須由學(xué)生在現(xiàn)實(shí)的數(shù)學(xué)活動(dòng)實(shí)踐中理解和發(fā)展;教學(xué)中,以學(xué)生為本位,充分挖掘教材的空間,為學(xué)生搭建動(dòng)手實(shí)踐、自主探索、合作交流的平臺;
注重讓學(xué)生經(jīng)歷數(shù)學(xué)知識的形成過程,充分調(diào)動(dòng)學(xué)生的學(xué)習(xí)積極性,并通過這個(gè)過程,使學(xué)生體驗(yàn)學(xué)習(xí)成功的樂趣,在積極的思維中獲取知識,發(fā)展能力。
六、教學(xué)程序設(shè)計(jì):
為充分發(fā)揮學(xué)生的主體性和教師的主導(dǎo)輔助作用,設(shè)計(jì)了以下幾個(gè)環(huán)節(jié):
(1)創(chuàng)設(shè)情境,引入新課
問題
某樓房三樓失火,消防隊(duì)員趕來救火,了解到每層樓高3米,消防隊(duì)員取來6.5米長的云梯,如果梯子的底部離墻基的距離是2.5米,請問消防隊(duì)能否進(jìn)入三樓滅火?
師生行為:教師出示照片及圖片,并提出問題,學(xué)生觀察圖片發(fā)表見解。
設(shè)計(jì)意圖:從現(xiàn)實(shí)生活中提出勾股定理,為學(xué)生能夠積極主動(dòng)的投入到探索活動(dòng)創(chuàng)設(shè)情景,激發(fā)學(xué)生學(xué)習(xí)熱情。同時(shí)為探索勾股定理提供背景材料。達(dá)到引入新課的目的。
。1)獨(dú)立探究,合作交流。
講述數(shù)學(xué)家畢達(dá)哥拉斯的故事
問題
A、B、C的面積有什么關(guān)系?
SA+SB=SC
直角三角形三邊有什么關(guān)系?
兩直邊的平方和等于斜邊的平方
設(shè)計(jì)意圖:問題是思維的起點(diǎn),通過激發(fā)學(xué)生好奇、探究和主動(dòng)學(xué)習(xí)的欲望。利用面積相等法,讓學(xué)生發(fā)現(xiàn)以直角三角形兩直角邊為邊長的正方形的面積,以斜邊為邊長的正方形的面積之間的關(guān)系。降低學(xué)生學(xué)習(xí)難度,從(3)自主實(shí)踐,探索驗(yàn)證
《課程標(biāo)準(zhǔn)》指出:“數(shù)學(xué)教學(xué)是數(shù)學(xué)活動(dòng)的教學(xué)!币髮W(xué)生分學(xué)習(xí)小組,動(dòng)手實(shí)踐,積極思考,獲得技能與解決問題的方法。關(guān)注學(xué)生動(dòng)手實(shí)踐,關(guān)注學(xué)生主動(dòng)探索與合作,關(guān)注學(xué)生積極思考,給學(xué)生思維表達(dá)的時(shí)間、空間,讓學(xué)生經(jīng)歷探索知識的過程,并在這個(gè)過程中得到發(fā)展.。
兩種拼圖方案
1、2、
師生行為:教師演示動(dòng)畫和圖片,同時(shí)提出問題,學(xué)生在獨(dú)立思考的基礎(chǔ)上以小組為單位,動(dòng)手拼接,教師深入小組活動(dòng)傾聽學(xué)生的交流,幫助、指導(dǎo)學(xué)生完成拼圖活動(dòng)。學(xué)生展示分割、拼接的過程。
設(shè)計(jì)意圖:通過觀察、拼圖、探究活動(dòng),給學(xué)生充分的時(shí)間與空間討論、交流,鼓勵(lì)學(xué)生敢于發(fā)表自己的見解,感受合作的重要性,充分調(diào)動(dòng)學(xué)生思維的積極性,發(fā)展形象思維,使學(xué)生對定理更加深刻,通過這一教學(xué)過程來達(dá)到突破難點(diǎn)的目的。
。4)應(yīng)用定理,解決問題
數(shù)學(xué)源于實(shí)踐,運(yùn)用于實(shí)踐;開放性處理教材,鼓勵(lì)學(xué)生充分地發(fā)表意見,表現(xiàn)自我,讓學(xué)生在教師營造的“創(chuàng)新土壤”中成為主人;給學(xué)生思維以廣闊的空間,培養(yǎng)學(xué)生從多角度運(yùn)用所學(xué)知識尋求解決問題的能力.
《勾股定理》的說課稿7
課題:“勾股定理”第一課時(shí)
內(nèi)容:教材分析、教學(xué)過程設(shè)計(jì)、設(shè)計(jì)說明
一、教材分析
。ㄒ唬┙滩乃幍牡匚
這節(jié)課是九年制義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書八年級第一章第一節(jié)探索勾股定理第一課時(shí),勾股定理是幾何中幾個(gè)重要定理之一,它揭示的是直角三角形中三邊的數(shù)量關(guān)系。它在數(shù)學(xué)的發(fā)展中起過重要的作用,在現(xiàn)時(shí)世界中也有著廣泛的作用。學(xué)生通過對勾股定理的學(xué)習(xí),可以在原有的基礎(chǔ)上對直角三角形有進(jìn)一步的認(rèn)識和理解。
(二)根據(jù)課程標(biāo)準(zhǔn),本課的教學(xué)目標(biāo)是:
1、能說出勾股定理的內(nèi)容。
2、會初步運(yùn)用勾股定理進(jìn)行簡單的計(jì)算和實(shí)際運(yùn)用。
3、在探索勾股定理的過程中,讓學(xué)生經(jīng)歷“觀察—猜想—?dú)w納—驗(yàn)證”的數(shù)學(xué)思想,并體會數(shù)形結(jié)合和特殊到一般的思想方法。
4、通過介紹勾股定理在中國古代的研究,激發(fā)學(xué)生熱愛祖國,熱愛祖國悠久文化的思想,激勵(lì)學(xué)生發(fā)奮學(xué)習(xí)。
。ㄈ┍菊n的教學(xué)重點(diǎn):探索勾股定理
本課的教學(xué)難點(diǎn):以直角三角形為邊的正方形面積的計(jì)算。
二、教法與學(xué)法分析:
教法分析:針對初二年級學(xué)生的知識結(jié)構(gòu)和心理特征,本節(jié)課可選擇引導(dǎo)探索法,由淺入深,由特殊到一般地提出問題。引導(dǎo)學(xué)生自主探索,合作交流,這種教學(xué)理念反映了時(shí)代精神,有利于提高學(xué)生的思維能力,能有效地激發(fā)學(xué)生的思維積極性,基本教學(xué)流程是:提出問題—實(shí)驗(yàn)操作—?dú)w納驗(yàn)證—問題解決—課堂小結(jié)—布置作業(yè)六部分。
學(xué)法分析:在教師的組織引導(dǎo)下,采用自主探索、合作交流的研討式學(xué)習(xí)方式,讓學(xué)生思考問題,獲取知識,掌握方法,借此培養(yǎng)學(xué)生動(dòng)手、動(dòng)腦、動(dòng)口的能力,使學(xué)生真正成為學(xué)習(xí)的主體。
三、教學(xué)過程設(shè)計(jì)
。ㄒ唬┨岢鰡栴}:
首先創(chuàng)設(shè)這樣一個(gè)問題情境:某樓房三樓失火,消防隊(duì)員趕來救火,了解到每層樓高3米,消防隊(duì)員取來6.5米長的云梯,如果梯子的底部離墻基的距離是2.5米,請問消防隊(duì)員能否進(jìn)入三樓滅火?問題設(shè)計(jì)具有一定的挑戰(zhàn)性,目的是激發(fā)學(xué)生的探究欲望,教師引導(dǎo)學(xué)生將實(shí)際問題轉(zhuǎn)化成數(shù)學(xué)問題,也就是“已知一直角三角形的兩邊,如何求第三邊?”的問題。學(xué)生會感到困難,從而教師指出學(xué)習(xí)了今天這一課后就有辦法解決了。這種以實(shí)際問題為切入點(diǎn)引入新課,不僅自然,而且反映了數(shù)學(xué)來源于實(shí)際生活,數(shù)學(xué)是從人的需要中產(chǎn)生這一認(rèn)識的基本觀點(diǎn),同時(shí)也體現(xiàn)了知識的發(fā)生過程,而且解決問題的過程也是一個(gè)“數(shù)學(xué)化”的過程。
。ǘ⿲(shí)驗(yàn)操作:
1、投影課本圖1—1,圖1—2的有關(guān)直角三角形問題,讓學(xué)生計(jì)算正方形A,B,C的面積,學(xué)生可能有不同的方法,不管是通過直接數(shù)小方格的個(gè)數(shù),還是將C劃分為4個(gè)全等的等腰直角三角形來求等等,各種方法都應(yīng)予于肯定,并鼓勵(lì)學(xué)生用語言進(jìn)行表達(dá),引導(dǎo)學(xué)生發(fā)現(xiàn)正方形A,B,C的面積之間的數(shù)量關(guān)系,從而學(xué)生通過正方形面積之間的關(guān)系容易發(fā)現(xiàn)對于等腰直角三角形而言滿足兩直角邊的平方和等于斜邊的平方。這樣做有利于學(xué)生參與探索,感受數(shù)學(xué)學(xué)習(xí)的過程,也有利于培養(yǎng)學(xué)生的語言表達(dá)能力,體會數(shù)形結(jié)合的思想。
2、接著讓學(xué)生思考:如果是其它一般的直角三角形,是否也具備這一結(jié)論呢?于是投影圖1—3,圖1—4,同樣讓學(xué)生計(jì)算正方形的面積,但正方形C的面積不易求出,可讓學(xué)生在預(yù)先準(zhǔn)備的方格紙上畫出圖形,在剪一剪,拼一拼后學(xué)生也不難發(fā)現(xiàn)對于一般的以整數(shù)為邊長的直角三角形也有兩直角邊的平方和等于斜邊的平方。這樣設(shè)計(jì)不僅有利于突破難點(diǎn),而且為歸納結(jié)論打下了基礎(chǔ),讓學(xué)生體會到觀察、猜想、歸納的思想,也讓學(xué)生的分析問題和解決問題的能力在無形中得到了提高,這對后面的學(xué)習(xí)及有幫助。
3、給出一個(gè)邊長為0.5,1.2,1.3,這種含小數(shù)的直角三角形,讓學(xué)生計(jì)算是否也滿足這個(gè)結(jié)論,設(shè)計(jì)的目的是讓學(xué)生體會到結(jié)論更具有一般性。
。ㄈw納驗(yàn)證:
1、歸納通過對邊長為整數(shù)的等腰直角三角形到一般直角三角形再到邊長含小數(shù)的直角三角形三邊關(guān)系的研究,讓學(xué)生用數(shù)學(xué)語言概括出一般的結(jié)論,盡管學(xué)生可能講的不完全正確,但對于培養(yǎng)學(xué)生運(yùn)用數(shù)學(xué)語言進(jìn)行抽象、概括的能力是有益的,同時(shí)發(fā)揮了學(xué)生的主體作用,也便于記憶和理解,這比教師直接教給學(xué)生一個(gè)結(jié)論要好的多。
