高二數(shù)學(xué)說(shuō)課稿15篇
作為一名教職工,常常要根據(jù)教學(xué)需要編寫(xiě)說(shuō)課稿,說(shuō)課稿是進(jìn)行說(shuō)課準(zhǔn)備的文稿,有著至關(guān)重要的作用。如何把說(shuō)課稿做到重點(diǎn)突出呢?下面是小編整理的高二數(shù)學(xué)說(shuō)課稿,供大家參考借鑒,希望可以幫助到有需要的朋友。
高二數(shù)學(xué)說(shuō)課稿1
一、教材分析
概率是高中數(shù)學(xué)的新增內(nèi)容,它自成體系,是數(shù)學(xué)中一個(gè)較獨(dú)立的學(xué)科分支,與以往所學(xué)的數(shù)學(xué)知識(shí)有很大的區(qū)別,但與人們的日常生活密切相關(guān),而且對(duì)思維能力有較高要求,在高考中占有重要地位。
本節(jié)內(nèi)容在本章節(jié)的地位:《條件概率》(第一課時(shí))是高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教材數(shù)學(xué)選修2—3第二章第二節(jié)的內(nèi)容,它在教材中起著承前啟后的作用,一方面,可以鞏固古典概型概率的計(jì)算方法,另一方面,為研究相互獨(dú)立事件打下良好的基礎(chǔ)。
教學(xué)重點(diǎn)、難點(diǎn)和關(guān)鍵:教學(xué)重點(diǎn)是條件概率的定義、計(jì)算公式的推導(dǎo)及條件概率的計(jì)算;難點(diǎn)是條件概率的判斷與計(jì)算;教學(xué)關(guān)鍵是數(shù)學(xué)建模。
二、教學(xué)目標(biāo)
根據(jù)上述教材分析,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)心理特征,我制定如下教學(xué)目標(biāo):
基礎(chǔ)知識(shí)目標(biāo)——掌握條件概率的定義及計(jì)算方法
思想方法目標(biāo)——?dú)w納、類(lèi)比的方法和建模思想
能力培養(yǎng)目標(biāo)——培養(yǎng)學(xué)生思維的靈活性及知識(shí)的遷移能力
根據(jù)這兩年高考改卷的反饋信息,考生在概率題的書(shū)面表達(dá)上丟分的情況是很普遍的,因此本節(jié)課還想達(dá)到:
表達(dá)能力目標(biāo)——培養(yǎng)學(xué)生書(shū)面表達(dá)的嚴(yán)謹(jǐn)和簡(jiǎn)潔
個(gè)性品質(zhì)目標(biāo)——培養(yǎng)學(xué)生克服“心欲通而不能,口欲講而不會(huì)”的困難,提高探索問(wèn)題的積極性和學(xué)習(xí)數(shù)學(xué)的興趣
三、教法
在教學(xué)中,不僅要使學(xué)生“知其然”,而且要使學(xué)生“知其所以然”。為了體現(xiàn)以生為本,遵循學(xué)生的認(rèn)知規(guī)律,堅(jiān)持以教師為主導(dǎo),學(xué)生為主體的教學(xué)思想,體現(xiàn)循序漸進(jìn)的教學(xué)原則,我采用引導(dǎo)發(fā)現(xiàn)法、分析討論法的教學(xué)方法,通過(guò)提問(wèn)、啟發(fā)、設(shè)問(wèn)、歸納、講練結(jié)合、適時(shí)點(diǎn)撥的方法,讓學(xué)生的思維活動(dòng)在老師的引導(dǎo)下層層展開(kāi),讓學(xué)生大膽參與課堂教學(xué),使他們“聽(tīng)”有所“思”,“練”有所“獲”,使傳授知識(shí)與培養(yǎng)能力融為一體。