2、驗(yàn)證為了讓學(xué)生確信結(jié)論的正確性,引導(dǎo)學(xué)生在紙上任意作一個(gè)直角三角形,通過測量、計(jì)算來驗(yàn)證結(jié)論的正確性。這一過程有利于培養(yǎng)學(xué)生嚴(yán)謹(jǐn)、科學(xué)的學(xué)習(xí)態(tài)度。然后引導(dǎo)學(xué)生用符號語言表示,因?yàn)閷⑽淖终Z言轉(zhuǎn)化為數(shù)學(xué)語言是學(xué)習(xí)數(shù)學(xué)學(xué)習(xí)的一項(xiàng)基本能力。接著教師向?qū)W生介紹“勾,股,弦”的含義、勾股定理,進(jìn)行點(diǎn)題,并指出勾股定理只適用于直角三角形。最后向?qū)W生介紹古今中外對勾股定理的研究,對學(xué)生進(jìn)行愛國主義教育。
。ㄋ模﹩栴}解決:
讓學(xué)生解決開頭的實(shí)際問題,前后呼應(yīng),學(xué)生從中能體會到成功的喜悅。完成課本“想一想”進(jìn)一步體會勾股定理在實(shí)際生活中的應(yīng)用,數(shù)學(xué)是與實(shí)際生活緊密相連的。
(五)課堂小結(jié):
主要通過學(xué)生回憶本節(jié)課所學(xué)內(nèi)容,從內(nèi)容、應(yīng)用、數(shù)學(xué)思想方法、獲取新知的途徑方面先進(jìn)行小結(jié),后由教師總結(jié)。
。┎贾米鳂I(yè):
課本P6習(xí)題1.11,2,3,4一方面鞏固勾股定理,另一方面進(jìn)一步體會定理與實(shí)際生活的聯(lián)系。另外,補(bǔ)充一道開放題。
四、設(shè)計(jì)說明
1、本節(jié)課是公式課,根據(jù)學(xué)生的知識結(jié)構(gòu),我采用的教學(xué)流程是:提出問題—實(shí)驗(yàn)操作—?dú)w納驗(yàn)證—問題解決—課堂小結(jié)—布置作業(yè)六部分,這一流程體現(xiàn)了知識發(fā)生、形成和發(fā)展的過程,讓學(xué)生體會到觀察、猜想、歸納、驗(yàn)證的思想和數(shù)形結(jié)合的思想。
2、探索定理采用了面積法,引導(dǎo)學(xué)生利用實(shí)驗(yàn)由特殊到一般再到更一般的對直角三角形三邊關(guān)系的研究,得出結(jié)論。這種方法是認(rèn)識事物規(guī)律的重要方法之一,通過教學(xué)讓學(xué)生初步掌握這種方法,對于學(xué)生良好思維品質(zhì)的形成有重要作用,對學(xué)生的終身發(fā)展也有一定的作用。
3、關(guān)于練習(xí)的設(shè)計(jì),除兩個(gè)實(shí)際問題和課本習(xí)題以外,我準(zhǔn)備設(shè)計(jì)一道開放題,大致思路是在已畫出斜邊上的高的直角三角形中讓學(xué)生盡量地找出線段之間的關(guān)系。
4、本課小結(jié)從內(nèi)容,應(yīng)用,數(shù)學(xué)思想方法,獲取知識的途徑等幾個(gè)方面展開,既有知識的總結(jié),又有方法的提煉,這樣對于學(xué)生學(xué)知識,用知識的意識是有很大的促進(jìn)的。
《勾股定理》的說課稿8
一、 教材分析
1. 教材的地位和作用
它也是幾何中最重要的定理,它將形和數(shù)密切聯(lián)系起來,在數(shù)學(xué)的發(fā)展中起著重要的作用。
因此他的教育教學(xué)價(jià)值就具體體現(xiàn)在如下三維目標(biāo)中:
知識與技能:
1、經(jīng)歷勾股定理的探索過程,體會數(shù)形結(jié)合思想。
2、理解直角三角形三邊的關(guān)系,會應(yīng)用勾股定理解決一些簡單的實(shí)際問題。
過程與方法:
1、經(jīng)歷觀察—猜想—?dú)w納—驗(yàn)證等一系列過程,體會數(shù)學(xué)定理發(fā)現(xiàn)的過程,由特殊到一般的解決問題的方法。
2、在觀察、猜想、歸納、驗(yàn)證等過程中培養(yǎng)學(xué)生們的數(shù)學(xué)語言表達(dá)能力和初步的邏輯推理能力。
情感、態(tài)度與價(jià)值觀:
1、通過對勾股定理歷史的了解,感受數(shù)學(xué)文化,激發(fā)學(xué)習(xí)興趣。
2、在探究活動(dòng)中,體驗(yàn)解決問題方法的多樣性,培養(yǎng)學(xué)生們的合作意識和然所精神。
3、讓學(xué)生們通過動(dòng)手實(shí)踐,增強(qiáng)探究和創(chuàng)新意識,體驗(yàn)研究過程,學(xué)習(xí)研究方法,逐步養(yǎng)成一種積極的生動(dòng)的,自助合作探究的學(xué)習(xí)方式。
由于八年級的學(xué)生們具有一定分析能力,但活動(dòng)經(jīng)驗(yàn)不足,所以
本節(jié)課教學(xué)重點(diǎn):勾股定理的探索過程,并掌握和運(yùn)用它。
教學(xué)難點(diǎn):分割,補(bǔ)全法證面積相等,探索勾股定理。
二..教法學(xué)法分析:
要上好一堂課,就是要把所確定的三維目標(biāo)有機(jī)地溶入到教學(xué)過程中去,所以我采用了“引導(dǎo)探究式”的教學(xué)方法:
先從學(xué)生們熟知的生活實(shí)例出發(fā),以生活實(shí)踐為依托,將生活圖形數(shù)學(xué)化,然后由特殊到一般地提出問題,引導(dǎo)學(xué)生們在自主探究與合作交流中解決問題,同時(shí)也真正體現(xiàn)了數(shù)學(xué)課堂是學(xué)生們自己的課堂。
學(xué)法:我想通過“操作+思考”這樣方式,有效地讓學(xué)生們在動(dòng)手、動(dòng)腦、自主探究與合作交流中來發(fā)現(xiàn)新知,同時(shí)讓學(xué)生們感悟到:學(xué)習(xí)任何知識的最好方法就是自己去探究。
三、 教學(xué)程序設(shè)計(jì)
1、 故事引入新課,激起學(xué)生們學(xué)習(xí)興趣。
牛頓,瓦特的故事,讓學(xué)生們科學(xué)家的偉大成就多數(shù)都是在看似平淡無奇的現(xiàn)象中發(fā)現(xiàn)和研究出來的;生活中處處有數(shù)學(xué),我們應(yīng)該學(xué)會觀察、思考,將學(xué)習(xí)與生活緊密結(jié)合起來。畢達(dá)哥拉斯的發(fā)現(xiàn)引入新課。
2、探索新知
在這里我設(shè)計(jì)了四個(gè)內(nèi)容:
①探索等腰直角三角形三邊的關(guān)系
、谶呴L為3、4、5為邊長的直角三角形的三邊關(guān)系
、蹖W(xué)生們畫兩直角邊為2,6的直角三角形,探索三邊的關(guān)系
、苋厼閍、b、c的直角三角形的三邊的關(guān)系,(證明)
、莨垂啥ɡ須v史介紹,讓學(xué)生們體會勾股定理的文化價(jià)值。
體現(xiàn)從特殊到一般的發(fā)現(xiàn)問題的過程。
3、新知運(yùn)用:
、倥e出勾股定理在生活中的運(yùn)用。(老師講解勾股定理在生活中的運(yùn)用)
、谠谥苯侨切沃,已知∠ B=90° ,AB=6,BC=8,求AC.
③要做一個(gè)人字梯,要求人字梯的跨度為6米,高為4米,請問怎么做?
、苋鐖D,學(xué)校有一塊長方形花鋪,有極少數(shù)人為了避開拐角走“捷徑”,在花鋪內(nèi)走出了一條“路”.他們僅僅少走了 步路(假設(shè)2步為1米),卻踩傷了花草.
4、小結(jié)本課:
學(xué)完了這節(jié)課,你有什么收獲?
老師補(bǔ)充:科學(xué)家的偉大成就多數(shù)都是在看似平淡無奇的現(xiàn)象中發(fā)現(xiàn)和研究出來的;生活中處處有數(shù)學(xué),我們應(yīng)該學(xué)會觀察、思考,將學(xué)習(xí)與生活緊密結(jié)合起來。數(shù)學(xué)來源于實(shí)踐,而又應(yīng)用于實(shí)踐。解決一個(gè)問題的方法是多樣性的,我們要多思考。 勾股定是數(shù)學(xué)史上的明珠,證明方法有很多種,我們將在下一節(jié)課學(xué)習(xí)它。
《勾股定理》的說課稿9
一、勾股定理是我國古數(shù)學(xué)的一項(xiàng)偉大成就.勾股定理為我們提供了直角三角形的三邊間的數(shù)量關(guān)系,它的逆定理為我們提供了判斷三角形是否屬于直角三角形的依據(jù),也是判定兩條直線是否互相垂直的一個(gè)重要方法,這些成果被廣泛應(yīng)用于數(shù)學(xué)和實(shí)際生活的各個(gè)方面.教材在編寫時(shí)注意培養(yǎng)學(xué)生的動(dòng)手操作能力和分析問題的能力,通過實(shí)際分析,使學(xué)生獲得較為直觀的印象,通過聯(lián)系和比較,了解勾股定理在實(shí)際生活中的廣泛應(yīng)用. 據(jù)此,制定教學(xué)目標(biāo)如下:
1.知識和方法目標(biāo):通過對一些典型題目的思考,練習(xí),能正確熟練地進(jìn)行勾股定理有關(guān)計(jì)算,深入對勾股定理的理解. 2.過程與方法目標(biāo):通過對一些題目的探討,以達(dá)到掌握知識的目的.
3.情感與態(tài)度目標(biāo):感受數(shù)學(xué)在生活中的應(yīng)用,感受數(shù)學(xué)定理的美.
教學(xué)重點(diǎn):勾股定理的應(yīng)用. 教學(xué)難點(diǎn):勾股定理的正確使用.
教學(xué)關(guān)鍵:在現(xiàn)實(shí)情境中捕抓直角三角形,確定好直角三角形之后,再應(yīng)用勾股定理.
二.說教法和學(xué)法
1.以自學(xué)輔導(dǎo)為主,充分發(fā)揮教師的主導(dǎo)作用,運(yùn)用各種手段激發(fā)學(xué)習(xí)欲望和興趣,組織學(xué)生活動(dòng),讓學(xué)生主動(dòng)參與學(xué)習(xí)全過程.
2.切實(shí)體現(xiàn)學(xué)生的主體地位,讓學(xué)生通過觀察,分析,討論,操作,歸納理解定理,提高學(xué)生動(dòng)手操作能力,以及分析問題和解決問題的能力.
3.通過演示實(shí)物,引導(dǎo)學(xué)生觀察,操作,分析,證明,使學(xué)生獲得新知的成功感受,從而激發(fā)學(xué)生鉆研新知的欲望.
三、教學(xué)程序本節(jié)內(nèi)容的教學(xué)主要體現(xiàn)在學(xué)生的動(dòng)手,動(dòng)腦方面,根據(jù)學(xué)生的認(rèn)知規(guī)律和學(xué)習(xí)心理,教學(xué)程序設(shè)置如下: 回顧問:勾股定理的內(nèi)容是什么? 勾股定理揭示了直角三角形三邊之間的關(guān)系,今天我們來學(xué)習(xí)這個(gè)定理在實(shí)際生活中的應(yīng)用.
《勾股定理》的說課稿10
尊敬的各位評委、老師,您們好。
我是臨沂市蒼山縣實(shí)驗(yàn)中學(xué)的**。今天我說課的內(nèi)容是人教版《數(shù)學(xué)》八年級下冊第十八章第一節(jié)《勾股定理》第一課時(shí),我將從教材、教法與學(xué)法、教學(xué)過程、教學(xué)評價(jià)以及設(shè)計(jì)說明五個(gè)方面來闡述對本節(jié)課的理解與設(shè)計(jì)。
一、教材分析:
。ㄒ唬 教材的地位與作用
從知識結(jié)構(gòu)上看,勾股定理揭示了直角三角形三條邊之間的數(shù)量關(guān)系,為后續(xù)學(xué)習(xí)解直角三角形提供重要的理論依據(jù),在現(xiàn)實(shí)生活中有著廣泛的應(yīng)用。
從學(xué)生們認(rèn)知結(jié)構(gòu)上看,它把形的特征轉(zhuǎn)化成數(shù)量關(guān)系,架起了幾何與代數(shù)之間的橋梁;
勾股定理又是對學(xué)生進(jìn)行愛國主義教育的良好素材,因此具有相當(dāng)重要的地位和作用。
根據(jù)數(shù)學(xué)新課程標(biāo)準(zhǔn)以及八年級學(xué)生的認(rèn)知水平我確定如下學(xué)習(xí)目標(biāo):知識技能、數(shù)學(xué)思考、問題解決、情感態(tài)度。其中【情感態(tài)度】方面,以我國數(shù)學(xué)文化為主線,激發(fā)學(xué)生們熱愛祖國悠久文化的情感。
。ǘ┲攸c(diǎn)與難點(diǎn)
為變被動(dòng)接受為主動(dòng)探究,我確定本節(jié)課的重點(diǎn)為:勾股定理的探索過程。限于八年級學(xué)生的思維水平,我將面積法(拼圖法)發(fā)現(xiàn)勾股定理確定為本節(jié)課的難點(diǎn),我將引導(dǎo)學(xué)生動(dòng)手實(shí)驗(yàn)突出重點(diǎn),合作交流突破難點(diǎn)。
二、教學(xué)與學(xué)法分析
教學(xué)方法 葉圣陶說過“教師之為教,不在全盤授予,而在相機(jī)誘導(dǎo)!币虼死蠋焸兝脦缀沃庇^提出問題,引導(dǎo)學(xué)生由淺入深的探索,設(shè)計(jì)實(shí)驗(yàn)讓學(xué)生進(jìn)行驗(yàn)證,感悟其中所蘊(yùn)涵的思想方法。
學(xué)法指導(dǎo) 為把學(xué)習(xí)的主動(dòng)權(quán)還給學(xué)生,教師鼓勵(lì)學(xué)生采用動(dòng)手實(shí)踐,自主探索、合作交流的學(xué)習(xí)方法,讓學(xué)生親自感知體驗(yàn)知識的形成過程。
三、教學(xué)過程
我國的數(shù)學(xué)文化源遠(yuǎn)流長、博大精深,為了使學(xué)生感受其傳承的魅力,我將本節(jié)課設(shè)計(jì)為以下五個(gè)環(huán)節(jié)。
第一步 情境導(dǎo)入 古韻今風(fēng)
給出《七巧八分圖》中的一組圖片,讓學(xué)生利用兩組七巧板進(jìn)行合作拼圖。(請看視頻)讓學(xué)生觀察并思考三個(gè)正方形面積之間的關(guān)系?它們圍成了什么三角形?反映在三邊上,又蘊(yùn)含著什么數(shù)學(xué)奧秘呢?寓教于樂,激發(fā)學(xué)生好奇、探究的欲望。
第二步 追溯歷史 解密真相
勾股定理的探索過程是本節(jié)課的重點(diǎn),依照數(shù)學(xué)知識的循序漸進(jìn)、螺旋上升的原則,我設(shè)計(jì)如下三個(gè)活動(dòng)。
從上面低起點(diǎn)的問題入手,有利于學(xué)生參與探索。學(xué)生很容易發(fā)現(xiàn),在等腰三角形中存在如下關(guān)系。巧妙的將面積之間的關(guān)系轉(zhuǎn)化為邊長之間的關(guān)系,體現(xiàn)了轉(zhuǎn)化的思想。觀察發(fā)現(xiàn)雖然直觀,但面積計(jì)算更具說服力。將圖形轉(zhuǎn)化為邊在格線上的圖形,以便于計(jì)算圖形面積,體現(xiàn)了數(shù)形結(jié)合的思想。學(xué)生會想到用“數(shù)格子”的方法,這種方法雖然簡單易行,但對于下一步探索一般直角三角形并不適用,具有局限性。因此教師應(yīng)引導(dǎo)學(xué)生利用“割”和“補(bǔ)”的方法求正方形C的面積,為下一步探索復(fù)雜圖形的面積做鋪墊。
突破等腰直角三角形的束縛,探索在一般情況下的直角三角形是否也存在這一結(jié)論呢?體現(xiàn)了“從特殊到一般”的認(rèn)知規(guī)律。教師給出邊長單位長度分別為3、4、5的直角三角形,避免了學(xué)生因作圖不準(zhǔn)確而產(chǎn)生的錯(cuò)誤,也為下面 “勾三股四弦五”的提出埋下伏筆。有了上一環(huán)節(jié)的鋪墊,有效地分散了難點(diǎn)。在求正方形C的面積時(shí),學(xué)生將展示“割”的方法, “補(bǔ)”的方法,有的學(xué)生可能會發(fā)現(xiàn)平移的方法,旋轉(zhuǎn)的方法,對于這兩種新方法教師應(yīng)給于表揚(yáng),肯定學(xué)生的研究成果,培養(yǎng)學(xué)生的類比、遷移以及探索問題的能力。
使用幾何畫板動(dòng)態(tài)演示,使幾何與代數(shù)之間的關(guān)系可視化。當(dāng)為直角三角形時(shí),改變?nèi)呴L度三邊關(guān)系不變,當(dāng)∠α為銳角或鈍角時(shí),三邊關(guān)系就改變了,進(jìn)而強(qiáng)調(diào)了命題成立的前提條件必須是直角三角形。加深學(xué)生對勾股定理理解的同時(shí)也拓展了學(xué)生的視野。
以上三個(gè)環(huán)節(jié)層層深入步步引導(dǎo),學(xué)生歸納得到命題1,從而培養(yǎng)學(xué)生的合情推理能力以及語言表達(dá)能力。
感性認(rèn)識未必是正確的,推理驗(yàn)證證實(shí)我們的猜想。
第三步 推陳出新 借古鼎新
教材中直接給出“趙爽弦圖”的證法對學(xué)生的思維是一種禁錮,教師創(chuàng)新使用教材,利用拼圖活動(dòng)解放學(xué)生的大腦,讓學(xué)生發(fā)揮自己的聰明才智證明勾股定理。這是教學(xué)的難點(diǎn)也是重點(diǎn),教師應(yīng)給學(xué)生充分的自主探索的時(shí)間與空間,讓學(xué)生的思維在相互討論中碰撞、在相互學(xué)習(xí)中完善。教師深入到學(xué)生中間,觀察學(xué)生探究方法接受學(xué)生的質(zhì)疑,對于不同的拼圖方案給予肯定。從而體現(xiàn)出“學(xué)生是學(xué)習(xí)的主體,教師是組織者、引導(dǎo)者與合作者”這一教學(xué)理念。學(xué)生會發(fā)現(xiàn)兩種證明方案。
方案1為趙爽弦圖,學(xué)生講解論證過程,再現(xiàn)古代數(shù)學(xué)家的探索方法。方案2為學(xué)生自己探索的結(jié)果,論證之巧較方案1有異曲同工之妙。整個(gè)探索過程,讓學(xué)生經(jīng)歷由表面到本質(zhì),由合情推理到演繹推理的發(fā)掘過程,體會數(shù)學(xué)的嚴(yán)謹(jǐn)性。對比“古”、“今”兩種證法,讓學(xué)生體會“吹盡黃沙始到金”的喜悅,感受到“青出于藍(lán)而勝于藍(lán)”的自豪感。板書勾股定理,進(jìn)而給出字母表示,培養(yǎng)學(xué)生的符號意識。
教師對“勾、股、弦”的含義以及古今中外對勾股定理的研究做一個(gè)介紹,使學(xué)生感受數(shù)學(xué)文化,培養(yǎng)民族自豪感和愛國主義精神。利用勾股樹動(dòng)態(tài)演示,讓學(xué)生欣賞數(shù)學(xué)的精巧、優(yōu)美。
第四步 取其精華 古為今用
我按照“理解—掌握—運(yùn)用”的梯度設(shè)計(jì)了如下三組習(xí)題。
。1)對應(yīng)難點(diǎn),鞏固所學(xué);(2)考查重點(diǎn),深化新知;(3)解決問題,感受應(yīng)用
第五步 溫故反思 任務(wù)后延
在課堂接近尾聲時(shí),我鼓勵(lì)學(xué)生從“四基”的要求對本節(jié)課進(jìn)行小結(jié)。進(jìn)而總結(jié)出一個(gè)定理、二個(gè)方案、三種思想、四種經(jīng)驗(yàn)。
然后布置作業(yè),分層作業(yè)體現(xiàn)了教育面向全體學(xué)生的理念。
四、教學(xué)評價(jià)
在探究活動(dòng)中,教師評價(jià)、學(xué)生自評與互評相結(jié)合,從而體現(xiàn)評價(jià)主體多元化和評價(jià)方式的多樣化。
五、設(shè)計(jì)說明
本節(jié)課探究體驗(yàn)貫穿始終,展示交流貫穿始終,習(xí)慣養(yǎng)成貫穿始終,情感教育貫穿始終,文化育人貫穿始終。
采用 “七巧板”代替教材中“畢達(dá)哥拉斯地板磚”利用我國傳統(tǒng)文化引入課題,趙爽弦圖證明定理,符合本節(jié)課以我國數(shù)學(xué)文化為主線這一設(shè)計(jì)理念,展現(xiàn)了我國古代數(shù)學(xué)璀璨的歷史,激發(fā)學(xué)生再創(chuàng)數(shù)學(xué)輝煌的愿望。
以上就是我對《勾股定理》這一課的設(shè)計(jì)說明,有不足之處請?jiān)u委老師們指正,謝謝大家。
《勾股定理》的說課稿11
尊敬的各位評委:
您們好!我來自明光市張八嶺中學(xué)。今天我說課的課題是《勾股定理》。本課選自九年義務(wù)教育滬科版八年級下冊初中數(shù)學(xué)第十九章第一節(jié)的第一課時(shí)。
下面我從教學(xué)背景分析、教材處理、教學(xué)策略、教學(xué)流程方面對本課的設(shè)計(jì)進(jìn)行說明。
一、教學(xué)背景分析
1、教材分析
本節(jié)課是學(xué)生在已經(jīng)掌握了直角三角形有關(guān)性質(zhì)的基礎(chǔ)上進(jìn)行學(xué)習(xí)的,通過一枚1955年由希臘發(fā)行的郵票上圖案的故事,引入勾股定理,進(jìn)而探索直角三角形三邊的數(shù)量關(guān)系,并應(yīng)用它解決問題。學(xué)好本節(jié)不僅為下節(jié)勾股定理的逆定理打下良好基礎(chǔ),而且為今后學(xué)習(xí)解直角三角形奠定基礎(chǔ),同時(shí)在實(shí)際生活中用途也很大。勾股定理是直角三角形的一條非常重要的性質(zhì),是幾何中一個(gè)非常重要的定理,它揭示了直角三角形三邊之間的數(shù)量關(guān)系,將數(shù)與形密切地聯(lián)系起來,它有著豐富的歷史背景,在理論上占有重要的地位。
2、學(xué)情分析
學(xué)生已經(jīng)學(xué)習(xí)了有關(guān)三角形的一些知識,如三角形的三邊不等關(guān)系,三角形全等的判定等。也學(xué)過不少利用圖形面積來探求數(shù)式運(yùn)算規(guī)律的例子,如探求乘法公式、單項(xiàng)式乘多項(xiàng)式法則、多項(xiàng)式乘多項(xiàng)式法則等。在學(xué)生這些原有的認(rèn)知水平基礎(chǔ)上,探求直角三角形的又一重要性質(zhì)——勾股定理。讓學(xué)生的知識形成知識鏈,讓學(xué)生已具有的數(shù)學(xué)思維能力得以充分發(fā)揮和發(fā)展。
3、教學(xué)目標(biāo):
根據(jù)八年級學(xué)生的認(rèn)知水平,依據(jù)新課程標(biāo)準(zhǔn)和教學(xué)大綱的要求,我制定了如下的教學(xué)目標(biāo):
知識與技能:了解勾股定理的發(fā)現(xiàn)過程,掌握勾股定理的內(nèi)容,會用面積法證明勾股定理;培養(yǎng)在實(shí)際生活中發(fā)現(xiàn)問題總結(jié)規(guī)律的意識和能力.