四、學(xué)法
以建構(gòu)主義為指導(dǎo),采用以啟發(fā)式教學(xué)為主,同時(shí)結(jié)合師生共同討論、歸納的教學(xué)方法,根據(jù)學(xué)生的認(rèn)知水平,為課堂設(shè)計(jì)了:
①創(chuàng)設(shè)情景——引入概念
、陬(lèi)比推導(dǎo)——得出公式
、塾懻撗芯俊?dú)w納方法
、芗磿r(shí)訓(xùn)練——鞏固方法
、菘偨Y(jié)反思——提高認(rèn)識(shí)
、拮鳂I(yè)布置——評(píng)價(jià)反饋
六個(gè)層次的學(xué)法,它們環(huán)環(huán)相扣,層層深入,從而順利完成教學(xué)目標(biāo)。
五、教學(xué)過(guò)程
創(chuàng)設(shè)情景——引入概念
首先引入兩個(gè)實(shí)際問(wèn)題,激發(fā)學(xué)生的興趣。
【實(shí)例1】3張獎(jiǎng)券中只有1張能中獎(jiǎng),現(xiàn)分別由3名同學(xué)無(wú)放回地抽取,最后一名同學(xué)抽到中獎(jiǎng)獎(jiǎng)券的概率是多少?若第一個(gè)同學(xué)沒(méi)有抽到中獎(jiǎng)獎(jiǎng)券,則最后一名同學(xué)抽到中獎(jiǎng)獎(jiǎng)券的概率是多少?
【實(shí)例2】有5道快速搶答題,其中3道理科題,2道文科題,從中無(wú)放回地抽取兩次,每次抽取1道題,兩次都抽到理科題的概率是多少?若第一次抽到理科題,則第二次抽到理科題的概率是多少?
每個(gè)實(shí)例有兩個(gè)問(wèn)題組成,后一個(gè)問(wèn)題多一個(gè)限制條件,教師引導(dǎo)學(xué)生對(duì)比兩個(gè)實(shí)例中前后問(wèn)題的區(qū)別和聯(lián)系,概括出條件概率的定義。
由于判斷事件的類(lèi)型對(duì)選擇概率公式起著決定性影響,因此在引入定義后讓學(xué)生再做一組判斷題練習(xí)以鞏固對(duì)定義的理解。
【練習(xí)】判斷下列是否屬于條件概率
、、在管理系中選1個(gè)人排頭舉旗,恰好選中一個(gè)的是三年級(jí)男生的概率
、、有10把鑰匙,其中只有1把能將門(mén)打開(kāi),隨機(jī)抽出1把試開(kāi),若試過(guò)的不再用,則第2次能將門(mén)打開(kāi)的概率
、、某小組12人分得1張球票,依次抽簽,已知前4個(gè)人未摸到,則第5個(gè)人模到球票的概率
、础膳_(tái)車(chē)床加工同樣的零件,第一臺(tái)的次品率未0.03,第二臺(tái)的次品率為0.02,兩臺(tái)車(chē)床加工的零件放在一起,隨機(jī)取出一個(gè)零件是發(fā)現(xiàn)是次品,則它是第二臺(tái)機(jī)床加工的概率是多少?
、、箱子里裝有10件產(chǎn)品,其中只有一件是次品,在9件合格品中,有6件是一等品,3件二等品,現(xiàn)從中任取3件,若取得的都是合格,則僅有1件是一等品的概率
通過(guò)以上練習(xí)使學(xué)生能準(zhǔn)確區(qū)分條件概率與一般概率。
高二數(shù)學(xué)說(shuō)課稿2
各位評(píng)委老師:
大家好!
我是數(shù)學(xué)xxxx號(hào)選手,今天我要進(jìn)行說(shuō)課的課題是高中數(shù)學(xué)必修一第一章第三節(jié)第一課時(shí)《函數(shù)單調(diào)性與(小)值》。我將從教材分析;教學(xué)目標(biāo)分析;教法、學(xué)法;教學(xué)過(guò)程;教學(xué)評(píng)價(jià)五個(gè)方面來(lái)陳述我對(duì)本節(jié)課的設(shè)計(jì)方案。懇請(qǐng)?jiān)谧膶?zhuān)家評(píng)委批評(píng)指正。
一、教材分析
1、教材的地位和作用
(1)本節(jié)課主要對(duì)函數(shù)單調(diào)性的學(xué)習(xí);
(2)它是在學(xué)習(xí)函數(shù)概念的基礎(chǔ)上進(jìn)行學(xué)習(xí)的,同時(shí)又為基本初等函數(shù)的學(xué)習(xí)奠定了基礎(chǔ),所以他在教材中起著承前啟后的重要作用;(可以看看這一課題的前后章節(jié)來(lái)寫(xiě))
(3)它是歷年高考的熱點(diǎn)、難點(diǎn)問(wèn)題
2、教材重、難點(diǎn)
重點(diǎn):函數(shù)單調(diào)性的定義
難點(diǎn):函數(shù)單調(diào)性的證明
重難點(diǎn)突破:在學(xué)生已有知識(shí)的基礎(chǔ)上,通過(guò)認(rèn)真觀察思考,并通過(guò)小組合作探究的辦法來(lái)實(shí)現(xiàn)重難點(diǎn)突破。(這個(gè)必須要有)
二、教學(xué)目標(biāo)
知識(shí)目標(biāo):
(1)函數(shù)單調(diào)性的定義
(2)函數(shù)單調(diào)性的證明
能力目標(biāo):培養(yǎng)學(xué)生全面分析、抽象和概括的能力,以及了解由簡(jiǎn)單到復(fù)雜,由特殊到一般的化歸思想
情感目標(biāo):培養(yǎng)學(xué)生勇于探索的精神和善于合作的意識(shí)
三、教法學(xué)法分析
1、教法分析
“教必有法而教無(wú)定法”,只有方法得當(dāng)才會(huì)有效。新課程標(biāo)準(zhǔn)之處教師是教學(xué)的組織者、引導(dǎo)者、合作者,在教學(xué)過(guò)程要充分調(diào)動(dòng)學(xué)生的積極性、主動(dòng)性。本著這一原則,在教學(xué)過(guò)程中我主要采用以下教學(xué)方法:開(kāi)放式探究法、啟發(fā)式引導(dǎo)法、小組合作討論法、反饋式評(píng)價(jià)法
2、學(xué)法分析
“授人以魚(yú),不如授人以漁”,最有價(jià)值的知識(shí)是關(guān)于方法的只是。學(xué)生作為教學(xué)活動(dòng)的主題,在學(xué)習(xí)過(guò)程中的參與狀態(tài)和參與度是影響教學(xué)效果最重要的因素。在學(xué)法選擇上,我主要采用:自主探究法、觀察發(fā)現(xiàn)法、合作交流法、歸納總結(jié)法。
四、教學(xué)過(guò)程
1、以舊引新,導(dǎo)入新知
通過(guò)課前小研究讓學(xué)生自行繪制出一次函數(shù)f(x)=x和二次函數(shù)f(x)=x^2的圖像,并觀察函數(shù)圖象的特點(diǎn),總結(jié)歸納。通過(guò)課上小組討論歸納,引導(dǎo)學(xué)生發(fā)現(xiàn),教師總結(jié):一次函數(shù)f(x)=x的圖像在定義域是直線上升的,而二次函數(shù)f(x)=x^2的圖像是一個(gè)曲線,在(-∞,0)上是下降的,而在(0,+∞)上是上升的。(適當(dāng)添加手勢(shì),這樣看起來(lái)更自然)