過程與方法:在探索勾股定理的過程中,讓學(xué)生經(jīng)歷“觀察—猜想—?dú)w納—驗(yàn)證”的數(shù)學(xué)思想,并體會數(shù)形結(jié)合和從特殊到一般的思想方法。
情感態(tài)度價(jià)值觀:感受數(shù)學(xué)文化,激發(fā)學(xué)生學(xué)習(xí)的熱情,體驗(yàn)合作學(xué)習(xí)成功的喜悅,滲透數(shù)形結(jié)合的思想。
4、教學(xué)重點(diǎn)、難點(diǎn)
通過研究分析可見,勾股定理是平面幾何的重要定理,有著承上啟下的作用,在今后的生活實(shí)踐中有著廣泛應(yīng)用。因此我確定本課的教學(xué)重點(diǎn)為勾股定理的證明與運(yùn)用,教學(xué)難點(diǎn)為用面積法證明勾股定理
二、教材處理
根據(jù)學(xué)生情況,為有效培養(yǎng)學(xué)生能力,在教學(xué)過程中,我先以數(shù)學(xué)史中的一個(gè)有趣的故事來激發(fā)學(xué)生學(xué)習(xí)興趣,運(yùn)用直觀教具、多媒體等手段,調(diào)動(dòng)學(xué)生學(xué)習(xí)積極性,并開展以探究活動(dòng)為主的教學(xué)模式,邊設(shè)疑,邊講解,邊操作,邊討論,啟發(fā)學(xué)生提出問題,分析問題,進(jìn)而解決問題,以達(dá)到突出重點(diǎn),攻破難點(diǎn)的目的。
三、教學(xué)策略
1、教法
“教必有法,而教無定法”,只有方法恰當(dāng),才會有效。根據(jù)本課內(nèi)容特點(diǎn)和八年級學(xué)生思維活動(dòng)特點(diǎn),我采用了引導(dǎo)發(fā)現(xiàn)教學(xué)法,合作探究教學(xué)法,逐步滲透教學(xué)法和師生共研相結(jié)合的方法。
2、學(xué)法
“授人以魚,不如授人以漁”,通過設(shè)計(jì)問題序列,引導(dǎo)學(xué)生主動(dòng)探究新知,合作交流,體現(xiàn)學(xué)習(xí)的自主性,從不同層次發(fā)掘不同學(xué)生的不同能力,從而達(dá)到發(fā)展學(xué)生思維能力的目的,發(fā)掘?qū)W生的創(chuàng)新精神。
3、教學(xué)手段
充分利用多媒體,提高教學(xué)效率,增大教學(xué)容量;通過多媒體演示,激發(fā)學(xué)生學(xué)習(xí)興趣,啟迪學(xué)生思維的發(fā)展;通過直觀教具,進(jìn)行動(dòng)手操作,調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性,培養(yǎng)學(xué)生思維的廣闊性。
4、教學(xué)模式
根據(jù)新課標(biāo)要求,要積極倡導(dǎo)自主、合作、探究的學(xué)習(xí)方式,我采用了創(chuàng)設(shè)情境——探究新知——反饋訓(xùn)練的教學(xué)模式,使學(xué)生獲取知識,提高素質(zhì)能力。
四、教學(xué)流程
。ㄒ唬﹦(chuàng)設(shè)情境,引入新課(時(shí)長2~3分鐘)
我利用多媒體課件,給學(xué)生展示一枚1955年由希臘發(fā)行的郵票,并問學(xué)生是否想聽這枚郵票背后的故事?
在20xx多年前,古希臘有一位著名的數(shù)學(xué)家——畢達(dá)哥拉斯,有次參加一位政要人物邀請的餐會,這位主人的宮殿般豪華的餐廳鋪著正方形的美麗的大理石地磚,由于大餐遲遲不上桌,這些饑腸轆轆的貴賓頗有怨言,但這位善于觀察和理解的數(shù)學(xué)家卻凝視腳下這些排列規(guī)則,美麗的方形瓷磚,畢達(dá)哥拉斯不只是欣賞瓷磚的美麗,而是想到它們和“數(shù)”之間的關(guān)系,于是他拿了畫筆并且蹲在地板上,選了一塊瓷磚以它的對角線為邊畫了一個(gè)大正方形,同學(xué)們,你們知道他發(fā)現(xiàn)了什么嗎?
對學(xué)生的回答進(jìn)行引導(dǎo),梳理,總結(jié),可以得到有關(guān)三個(gè)正方形面積的結(jié)論。進(jìn)而引入本節(jié)課的標(biāo)題:19.1 勾股定理(板書)
。ㄒ孕」适录ぐl(fā)學(xué)生的興趣,隨后以開放式的問題形式,讓學(xué)生觀察猜想。本環(huán)節(jié)體現(xiàn)了人文關(guān)懷,并兼顧了教材中的探究,為下一步勾股定理的證明埋下伏筆。)
。ǘ┮龑(dǎo)學(xué)生,探究新知(教學(xué)時(shí)長15~20分鐘)
1、初步感知定理:
。1)用什么方法來探求:勾股定理即直角三角形三邊數(shù)量關(guān)系呢?
回憶我們曾經(jīng)利用圖形面積探索過數(shù)學(xué)公式,大家還記得在哪用過嗎?
。▽W(xué)生討論)
課件展示:平方差公式、完全平方公式、單項(xiàng)式乘多項(xiàng)式、多項(xiàng)式乘多項(xiàng)式的引出.
今天,讓我們試一試通過計(jì)算圖形的面積能不能得到直角三角形三邊數(shù)量關(guān)系. (從學(xué)生已有的學(xué)習(xí)經(jīng)驗(yàn)出發(fā),將探求邊長之間的關(guān)系轉(zhuǎn)化為探求面積之間的關(guān)系,讓學(xué)生覺得解決今天問題的方法并不陌生,增強(qiáng)探索問題的信心.)
。2)展示課本上圖19—1和圖19—2(1)的圖形,觀察圖中三個(gè)正方形有什么關(guān)系?
讓學(xué)生通過觀察,計(jì)算出三個(gè)正方形的面積可以發(fā)現(xiàn):對于等腰直角三角形,其兩直角邊的平方和等于斜邊的平方,即當(dāng)∠C=90°,AC=BC時(shí),則AB。
。ㄟ@樣做有利于學(xué)生參與探索,感受數(shù)學(xué)學(xué)習(xí)的過程,也有利于培養(yǎng)學(xué)生的語言表達(dá)能力,體會數(shù)形結(jié)合的思想。)
。3)緊接著讓學(xué)生思考:上述是在等腰直角三角形中的情況,那么在一般情況下的直角三角形中,是否也存在這一結(jié)論呢?于是再利用多媒體投影出圖19.2(2)(一般直角三角形)。學(xué)生可以同樣求出兩個(gè)小正方形面積,只是求大正方形的面積有一些困難,這時(shí)可讓學(xué)生在預(yù)先準(zhǔn)備的方格紙上畫出圖形,再剪一剪、拼一拼,通過小組合作、交流后,學(xué)生就能夠發(fā)現(xiàn):對于一般的以整數(shù)為邊長的直角三角形也存在兩直角邊的平方和等于斜邊的平方。
給出書中的定理(板書)并用彎曲的手臂形象地表示勾、股、弦的概念,板書勾股定理,進(jìn)而給出字母表達(dá)式.