2、創(chuàng)設(shè)問(wèn)題,探索新知
緊接著提出問(wèn)題,你能用二次函數(shù)f(x)=x^2表達(dá)式來(lái)描述函數(shù)在(-∞,0)的圖像?教師總結(jié),并板書(shū),揭示函數(shù)單調(diào)性的定義,并注意強(qiáng)調(diào)可以利用作差法來(lái)判斷這個(gè)函數(shù)的單調(diào)性。
讓學(xué)生模仿剛才的表述法來(lái)描述二次函數(shù)f(x)=x^2在(0,+∞)的圖像,并找個(gè)別同學(xué)起來(lái)作答,規(guī)范學(xué)生的數(shù)學(xué)用語(yǔ)。
讓學(xué)生自主學(xué)習(xí)函數(shù)單調(diào)區(qū)間的定義,為接下來(lái)例題學(xué)習(xí)打好基礎(chǔ)。
3、例題講解,學(xué)以致用
例1主要是對(duì)函數(shù)單調(diào)區(qū)間的鞏固運(yùn)用,通過(guò)觀察函數(shù)定義在(—5,5)的圖像來(lái)找出函數(shù)的單調(diào)區(qū)間。這一例題主要以學(xué)生個(gè)別回答為主,學(xué)生回答之后通過(guò)互評(píng)來(lái)糾正答案,檢查學(xué)生對(duì)函數(shù)單調(diào)區(qū)間的掌握。強(qiáng)調(diào)單調(diào)區(qū)間一般寫(xiě)成半開(kāi)半閉的形式
例題講解之后可讓學(xué)生自行完成課后練習(xí)4,以學(xué)生集體回答的方式檢驗(yàn)學(xué)生的學(xué)習(xí)效果。
例2是將函數(shù)單調(diào)性運(yùn)用到其他領(lǐng)域,通過(guò)函數(shù)單調(diào)性來(lái)證明物理學(xué)的波意爾定理。這是歷年高考的熱點(diǎn)跟難點(diǎn)問(wèn)題,這一例題要采用教師板演的方式,來(lái)對(duì)例題進(jìn)行證明,以規(guī)范總結(jié)證明步驟。一設(shè)二差三化簡(jiǎn)四比較,注意要把f(x1)-f(x2)化簡(jiǎn)成和差積商的形式,再比較與0的大小。
學(xué)生在熟悉證明步驟之后,做課后練習(xí)3,并以小組為單位找部分同學(xué)上臺(tái)板演,其他同學(xué)在下面自行完成,并通過(guò)自評(píng)、互評(píng)檢查證明步驟。
4、歸納小結(jié)
本節(jié)課我們主要學(xué)習(xí)了函數(shù)單調(diào)性的定義及證明過(guò)程,并在教學(xué)過(guò)程中注重培養(yǎng)學(xué)生勇于探索的精神和善于合作的意識(shí)。
5、作業(yè)布置
為了讓學(xué)生學(xué)習(xí)不同的數(shù)學(xué),我將采用分層布置作業(yè)的方式:一組習(xí)題1、3A組1、2、3,二組習(xí)題1、3A組2、3、B組1、2
6、板書(shū)設(shè)計(jì)
我力求簡(jiǎn)潔明了地概括本節(jié)課的學(xué)習(xí)要點(diǎn),讓學(xué)生一目了然。
五、教學(xué)評(píng)價(jià)
本節(jié)課是在學(xué)生已有知識(shí)的基礎(chǔ)上學(xué)習(xí)的,在教學(xué)過(guò)程中通過(guò)自主探究、合作交流,充分調(diào)動(dòng)學(xué)生的積極性跟主動(dòng)性,及時(shí)吸收反饋信息,并通過(guò)學(xué)生的自評(píng)、互評(píng),讓內(nèi)部動(dòng)機(jī)和外界刺激協(xié)調(diào)作用,促進(jìn)其數(shù)學(xué)素養(yǎng)不斷提高。
以上就是我對(duì)本節(jié)課的設(shè)計(jì),謝謝!