通過學(xué)生的動(dòng)手操作、合作交流,來獲取知識,這樣設(shè)計(jì)有利于突破難點(diǎn),也讓學(xué)生體會到觀察、猜想、歸納的數(shù)學(xué)思想及學(xué)習(xí)過程,提高學(xué)生的分析問題和解決問題的能力。
2、證明結(jié)論(教學(xué)時(shí)長8~10分鐘):
出示書中圖19—3,與學(xué)生共同分析證明并板書過程。通過給出定理的證明過程讓學(xué)生體會到數(shù)學(xué)知識從特殊性到一般性,并對一般性結(jié)論進(jìn)行論證的嚴(yán)謹(jǐn)性。
3、勾股定理簡介:(教學(xué)時(shí)長1~2分鐘)
借助多媒體課件,通過介紹古代在勾股定理研究方面取得的成就,感受數(shù)學(xué)文化,激發(fā)學(xué)生學(xué)習(xí)的熱情,體會古人偉大的智慧。
。ㄈ┓答佊(xùn)練,鞏固新知(教學(xué)時(shí)長6~8分鐘)
讓學(xué)生完成兩項(xiàng)任務(wù):
任務(wù)一:教材練習(xí)第一題;
任務(wù)二:1,Rt?ABC中,c為斜邊,a=3,b=4.,則c=?
2,?ABC中c為最長邊,a=3,b=4,則c=?
任務(wù)一和任務(wù)二中第一題都是基礎(chǔ)題,對于任務(wù)二中第二題是提高題,對于做錯(cuò)的學(xué)生進(jìn)行引導(dǎo)讓其思考,再告知錯(cuò)誤的原因。通過練習(xí),讓學(xué)生更好的體會到,勾股定理揭示的是直角三角形三邊之間的數(shù)量關(guān)系,讓學(xué)生能夠更好的將數(shù)與形緊密聯(lián)系起來進(jìn)行思考。
。ㄋ模w納小結(jié),深化新知(教學(xué)時(shí)長1~2分鐘)
本節(jié)課你有哪些收獲?你最感興趣的地方是什么?你想進(jìn)一步研究的的問題是什么???
通過小結(jié),使學(xué)生進(jìn)一步明確掌握教學(xué)目標(biāo),使知識成為體系。
。ㄎ澹┎贾米鳂I(yè),拓展新知(教學(xué)時(shí)長1~2分鐘)
讓學(xué)生收集有關(guān)勾股定理的證明方法,下節(jié)課展示、交流.使本節(jié)知識得到拓展、延伸,培養(yǎng)了學(xué)生能力和思維的深刻性,讓學(xué)生感受數(shù)學(xué)深厚的文化底蘊(yùn)。
。┌鍟O(shè)計(jì),明確新知
本節(jié)課的板書設(shè)計(jì),它分為三塊:一塊是復(fù)習(xí)引入,一塊是勾股定理;一塊是例題解析。它突出了重點(diǎn),層次清楚,便于學(xué)生掌握,為獲得知識服務(wù)。
以上內(nèi)容,我僅從教學(xué)背景分析、教材處理、教學(xué)策略、教學(xué)流程方面說明這堂課“教什么”和“怎么教”,也闡述了“為什么這樣教”,希望各位專家領(lǐng)導(dǎo)對本次說課提出寶貴的意見,謝謝!
《勾股定理》的說課稿12
一、 說教材分析
1. 教材的地位和作用
華師大版八年級上直角三角形三邊關(guān)系是學(xué)生在學(xué)習(xí)數(shù)的開方和整式的乘除后的一段內(nèi)容,它是學(xué)生在已經(jīng)掌握了直角三角形的有關(guān)性質(zhì)的基礎(chǔ)上進(jìn)行學(xué)習(xí)的,它揭示了一個(gè)直角三角形三條邊之間的數(shù)量關(guān)系,為后面解直角三角形的作好鋪墊,它也是幾何中最重要的定理,它將形和數(shù)密切聯(lián)系起來,在數(shù)學(xué)的發(fā)展中起著重要的作用。
因此他的教育教學(xué)價(jià)值就具體體現(xiàn)在如下三維目標(biāo)中:
知識與技能:
1、經(jīng)歷勾股定理的探索過程,體會數(shù)形結(jié)合思想。
2、理解直角三角形三邊的關(guān)系,會應(yīng)用勾股定理解決一些簡單的實(shí)際問題。
過程與方法:
1、經(jīng)歷觀察—猜想—?dú)w納—驗(yàn)證等一系列過程,體會數(shù)學(xué)定理發(fā)現(xiàn)的過程,由特殊到一般的解決問題的方法。
2、在觀察、猜想、歸納、驗(yàn)證等過程中培養(yǎng)學(xué)生的數(shù)學(xué)語言表達(dá)能力和初步的邏輯推理能力。
情感、態(tài)度與價(jià)值觀:
1、通過對勾股定理歷史的了解,感受數(shù)學(xué)文化,激發(fā)學(xué)習(xí)興趣。
2、在探究活動(dòng)中,體驗(yàn)解決問題方法的多樣性,培養(yǎng)學(xué)生的合作意識和然所精神。
3、讓學(xué)生通過動(dòng)手實(shí)踐,增強(qiáng)探究和創(chuàng)新意識,體驗(yàn)研究過程,學(xué)習(xí)研究方法,逐步養(yǎng)成一種積極的生動(dòng)的,自助合作探究的學(xué)習(xí)方式。
由于八年級的學(xué)生具有一定分析能力,但活動(dòng)經(jīng)驗(yàn)不足,所以
本節(jié)課教學(xué)重點(diǎn):勾股定理的探索過程,并掌握和運(yùn)用它。
教學(xué)難點(diǎn):分割,補(bǔ)全法證面積相等,探索勾股定理。
二、說教法學(xué)法分析:
要上好一堂課,就是要把所確定的三維目標(biāo)有機(jī)地溶入到教學(xué)過程中去,所以我采用了“引導(dǎo)探究式”的教學(xué)方法:
先從學(xué)生熟知的生活實(shí)例出發(fā),以生活實(shí)踐為依托,將生活圖形數(shù)學(xué)化,然后由特殊到一般地提出問題,引導(dǎo)學(xué)生在自主探究與合作交流中解決問題,同時(shí)也真正體現(xiàn)了數(shù)學(xué)課堂是學(xué)生自己的課堂。
學(xué)法:我想通過“操作+思考”這樣方式,有效地讓學(xué)生在動(dòng)手、動(dòng)腦、自主探究與合作交流中來發(fā)現(xiàn)新知,同時(shí)讓學(xué)生感悟到:學(xué)習(xí)任何知識的最好方法就是自己去探究。
三、 說教學(xué)程序設(shè)計(jì)
1、 故事引入新課,激起學(xué)生學(xué)習(xí)興趣。
牛頓,瓦特的故事,讓學(xué)生科學(xué)家的偉大成就多數(shù)都是在看似平淡無奇的現(xiàn)象中發(fā)現(xiàn)和研究出來的;生活中處處有數(shù)學(xué),我們應(yīng)該學(xué)會觀察、思考,將學(xué)習(xí)與生活緊密結(jié)合起來。畢達(dá)哥拉斯的發(fā)現(xiàn)引入新課。
2、探索新知
在這里我設(shè)計(jì)了四個(gè)內(nèi)容:
①探索等腰直角三角形三邊的關(guān)系
、谶呴L為3、4、5為邊長的直角三角形的三邊關(guān)系
、蹖W(xué)生畫兩直角邊為2,6的直角三角形,探索三邊的關(guān)系
④三邊為a、b、c的直角三角形的三邊的關(guān)系,(證明)
⑤勾股定理歷史介紹,讓學(xué)生體會勾股定理的文化價(jià)值。
體現(xiàn)從特殊到一般的發(fā)現(xiàn)問題的過程。
3、新知運(yùn)用:
、倥e出勾股定理在生活中的運(yùn)用。(老師講解勾股定理在生活中的運(yùn)用)
、谠谥苯侨切沃校阎 B=90° ,AB=6,BC=8,求AC.
、垡鲆粋(gè)人字梯,要求人字梯的跨度為6米,高為4米,請問怎么做?
、苋鐖D,學(xué)校有一塊長方形花鋪,有極少數(shù)人為了避開拐角走“捷徑”,在花鋪內(nèi)走出了一條“路”.他們僅僅少走了 步路(假設(shè)2步為1米),卻踩傷了花草.
4、小結(jié)本課:
學(xué)完了這節(jié)課,你有什么收獲?
老師補(bǔ)充:科學(xué)家的偉大成就多數(shù)都是在看似平淡無奇的現(xiàn)象中發(fā)現(xiàn)和研究出來的;生活中處處有數(shù)學(xué),我們應(yīng)該學(xué)會觀察、思考,將學(xué)習(xí)與生活緊密結(jié)合起來。數(shù)學(xué)來源于實(shí)踐,而又應(yīng)用于實(shí)踐。解決一個(gè)問題的方法是多樣性的,我們要多思考。 勾股定是數(shù)學(xué)史上的明珠,證明方法有很多種,我們將在下一節(jié)課學(xué)習(xí)它。
反思:
教學(xué)設(shè)計(jì)主要是體現(xiàn)從特殊到一般的知識形成過程,探索問題的設(shè)計(jì)上有點(diǎn)難,第二個(gè)問題應(yīng)加個(gè)3,3為直角邊的等腰直角三角形讓學(xué)生分割或者補(bǔ)全,這樣過度,降低3,4為直角邊的探索探索;在2,6為直角邊時(shí),這個(gè)問題可以不用設(shè)計(jì)進(jìn)去,就為后面的練習(xí)留足時(shí)間。探索時(shí)間較長,整個(gè)課程推行進(jìn)度較慢,練習(xí)較少。
對學(xué)生的啟發(fā)不夠,對學(xué)生的關(guān)注不夠,學(xué)生對問題的思考不能及時(shí)想出來,沒有及時(shí)很好的引導(dǎo),啟發(fā),應(yīng)讓學(xué)生多一些思考的空間,并及時(shí)交給思考的方法。學(xué)生反應(yīng)不是太好,能力差,也或許是因?yàn)閱栴}設(shè)計(jì)的較難,沒有很好的體現(xiàn)出探究。
預(yù)期的目標(biāo)沒有很好的達(dá)成,學(xué)生雖然掌握了勾股定理,但探索熱情沒有點(diǎn)燃,思維能力,動(dòng)手能力,探索精神沒有很好的'得到發(fā)展。
《勾股定理》的說課稿13
一、說教材
本課時(shí)是華師大版八年級(上)數(shù)學(xué)第14章第二節(jié)內(nèi)容,是在掌握勾股定理的基礎(chǔ)上對勾股定理的應(yīng)用之一。 勾股定理是我國古數(shù)學(xué)的一項(xiàng)偉大成就。勾股定理為我們提供了直角三角形的三邊間的數(shù)量關(guān)系,它的逆定理為我們提供了判斷三角形是否屬于直角三角形的依據(jù),也是判定兩條直線是否互相垂直的一個(gè)重要方法,這些成果被廣泛應(yīng)用于數(shù)學(xué)和實(shí)際生活的各個(gè)方面。教材在編寫時(shí)注意培養(yǎng)學(xué)生的動(dòng)手操作能力和分析問題的能力,通過實(shí)際分析,使學(xué)生獲得較為直觀的印象,通過聯(lián)系和比較,了解勾股定理在實(shí)際生活中的廣泛應(yīng)用。 據(jù)此,制定教學(xué)目標(biāo)如下:
1、知識和方法目標(biāo):通過對一些典型題目的思考,練習(xí),能正確熟練地進(jìn)行勾股定理有關(guān)計(jì)算,深入對勾股定理的理解。
2、過程與方法目標(biāo):通過對一些題目的探討,以達(dá)到掌握知識的目的。
3、情感與態(tài)度目標(biāo):感受數(shù)學(xué)在生活中的應(yīng)用,感受數(shù)學(xué)定理的美。
教學(xué)重點(diǎn):勾股定理的應(yīng)用。
教學(xué)難點(diǎn):勾股定理的正確使用。
教學(xué)關(guān)鍵:在現(xiàn)實(shí)情境中捕抓直角三角形,確定好直角三角形之后,再應(yīng)用勾股定理。
二、說教法和學(xué)法
1、以自學(xué)輔導(dǎo)為主,充分發(fā)揮教師的主導(dǎo)作用,運(yùn)用各種手段激發(fā)學(xué)習(xí)欲望和興趣,組織學(xué)生活動(dòng),讓學(xué)生主動(dòng)參與學(xué)習(xí)全過程。
2、切實(shí)體現(xiàn)學(xué)生的主體地位,讓學(xué)生通過觀察,分析,討論,操作,歸納理解定理,提高學(xué)生動(dòng)手操作能力,以及分析問題和解決問題的能力。
3、通過演示實(shí)物,引導(dǎo)學(xué)生觀察,操作,分析,證明,使學(xué)生獲得新知的成功感受,從而激發(fā)學(xué)生鉆研新知的欲望。
三、教學(xué)程序
本節(jié)內(nèi)容的教學(xué)主要體現(xiàn)在學(xué)生的動(dòng)手,動(dòng)腦方面,根據(jù)學(xué)生的認(rèn)知規(guī)律和學(xué)習(xí)心理,教學(xué)程序設(shè)置如下:
一、回顧問:
勾股定理的內(nèi)容是什么? 勾股定理揭示了直角三角形三邊之間的關(guān)系,今天我們來學(xué)習(xí)這個(gè)定理在實(shí)際生活中的應(yīng)用。
二、新授課例
1、如圖所示,有一個(gè)圓柱,它的高AB等于4厘米,底面周長等于20厘米,在圓柱下底面的A點(diǎn)有一只螞蟻,它想吃到上底面與A點(diǎn)相對的C點(diǎn)處的食物,沿圓柱側(cè)面爬行的最短路線是多少?(課本P57圖14.2.1)
、賹W(xué)生取出自制圓柱,,嘗試從A點(diǎn)到C點(diǎn)沿圓柱側(cè)面畫出幾條路線。思考:那條路線最短?