高二數(shù)學(xué)說(shuō)課稿3
各位老師:
今天我說(shuō)課的題目是《條件語(yǔ)句》,內(nèi)容選自于新課程人教A版必修3第一章第二節(jié),課時(shí)安排為一個(gè)課時(shí)。下面我將從教材分析、教學(xué)目標(biāo)分析、教學(xué)方法與手段分析、教學(xué)過(guò)程分析等四大方面來(lái)闡述我對(duì)這節(jié)課的分析和設(shè)計(jì):
一、教材分析
1.教材所處的地位和作用
在此之前,學(xué)生已學(xué)習(xí)了算法的概念、程序框圖與算法的基本邏輯結(jié)構(gòu)、輸入語(yǔ)句、輸出語(yǔ)句和賦值語(yǔ)句,這為過(guò)渡到本節(jié)的學(xué)習(xí)起著鋪墊作用。這一節(jié)課主要的內(nèi)容為條件語(yǔ)句表示方法、結(jié)構(gòu)以及用法。條件語(yǔ)句與程序圖中的條件結(jié)構(gòu)相對(duì)應(yīng),它是五種基本算法語(yǔ)句中的一種。通過(guò)本節(jié)課的學(xué)習(xí),學(xué)生將更加了解算法語(yǔ)句,并能用更全面的眼光看待前面學(xué)過(guò)的語(yǔ)句,并為以后的學(xué)習(xí)作好必要的準(zhǔn)備。本節(jié)課對(duì)學(xué)生算法語(yǔ)言能力、有條理的思考與清晰地表達(dá)的能力,邏輯思維能力的綜合提升具有重要作用。
2.教學(xué)的重點(diǎn)和難點(diǎn)
重點(diǎn):條件語(yǔ)句的表示方法、結(jié)構(gòu)和用法;用條件語(yǔ)句表示算法。
難點(diǎn):理解條件語(yǔ)句的表示方法、結(jié)構(gòu)和用法。
二、教學(xué)目標(biāo)分析
1.知識(shí)與技能目標(biāo):
、耪_理解條件語(yǔ)句的概念,并掌握其結(jié)構(gòu)。
⑵會(huì)應(yīng)用條件語(yǔ)句編寫(xiě)程序。
2.過(guò)程與方法目標(biāo):
、磐ㄟ^(guò)實(shí)例,發(fā)展對(duì)解決具體問(wèn)題的過(guò)程與步驟進(jìn)行分析的能力。
⑵通過(guò)模仿,操作、探索、經(jīng)歷設(shè)計(jì)算法、設(shè)計(jì)框圖、編寫(xiě)程序以解決具體問(wèn)題的過(guò)程,發(fā)展應(yīng)用算法的能力。
⑶在解決具體問(wèn)題的過(guò)程中學(xué)習(xí)條件語(yǔ)句,感受算法的重要意義。
3.情感,態(tài)度和價(jià)值觀目標(biāo)
、拍芡ㄟ^(guò)具體實(shí)例,感受和體會(huì)算法思想在解決具體問(wèn)題中的意義,進(jìn)一步體會(huì)算法思想的重要性,體驗(yàn)算法的有效性,增進(jìn)對(duì)數(shù)學(xué)的了解,形成良好的數(shù)學(xué)學(xué)習(xí)情感,增強(qiáng)學(xué)習(xí)數(shù)學(xué)的樂(lè)趣。
、仆ㄟ^(guò)感受和認(rèn)識(shí)現(xiàn)代信息技術(shù)在解決數(shù)學(xué)問(wèn)題中的重要作用和威力,形成自覺(jué)地將數(shù)學(xué)理論和現(xiàn)代信息技術(shù)結(jié)合的思想。
、窃诰帉(xiě)程序解決問(wèn)題的過(guò)程中,逐步養(yǎng)成扎實(shí)嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度。
三、教學(xué)方法與手段分析
1.教學(xué)方法:根據(jù)本節(jié)內(nèi)容邏輯性強(qiáng),學(xué)生不易理解的特點(diǎn),本節(jié)教學(xué)采用啟發(fā)式教學(xué),輔以觀察法、發(fā)現(xiàn)法、練習(xí)法、講解法。采用這種方法的原因是學(xué)生的邏輯能力不是很強(qiáng),只能通過(guò)對(duì)實(shí)例的認(rèn)真領(lǐng)會(huì)及一定的練習(xí)才能掌握本節(jié)知識(shí)。
2.教學(xué)手段:運(yùn)用計(jì)算機(jī)、圖形計(jì)算器輔助教學(xué)
四、教學(xué)過(guò)程分析
1.創(chuàng)設(shè)情境(約4分鐘)
首先,我要求學(xué)生們編寫(xiě)程序,輸入一元二次方程
的系數(shù),輸出它的實(shí)數(shù)根。這樣可以把教學(xué)內(nèi)容轉(zhuǎn)化為具有潛在意義的問(wèn)題,讓學(xué)生產(chǎn)生強(qiáng)烈的問(wèn)題意識(shí),因?yàn)橐鉀Q這一問(wèn)題,根據(jù)我們之前所學(xué)的三種算法語(yǔ)句是無(wú)法解決的,這樣就引出今天我們所要學(xué)習(xí)的內(nèi)容。
2.探究新知(約8分鐘)
為了引入概念,我首先給出了一個(gè)基本的應(yīng)用條件語(yǔ)句能夠解決的例題:
例1編寫(xiě)一個(gè)程序,求實(shí)數(shù)x的絕對(duì)值。
整個(gè)過(guò)程由師生共同分析完成。老師要引導(dǎo)學(xué)生分析、研究例題中的兩個(gè)程序,既要讓學(xué)生們看到已知的三種語(yǔ)句,更要注意到未知的語(yǔ)句,即條件語(yǔ)句?偨Y(jié)上述例題的程序可得出條件語(yǔ)句的兩種一般格式,接下來(lái)由師生共同對(duì)這兩種格式進(jìn)行研究.
3.知識(shí)應(yīng)用(約15分鐘)
此環(huán)節(jié)有兩個(gè)例題
例2編寫(xiě)程序,寫(xiě)出輸入兩個(gè)數(shù)a和b,將較大的數(shù)打印出來(lái)
例3編寫(xiě)程序,使任意輸入的3個(gè)整數(shù)按從大到小的順序輸出.
先把解決問(wèn)題的思路用程序框圖表示出來(lái),然后再根據(jù)程序框圖給出的算法步驟,逐步把算法用對(duì)應(yīng)的程序語(yǔ)句表達(dá)出來(lái)。(程序框圖先由學(xué)生討論,再統(tǒng)一,然后利用圖形計(jì)算器演示,學(xué)生會(huì)驚喜的發(fā)現(xiàn):自己也是個(gè)編程高手了!這樣可以激發(fā)學(xué)生們的學(xué)習(xí)興趣)
4.練習(xí)鞏固(約4分鐘)
課本第30頁(yè)第3題
練習(xí)可鞏固學(xué)生對(duì)知識(shí)的理解,也可在練習(xí)中發(fā)現(xiàn)問(wèn)題,使問(wèn)題得到及時(shí)的解決。
5.課堂小結(jié)(約5分鐘)
條件語(yǔ)句的步驟、結(jié)構(gòu)及功能.
知識(shí)性?xún)?nèi)容的小結(jié),可把課堂教學(xué)傳授的知識(shí)盡快化為學(xué)生的素質(zhì);數(shù)學(xué)思想方法的小結(jié),可使學(xué)生更深刻地理解數(shù)學(xué)思想方法在解題中的地位和應(yīng)用
6.布置作業(yè)
課本練習(xí)第3、4題
[設(shè)計(jì)意圖]課后作業(yè)的布置是為了檢驗(yàn)學(xué)生對(duì)本節(jié)課內(nèi)容的理解和運(yùn)用程度以及實(shí)際接受情況,并促使學(xué)生進(jìn)一步鞏固和掌握所學(xué)內(nèi)容。對(duì)作業(yè)實(shí)施分層設(shè)置,分必做和選做,利于拓展學(xué)生的自主發(fā)展的空間。
高二數(shù)學(xué)說(shuō)課稿4
一、教材分析;
本知識(shí)來(lái)自于人教版高中數(shù)學(xué)必修3第一章第二節(jié),著好似一章新知識(shí),該部分知識(shí)被安排在五本必修課本中的第三本,處于高中知識(shí)的過(guò)度階段。而在上課前,無(wú)論是老師還是學(xué)生,都會(huì)有一些相應(yīng)的問(wèn)題,下面兩個(gè)問(wèn)題就是兩個(gè)比較有代表性的問(wèn)題。
1、為什么要在數(shù)學(xué)中教語(yǔ)句?