、谌鐖D,將圓柱側(cè)面剪開展成一個(gè)長方形,從A點(diǎn)到C點(diǎn)的最短路線是什么?你畫得對嗎?
、畚浵亸腁點(diǎn)出發(fā),想吃到C點(diǎn)處的食物,它沿圓柱側(cè)面爬行的最短路線是什么?
思路點(diǎn)撥:引導(dǎo)學(xué)生在自制的圓柱側(cè)面上尋找最短路線;提醒學(xué)生將圓柱側(cè)面展開成長方形,引導(dǎo)學(xué)生觀察分析發(fā)現(xiàn)“兩點(diǎn)之間的所有線中,線段最短”。 學(xué)生在自主探索的基礎(chǔ)上興趣高漲,氣氛異常的活躍,他們發(fā)現(xiàn)螞蟻從A點(diǎn)往上爬到B點(diǎn)后順著直徑爬向C點(diǎn)爬行的路線是最短的!我也意外的發(fā)現(xiàn)了這種爬法是正確的,但是課本上是順著側(cè)面往上爬的,我就告訴學(xué)生:“課本中的圓柱體是沒有上蓋的”。只有這樣課本上的解答才算是完全正確的。例2.(課本P58圖14.2.3)
思路點(diǎn)撥:廠門的寬度是足夠的,這個(gè)問題的關(guān)鍵是觀察當(dāng)卡車位于廠門正中間時(shí)其高度是否小于CH,點(diǎn)D在離廠門中線0.8米處,且CD⊥AB, 與地面交于H,尋找出Rt△OCD,運(yùn)用勾股定理求出2.3m,CD= = =0.6,CH=0.6+2.3=2.9>2.5可見卡車能順利通過 。詳細(xì)解題過程看課本 引導(dǎo)學(xué)生完成P58做一做。
三、課堂小練
1、課本P58練習(xí)第1,2題。
2、探究: 一門框的尺寸如圖所示,一塊長3米,寬2.2米的薄木板是否能從門框內(nèi)通過?為什么?
四、小結(jié)
直角三角形在實(shí)際生活中有更為廣泛的應(yīng)用希望同學(xué)們能緊緊抓住直角三角形的性質(zhì),學(xué)透勾股定理的具體應(yīng)用,那樣就能很輕松的解決現(xiàn)實(shí)生活中的許多問題,達(dá)到事倍功半的效果。
五、布置作業(yè)
課本P60習(xí)題14.2第1,2,3題。
《勾股定理》的說課稿14
各位老師、評委:大家好﹗
今天我說課的題目是選自人教版八年級數(shù)學(xué)第十八章第一節(jié)的內(nèi)容:勾股定理。
我將從以下這幾個(gè)方面進(jìn)行本節(jié)課的闡述:教材分析、學(xué)情分析、教法、學(xué)法指導(dǎo)、教學(xué)過程設(shè)計(jì)以及教學(xué)反思。
下面請大家和我共同走進(jìn)教材。
(一)教材分析
⒈教材的地位和作用
《勾股定理》是人教版新課標(biāo)八年級數(shù)學(xué)第十八章第一節(jié)第一課時(shí)內(nèi)容,勾股定理是學(xué)生在已經(jīng)掌握了直角三角形的有關(guān)性質(zhì)的基礎(chǔ)上進(jìn)行學(xué)習(xí)的,是中學(xué)數(shù)學(xué)幾個(gè)重要定理之一。它揭示了一個(gè)直角三角形三條邊之間的數(shù)量關(guān)系,是解直角三角形的主要根據(jù)之一,在實(shí)際生活中用途很大。勾股定理的發(fā)現(xiàn)、驗(yàn)證和應(yīng)用蘊(yùn)含著豐富的文化價(jià)值,它在理論上占有重要地位,學(xué)好本節(jié)至關(guān)重要。
⒉教學(xué)目標(biāo)
根據(jù)新課程標(biāo)準(zhǔn)對學(xué)生知識、能力的要求,結(jié)合八年級學(xué)生實(shí)際水平、認(rèn)知特點(diǎn)制定以下教學(xué)目標(biāo)。
知識與技能:了解勾股定理的文化背景,體驗(yàn)勾股定理的探索過程,能夠靈活地運(yùn)用勾股定理及其計(jì)算。
過程與方法:讓學(xué)生經(jīng)歷“觀察-猜想-歸納-驗(yàn)證”的數(shù)學(xué)過程,并從中體會數(shù)形結(jié)合及從特殊到一般的數(shù)學(xué)思想。培養(yǎng)學(xué)生觀察、比較、分析、推理的能力。
情感態(tài)度與價(jià)值觀:通過介紹我國古代在研究勾股定理方面取得的偉大成就,激發(fā)學(xué)生熱愛祖國與熱愛祖國悠久文化的思想感情,培養(yǎng)他們的民族自豪感,在探索問題的過程中,培養(yǎng)學(xué)生的合作交流意識和探索精神。
3.重點(diǎn)和難點(diǎn)
勾股定理的學(xué)習(xí)是建立在掌握一般三角形的性質(zhì)、直角三角形以及三角形全等的基礎(chǔ)上, 是直角三角形性質(zhì)的拓展。本節(jié)課主要是對勾股定理的探索和勾股定理的證明。勾股定理的證明方法很多,本節(jié)課介紹的是等積法。通過本節(jié)課的教學(xué),引領(lǐng)學(xué)生從不同的角度發(fā)現(xiàn)問題、用多樣化策略解決問題,從而提高學(xué)生分析、解決問題的能力。
因此本節(jié)課的重點(diǎn):是勾股定理的發(fā)現(xiàn)、驗(yàn)證和應(yīng)用。
八年級學(xué)生已初步具備幾何的觀察能力和說理能力,也有了一定的空間想象和動(dòng)手操作能力,但是他們的推理能力較弱、抽象思維能力不足。而本節(jié)課采用的是等積法證明。由于學(xué)生之前沒有接觸過等積法證明,他們對這種證明方法感到很陌生,尤其是覺得推理根據(jù)不明確,不象證明,沒有教師的啟發(fā)引領(lǐng),學(xué)生不容易獨(dú)立想到。
因此本節(jié)課的難點(diǎn):是用拼圖方法、面積法證明勾股定理。
(二)學(xué)情分析
八年級學(xué)生已初步具有幾何圖形的觀察,幾何證明的理論思維能力。希望老師預(yù)設(shè)便于他們進(jìn)行觀察的幾何環(huán)境,給他們發(fā)表自己見解和表現(xiàn)自己才華的機(jī)會,希望老師滿足他們的創(chuàng)造愿望,讓他們實(shí)際操作,使他們獲得施展自己創(chuàng)造才能的機(jī)會。
(三)說教學(xué)方法
數(shù)學(xué)是一門培養(yǎng)人的思維,發(fā)展人的思維的重要學(xué)科,因此,在教學(xué)中,要展現(xiàn)獲取知識和方法的思維過程, 針對八年級學(xué)生的知識結(jié)構(gòu)和心理特征,本節(jié)課采取引導(dǎo)探索法,由淺入深,由特殊到一般地提出問題。以導(dǎo)為主,采用設(shè)疑的形式,讓學(xué)生通過觀察、分析、討論、操作、歸納,理解定理,提高學(xué)生動(dòng)手操作能力,以及分析問題和解決問題的能力。使學(xué)生得到獲得新知的成功感受,從而激發(fā)學(xué)生鉆研新知。并利用教具與多媒體進(jìn)行教學(xué)。
(四)說學(xué)習(xí)方法
我們常說:“現(xiàn)代的文盲不是不識字的人, 而是沒有掌握學(xué)習(xí)方法的人”, 因而在教學(xué)中要特別重視學(xué)法的指導(dǎo), 我采用了如下的學(xué)法指導(dǎo):
在教師的組織引導(dǎo)下,采用自主探索、合作交流的研討式學(xué)習(xí)方式,讓學(xué)生思考問題,獲取知識,掌握方法,借此培養(yǎng)學(xué)生動(dòng)手、動(dòng)腦、動(dòng)口的能力,使學(xué)生真正成為學(xué)習(xí)的主體。
(五)說教學(xué)過程
根據(jù)學(xué)生的認(rèn)知規(guī)律和學(xué)習(xí)心理,本節(jié)課分六個(gè)活動(dòng)進(jìn)行學(xué)習(xí),為了擴(kuò)大課堂容量節(jié)省時(shí)間提高課堂效率,擬采用多媒體教學(xué)。
【活動(dòng)1】:(多媒體展示)欣賞圖片 了解歷史
第一幅圖片配上文字說明。
設(shè)計(jì)意圖:這樣的導(dǎo)入富有科學(xué)特色和濃郁的數(shù)學(xué)氣息,激起學(xué)生強(qiáng)烈的興趣和求知欲。
第二幅圖片為20xx年在我國北京召開的第24屆國際數(shù)學(xué)家大會的場景,值得一提的是這次大會的會徽,為著名的趙爽弦圖。
設(shè)計(jì)意圖:在學(xué)生欣賞趙爽弦圖的過程中,進(jìn)行愛國主義教育,可以讓他們充分體會到我國古代在數(shù)學(xué)研究方面取得的偉大成就,從而激發(fā)學(xué)生的愛國熱情和民族自豪感。
第三幅圖片為介紹古代勾和股。
設(shè)計(jì)意圖:簡單介紹勾股定理的歷史,引出勾股定理這一課題。
學(xué)生,讀一讀和觀察。
【活動(dòng)2】:探索勾股定理
首先講述畢達(dá)哥拉斯到朋友家做客的故事。(多媒體展示)
然后提出兩個(gè)問題,讓學(xué)生沿著畢達(dá)哥拉斯的足跡去探尋勾股定理。
{問題一}:在圖中你能發(fā)現(xiàn)那些基本圖形?