2、學(xué)語(yǔ)句不上機(jī),是不是紙上談兵?
現(xiàn)在我們來(lái)好好研究一下這兩個(gè)問(wèn)題。首先,學(xué)語(yǔ)句是為了算法思想,而基本算法語(yǔ)句 是算法思想的直觀表現(xiàn),是程序框圖的語(yǔ)言形式,所以學(xué)語(yǔ)句是進(jìn)一步體會(huì)算法思想,進(jìn)一步提高邏輯思維能力,提高思辨能力和實(shí)辨能力。(有條件上機(jī)的進(jìn)行實(shí)踐,沒(méi)條件上機(jī)的進(jìn)行思辨,在實(shí)踐中思辨,在思辨中實(shí)踐,提高學(xué)生的學(xué)習(xí)興趣,增加學(xué)生的實(shí)踐機(jī)會(huì))。所以,學(xué)語(yǔ)句不上機(jī),不是紙上談兵。
二、學(xué)情分析;
在學(xué)習(xí)基本算法語(yǔ)句之前(本節(jié)課主要講輸入語(yǔ)句、輸出語(yǔ)句與賦值語(yǔ)句),學(xué)生已在本章知識(shí)的第一節(jié)學(xué)習(xí)了算法與程序框圖的基本思想與定義,而且該部分與一些初等函數(shù)知識(shí)相掛鉤,并且相互結(jié)合學(xué)習(xí)。在此之前,學(xué)生在必修1已經(jīng)對(duì)初等函數(shù)知識(shí)有了相應(yīng)的學(xué)習(xí)與了解。
三、教學(xué)法;
該部分知識(shí)主要采取說(shuō)教法進(jìn)行講授,通過(guò)學(xué)生所熟悉的生活問(wèn)題引入課堂,為公式學(xué)習(xí)創(chuàng)設(shè)情境,拉近數(shù)學(xué)與現(xiàn)實(shí)之間的距離,激發(fā)學(xué)生的求知欲,調(diào)動(dòng)學(xué)生主體參與的積極性。
四、教學(xué)目標(biāo);
1、知識(shí)目標(biāo):
(1)初步了解基本算法語(yǔ)句中的輸入、輸出、賦值語(yǔ)句;
(2)理解算法語(yǔ)句是將算法的各種控制結(jié)構(gòu)變成計(jì)算機(jī)能夠理解的程序語(yǔ)言;
2、情感目標(biāo);
(1)通過(guò)對(duì)三種語(yǔ)句的實(shí)現(xiàn),發(fā)展有條理思考,表達(dá)能力,邏輯思維能力;
(2)學(xué)習(xí)算法語(yǔ)句,幫助學(xué)生利用計(jì)算機(jī)軟件實(shí)現(xiàn)算法,活躍思維,提高數(shù)學(xué)素質(zhì)。
五、教學(xué)重、難點(diǎn);
重點(diǎn):輸入語(yǔ)句、輸出語(yǔ)句、賦值語(yǔ)句的基本結(jié)構(gòu)特點(diǎn)及用法;
難點(diǎn):輸入語(yǔ)句、輸出語(yǔ)句、賦值語(yǔ)句的意義及作用。
六、教學(xué)過(guò)程;
例1、引入生活中的例子:“讓一個(gè)學(xué)生去辦公室?guī)臀胰ノ业霓k公室泡一杯茶”,通過(guò)這個(gè)例子來(lái)聽(tīng)到學(xué)生,讓他們了解其實(shí)計(jì)算機(jī)與人的辦事思維是一樣的。在這個(gè)過(guò)程中,首先我會(huì)告訴學(xué)生:辦公室的位置、辦公桌的地點(diǎn)、茶葉、茶杯等信息,即將這些信息輸入到學(xué)生的大腦(該過(guò)程等價(jià)于計(jì)算機(jī)的輸入過(guò)程);然后學(xué)生開(kāi)始行動(dòng),將茶葉、水放入茶杯(該過(guò)程等價(jià)于計(jì)算機(jī)的賦值過(guò)程);最后學(xué)生將完成的茶水給我(該過(guò)程等價(jià)于計(jì)算機(jī)的輸出過(guò)程)。