{問題二}:與等腰直角三角形相鄰的正方形面積之間有怎樣的關(guān)系?
(多媒體展示)探究一
{問題三}:如圖,每個(gè)小方格的面積為1個(gè)單位,你能寫出正方形A、B、C的面積嗎?
{問題四}:由此你可以得出等腰直角三角形三邊存在著一種怎樣特殊的數(shù)量關(guān)系嗎?
學(xué)生在獨(dú)立探究的基礎(chǔ)上觀察圖片,計(jì)算面積,分組交流, 猜想和歸納。
教師參與學(xué)生小組活動(dòng),指導(dǎo),傾聽學(xué)生交流。針對不同認(rèn)識水平的學(xué)生,引導(dǎo)其用不同的方法得出大正方形的面積。在計(jì)算C的面積時(shí)可能有一定的難度,此時(shí)就要用到數(shù)學(xué)當(dāng)中常見的割補(bǔ)法。因此需要教師的引導(dǎo)。
設(shè)計(jì)意圖:通過講傳說故事來激發(fā)學(xué)生學(xué)習(xí)興趣,引導(dǎo)學(xué)生進(jìn)入學(xué)習(xí)狀態(tài)。學(xué)生會很積極的投入到探索這個(gè)問題的實(shí)踐中。讓學(xué)生并且嘗試了從不同角度尋求解決問題的有效方法,并通過對方法的反思,獲得解決問題的經(jīng)驗(yàn)。
“問題是思維的起點(diǎn)”,通過層層設(shè)問,引導(dǎo)學(xué)生發(fā)現(xiàn)新知。
(多媒體展示)探究二
{問題五}:等腰直角三角形三邊具有這樣的特殊關(guān)系,那么一般的直角三角形呢?如圖,每個(gè)小方格的面積為1個(gè)單位,你能寫出正方形A、B、C的面積嗎?
將一般的直角三角形放入到網(wǎng)格中,并使得直角三角形的兩條直角邊為正整數(shù),讓學(xué)生去計(jì)算圖1和圖2中六個(gè)正方形的面積。關(guān)注學(xué)生能否用不同的方法得到大正方形的面積。
學(xué)生計(jì)算,觀察,猜想,語言表達(dá)猜想結(jié)論。
教師參與學(xué)生小組活動(dòng),指導(dǎo),傾聽學(xué)生交流。針對不同認(rèn)識水平的學(xué)生,引導(dǎo)其用不同的方法得出大正方形的面積。在計(jì)算C的面積時(shí)可能有一定的難度,此時(shí)又用到數(shù)學(xué)當(dāng)中常見的割補(bǔ)法。因此需要教師的引導(dǎo)。
設(shè)計(jì)意圖:學(xué)生通過探究A、B、C三個(gè)正方形之間的面積關(guān)系,進(jìn)而發(fā)現(xiàn)、猜想勾股定理,并用自己的語言表達(dá)出來。這樣的設(shè)計(jì)滲透了從特殊到一般的數(shù)學(xué)思想。發(fā)揮學(xué)生的主體作用,培養(yǎng)學(xué)生類比遷移能力及探索問題的能力,使學(xué)生在相互欣賞,爭辯,互助中得到提高。
(多媒體展示)猜想:
如果直角三角形兩直角邊分別為a、b,斜邊為c,那么a2 b2=c2。
即直角三角形兩直角邊的平方和等于斜邊的平方。
{問題六}:是不是所有的直角三角形都有這樣的特點(diǎn)呢?
【活動(dòng)3】:證明勾股定理
師:這就需要我們對一個(gè)一般的直角三角形進(jìn)行證明。到目前為止,對這個(gè)命題的證明方法已有幾百種之多。下面我們就來看一看我國數(shù)學(xué)家趙爽是怎樣證明這個(gè)命題的。
{問題七}:請同學(xué)們拿出課前準(zhǔn)備好的四個(gè)全等的直角三角形,記三邊分別為a,b,c,然后拼一拼、擺一擺,看看能否得到一個(gè)含有以斜邊c為邊長的正方形?
學(xué)生獨(dú)立思考的基礎(chǔ)上以小組為單位,用準(zhǔn)備好的四個(gè)全等直角三角形動(dòng)手拼接。學(xué)生展示分割,拼接的過程。
教師深入小組參與活動(dòng),傾聽學(xué)生的交流,幫助指導(dǎo)學(xué)生完成拼圖活動(dòng)。并請小組代表到黑板演示拼圖過程,鼓勵(lì)學(xué)生敢于發(fā)表自己的見解。
設(shè)計(jì)意圖:通過這些實(shí)際操作,調(diào)動(dòng)學(xué)生思維積極性,同時(shí)使學(xué)生對定理的理解更加深刻,學(xué)生能夠進(jìn)一步加深對數(shù)形結(jié)合的理解,拼圖也會產(chǎn)生感性認(rèn)識,也為論證勾股定理做好準(zhǔn)備。
{問題八}:它們的面積分別怎樣表示?它們有什么關(guān)系呢?
(多媒體展示)拼接圖,面積計(jì)算
學(xué)生觀察,計(jì)算,小組討論。
在計(jì)算過程中,我重點(diǎn)在于引導(dǎo)學(xué)生分析圖中面積之間的關(guān)系,得出結(jié)論:大正方形的面積= 4個(gè)全等的直角三角形的面積 小正方形的面積,從而運(yùn)用等積法證明勾股定理。(這樣,既突破了難點(diǎn),讓學(xué)生感受到用等積法證明勾股定理的奧妙。)
設(shè)計(jì)意圖:給學(xué)生充分的時(shí)間和空間參與到數(shù)學(xué)活動(dòng)中來,并發(fā)揮他們的主觀能動(dòng)性,可以進(jìn)一步提高學(xué)生的學(xué)習(xí)興趣。利用分組討論,加強(qiáng)學(xué)生的合作意識。
師:我們現(xiàn)在通過推理證實(shí)了我們的猜想的正確性,經(jīng)過證明被確認(rèn)正確的命題叫做定理。猜想與直角三角形的邊有關(guān),我國把它稱為勾股定理!摆w爽弦圖”表現(xiàn)了我國古人對數(shù)學(xué)的鉆研精神和聰明才智,它是我古代數(shù)學(xué)的驕傲。正因如此,這個(gè)圖案被選為20xx年在北京召開的國際數(shù)學(xué)大會的會徽。
【活動(dòng)4】:應(yīng)用勾股定理(多媒體展示)
(小組選擇,采用競答方式)
填空
P的面積= ,
AB= X=
BC=
BC=
2、求下列圖中表示邊的未知數(shù)x、y、z的值。
3求下列直角三角形中未知邊的長:
設(shè)計(jì)意圖:首先是幾道填空題和勾股定理的直接應(yīng)用,這幾道題既有類似又有不同,通過變式訓(xùn)練,強(qiáng)調(diào)應(yīng)用勾股定理時(shí)應(yīng)注意的問題。一是勾股定理要應(yīng)用于直角三角形當(dāng)中,二是要注意哪一條邊為斜邊。
4、求出下列直角三角形中未知邊的長度。
設(shè)計(jì)意圖:規(guī)范解題過程。
5、小明的媽媽買了一部29英寸(74厘米)的電視機(jī),小明量了電視機(jī)的屏幕后,發(fā)現(xiàn)屏幕只有58厘米長和46厘米寬,他覺得一定是售貨員搞錯(cuò)了。你能解釋這是為什么嗎?(我們通過所說的29英寸或74厘米的電視機(jī),是指其屏幕對角線的長度。)
設(shè)計(jì)意圖:這是一道和學(xué)生生活密切相關(guān)的應(yīng)用題,讓學(xué)生充分體會到數(shù)學(xué)是來源于生活,應(yīng)用于生活。
【活動(dòng)5】:總結(jié)勾股定理(多媒體展示)
1.這節(jié)課你的收獲是什么?
2.理解“勾股定理”應(yīng)該注意什么問題?
3.你覺得“勾股定理”有用嗎?
學(xué)生談?wù)勥@節(jié)課的收獲是什么,讓學(xué)生暢所欲言。
教師進(jìn)行補(bǔ)充,總結(jié),為下節(jié)課做好鋪墊。
設(shè)計(jì)意圖:通過小結(jié)為學(xué)生創(chuàng)造交流的空間,調(diào)動(dòng)學(xué)生的積極性,即引導(dǎo)學(xué)生培養(yǎng)學(xué)生從面積的角度理解勾股定理,又從能力,情感,態(tài)度等方面關(guān)注學(xué)生的整體感受。
【活動(dòng)6】:布置作業(yè)(多媒體展示)
1.閱讀教材第71頁的閱讀與思考-----《勾股定理的證明》。
2.收集有關(guān)勾股定理的證明方法,下節(jié)展示交流。
3.做一棵奇妙的勾股樹(選做)
設(shè)計(jì)的意圖:給學(xué)生留有繼續(xù)學(xué)習(xí)的空間和興趣。
(六)說教學(xué)反思
本課意在創(chuàng)設(shè)愉悅和諧的樂學(xué)氣氛,始終面向全體學(xué)生“以學(xué)生的發(fā)展為本” 的教育理念,課堂教學(xué)充分體現(xiàn)學(xué)生的主體性,給學(xué)生留下最大化的思維空間。注重?cái)?shù)學(xué)思想方法的滲透,整個(gè)勾股定理的探索、發(fā)現(xiàn)、證明都著意滲透數(shù)形結(jié)合,又從一般到特殊,從特殊回歸到一般的數(shù)學(xué)思想方法。重視數(shù)學(xué)史教育,激發(fā)學(xué)生的愛國情感。數(shù)學(xué)問題生活化,用數(shù)學(xué)知識解決生活中的實(shí)際問題,關(guān)鍵在于把生活問題轉(zhuǎn)化為數(shù)學(xué)問題,讓生活問題數(shù)學(xué)化,然后才能得以解決。在這個(gè)過程中,很多時(shí)候需要老師幫助學(xué)生去理解、轉(zhuǎn)化,而更多時(shí)候需要學(xué)生自己去探索、嘗試,并在失敗中尋找成功的途徑。教學(xué)中,如果能讓學(xué)生自己反思答案與方法的合理性,那么效果會更好了。
板書設(shè)計(jì):
18.1 勾股定理
勾股定理:
如果直角三角形兩直角邊分別為a,b,
斜邊為c,那么a2 b2=c2
《勾股定理》的說課稿15
今天我說課的課題是《勾股定理》。本課選自九年義務(wù)教育人教版八年級數(shù)學(xué)下冊第十八章第一節(jié)的第一課時(shí)。
一、教學(xué)背景分析
1、教材分析
本節(jié)課是學(xué)生在已經(jīng)掌握了直角三角形有關(guān)性質(zhì)的基礎(chǔ)上進(jìn)行學(xué)習(xí)的,通過20xx年國際數(shù)學(xué)家大會的會徽圖案,引入勾股定理,進(jìn)而探索直角三角形三邊的數(shù)量關(guān)系,并應(yīng)用它解決問題。學(xué)好本節(jié)不僅為下節(jié)勾股定理的逆定理打下良好基礎(chǔ),而且為今后學(xué)習(xí)解直角三角形奠定基礎(chǔ),在實(shí)際生活中用途很大。勾股定理是直角三角形的一條非常重要的性質(zhì),是幾何中一個(gè)非常重要的定理,它揭示了直角三角形三邊之間的數(shù)量關(guān)系,將數(shù)與形密切地聯(lián)系起來,它有著豐富的歷史背景,在理論上占有重要的地位。
2、學(xué)情分析
通過前面的學(xué)習(xí),學(xué)生已具備一些平面幾何的知識,能夠進(jìn)行一般的推理和論證,但如何通過拼圖來證明勾股定理,學(xué)生對這種解決問題的途徑還比較陌生,存在一定的難度,因此,我采用直觀教具、多媒體等手段,讓學(xué)生動(dòng)手、動(dòng)口、動(dòng)腦,化難為易,深入淺出,讓學(xué)生感受學(xué)習(xí)知識的樂趣。
3、教學(xué)目標(biāo):
根據(jù)八年級學(xué)生的認(rèn)知水平,依據(jù)新課程標(biāo)準(zhǔn)和教學(xué)大綱的要求,我制定了如下的教學(xué)目標(biāo):
知識與能力目標(biāo):了解勾股定理的發(fā)現(xiàn)過程,掌握勾股定理的內(nèi)容,會用面積法證明勾股定理;培養(yǎng)在實(shí)際生活中發(fā)現(xiàn)問題總結(jié)規(guī)律的意識和能力.
過程與方法目標(biāo):通過創(chuàng)設(shè)情境,導(dǎo)入新課,引導(dǎo)學(xué)生探索勾股定理,并應(yīng)用它解決問題,運(yùn)用了觀察、演示、實(shí)驗(yàn)、操作等方法學(xué)習(xí)新知。
情感態(tài)度價(jià)值觀目標(biāo):感受數(shù)學(xué)文化,激發(fā)學(xué)生學(xué)習(xí)的熱情,體驗(yàn)合作學(xué)習(xí)成功的喜悅,滲透數(shù)形結(jié)合的思想。
4、教學(xué)重點(diǎn)、難點(diǎn)
通過分析可見,勾股定理是平面幾何的重要定理,有著承上啟下的作用,在今后的生活實(shí)踐中有著廣泛應(yīng)用。因此我確定本課的教學(xué)
重難點(diǎn)為探索和證明勾股定理.
二、教材處理
根據(jù)學(xué)生情況,為有效培養(yǎng)學(xué)生能力,在教學(xué)過程中,以創(chuàng)設(shè)問題情境為先導(dǎo),運(yùn)用直觀教具、多媒體等手段,激發(fā)學(xué)生學(xué)習(xí)興趣,調(diào)動(dòng)學(xué)生學(xué)習(xí)積極性,并開展以探究活動(dòng)為主的教學(xué)模式,邊設(shè)疑,邊講解,邊操作,邊討論,啟發(fā)學(xué)生提出問題,分析問題,進(jìn)而解決問題,以達(dá)到突出重點(diǎn),攻破難點(diǎn)的目的。
三、教學(xué)策略
1、教法
“教必有法,而教無定法”,只有方法恰當(dāng),才會有效。根據(jù)本課內(nèi)容特點(diǎn)和八年級學(xué)生思維活動(dòng)特點(diǎn),我采用了引導(dǎo)發(fā)現(xiàn)教學(xué)法,合作探究教學(xué)法,逐步滲透教學(xué)法和師生共研相結(jié)合的方法。
2、學(xué)法
“授人以魚,不如授人以漁”,通過設(shè)計(jì)問題序列,引導(dǎo)學(xué)生主動(dòng)探究新知,合作交流,體現(xiàn)學(xué)習(xí)的自主性,從不同層次發(fā)掘不同學(xué)生的不同能力,從而達(dá)到發(fā)展學(xué)生思維能力的目的,發(fā)掘?qū)W生的創(chuàng)新精神。
3、教學(xué)模式
根據(jù)新課標(biāo)要求,要積極倡導(dǎo)自主、合作、探究的學(xué)習(xí)方式,我采用了創(chuàng)設(shè)情境——探究新知——反饋訓(xùn)練的教學(xué)模式,使學(xué)生獲取知識,提高素質(zhì)能力。
四、教學(xué)過程
。ㄒ唬﹦(chuàng)設(shè)情境,引入新課
利用多媒體課件,給學(xué)生出示20xx年國際數(shù)學(xué)家大會的場面,通過觀察會徽圖案,提出問題:你見過這個(gè)圖案嗎?你聽說過勾股定理嗎?從現(xiàn)實(shí)生活中提出趙爽弦圖,激發(fā)學(xué)生學(xué)習(xí)的熱情和求知欲,同時(shí)為探索勾股定理提供背景材料,進(jìn)而引出課題。
。ǘ┮龑(dǎo)學(xué)生,探究新知
1、初步感知定理:這一環(huán)節(jié)選擇教材的圖片,講述畢達(dá)哥拉斯到朋友家做客時(shí)發(fā)現(xiàn)用磚鋪成的地面,其中含有直角三角形三邊的數(shù)量關(guān)系,創(chuàng)設(shè)感知情境,提出問題:現(xiàn)在也請你觀察,看看有什么發(fā)現(xiàn)?教師配合演示,使問題更形象、具體。適當(dāng)補(bǔ)充等腰直角三角形邊長為1、2時(shí),所形成的規(guī)律,使學(xué)生再次感知發(fā)現(xiàn)的規(guī)律。
2、提出猜想:在活動(dòng)1的基礎(chǔ)上,學(xué)生已發(fā)現(xiàn)一些規(guī)律,進(jìn)一步通過活動(dòng)2進(jìn)行看一看,想一想,做一做,讓學(xué)生感受不只是等腰直角三角形才具有這樣的性質(zhì),使學(xué)生由淺到深,由特殊到一般的提出問題,啟發(fā)學(xué)生得出猜想,直角三角形的兩直角邊的平方和等于斜邊的平方。
3、證明猜想:是不是所有的直角三角形都有這樣的特點(diǎn)呢?這就需要我們對一個(gè)一般的直角三角形進(jìn)行證明.通過活動(dòng)3,充分引導(dǎo)學(xué)生利用直觀教具,進(jìn)行拼圖實(shí)驗(yàn),在動(dòng)手操作中放手讓學(xué)生思考、討論、合作、交流,探究解決問題的多種方法,鼓勵(lì)創(chuàng)新,小組競賽,引入競爭,教師參與討論,與學(xué)生交流,獲取信息,從而有針對性地引導(dǎo)學(xué)生進(jìn)行證法的探究,使學(xué)生創(chuàng)造性地得出拼圖的多種方法,并使學(xué)生在學(xué)習(xí)的過程中,感受到自我創(chuàng)造的快樂,從而分散了教學(xué)難點(diǎn),發(fā)現(xiàn)了利用面積相等去證明勾股定理的方法。培養(yǎng)了學(xué)生的發(fā)散思維、一題多解和探究數(shù)學(xué)問題的能力。
4、總結(jié)定理:讓學(xué)生自己總結(jié)定理,不完善之處由教師補(bǔ)充。在前面探究活動(dòng)的基礎(chǔ)上,學(xué)生很容易得出直角三角形的三邊數(shù)量關(guān)系即勾股定理,培養(yǎng)了學(xué)生的語言表達(dá)能力和歸納概括能力。
(三)反饋訓(xùn)練,鞏固新知
學(xué)生對所學(xué)的知識是否掌握了,達(dá)到了什么程度?為了檢測學(xué)生對本課目標(biāo)的達(dá)成情況和加強(qiáng)對學(xué)生能力的培養(yǎng),設(shè)計(jì)一組有坡度的練習(xí)題:A組動(dòng)腦筋,想一想,是本節(jié)基礎(chǔ)知識的理解和直接應(yīng)用;B組求陰影部分的面積,建立了新舊知識的聯(lián)系,培養(yǎng)學(xué)生綜合運(yùn)用知識的能力。C組議一議,是一道實(shí)際應(yīng)用題型,給學(xué)生施展才智的機(jī)會,讓學(xué)生獨(dú)立思考后,討論交流得出解決問題的方法,增強(qiáng)了數(shù)學(xué)來源于實(shí)踐,反過來又作用于實(shí)踐的應(yīng)用意識,達(dá)到了學(xué)以致用的目的。
。ㄋ模w納小結(jié),深化新知
本節(jié)課你有哪些收獲?你最感興趣的地方是什么?你想進(jìn)一步研究的的問題是什么?通過小結(jié),使學(xué)生進(jìn)一步明確掌握教學(xué)目標(biāo),使知識成為體系。
。ㄎ澹┎贾米鳂I(yè),拓展新知
讓學(xué)生收集有關(guān)勾股定理的證明方法,下節(jié)課展示、交流.使本節(jié)知識得到拓展、延伸,培養(yǎng)了學(xué)生能力和思維的深刻性,讓學(xué)生感受數(shù)學(xué)深厚的文化底蘊(yùn)。
。┌鍟O(shè)計(jì),明確新知
本節(jié)課的板書設(shè)計(jì)分為三塊:一塊是拼圖方法,一塊是勾股定理;一塊是例題解析。它突出了重點(diǎn),層次清楚,便于學(xué)生掌握,為獲得知識服務(wù)。
【《勾股定理》的說課稿】相關(guān)文章:
勾股定理的說課稿04-21
勾股定理說課稿精選06-14
勾股定理說課稿03-25
勾股定理的說課稿07-30
《勾股定理》說課稿07-10
《勾股定理》說課稿06-06
勾股定理說課稿04-27
《勾股定理》說課稿11-11
勾股定理的說課稿01-30