通過(guò)該例子的引入,使學(xué)生對(duì)本次課堂所要學(xué)習(xí)的知識(shí)有初步的了解,使他們?cè)诮邮苷降挠?jì)算機(jī)基本語(yǔ)句之前對(duì)該部分知識(shí)有一個(gè)簡(jiǎn)單的邏輯思維,從而使他們更容易接受該部分知識(shí),最后達(dá)到減輕學(xué)習(xí)知識(shí)難度的目的,也為后面的學(xué)習(xí)做鋪墊。
例2、用描點(diǎn)法做函數(shù)y?x3?3x2?24x?30的圖像時(shí),需要求出函數(shù)的自變量和函數(shù)的一組對(duì)應(yīng)值,編寫(xiě)程序,分別計(jì)算出當(dāng)x??5,?4,?3,?2,?1,0, 1, 2, 3, 4, 5時(shí)的函數(shù)值。
(現(xiàn)在教學(xué)生來(lái)泡茶)算法分析:
根據(jù)題意,對(duì)于每一個(gè)輸入的自變量的值,都要輸出相應(yīng)的函數(shù)值,寫(xiě)出算法步驟如下: 第一步,輸入一個(gè)自變量x的值。(計(jì)算機(jī)簡(jiǎn)單算法語(yǔ)句的輸入過(guò)程,泡茶第一步) 第二部,計(jì)算y?x3?3x2?24x?30。
第三部,輸出y。(計(jì)算機(jī)簡(jiǎn)單算法語(yǔ)句的輸出過(guò)程,泡茶第三部)
下面,結(jié)合上節(jié)課所學(xué)的知識(shí),復(fù)習(xí)并鞏固上節(jié)課所學(xué)的程序框圖,將上面的算法分析用程序框圖表示出來(lái)。
顯然,這是一個(gè)由順序結(jié)構(gòu)構(gòu)成的算法,按照程序框圖中流程線的方向,引導(dǎo)學(xué)生,得出相應(yīng)的算法語(yǔ)句,最后得出輸入語(yǔ)句、輸出語(yǔ)句、賦值語(yǔ)句的定義。
高二數(shù)學(xué)說(shuō)課稿5
一:教材分析:
1、教材的地位與作用:本節(jié)課要講的是正、余弦函數(shù)的性質(zhì),它是歷年高考的重點(diǎn)內(nèi)容之一,在高考中常以選擇題、填空題的形式出現(xiàn)。有時(shí)與其它三角變換、函數(shù)的一般性質(zhì)綜合?疾殪`活,常有創(chuàng)新性。這就要求我們注意運(yùn)用三角函數(shù)的性質(zhì)培養(yǎng)學(xué)生善于運(yùn)用三角函數(shù)的性質(zhì)解決問(wèn)題。因此,學(xué)好這節(jié)課不僅可以為我們今后學(xué)習(xí)正切、余切函數(shù)的性質(zhì)打下基礎(chǔ),還可以進(jìn)一步提高學(xué)生分析問(wèn)題和解決問(wèn)題的能力,它對(duì)知識(shí)起到了承上啟下的作用。
2、教學(xué)目標(biāo)的確定:根據(jù)教參及教學(xué)大綱的要求,依據(jù)教學(xué)目的以及學(xué)生的實(shí)際情況,制定如下的教學(xué)目標(biāo):
(1)知識(shí)目標(biāo):正、余弦函數(shù)的性質(zhì)及應(yīng)用(定義域、值域、最大、最小值、奇偶性、單調(diào)性)
(2)能力目標(biāo):
a:掌握正、余弦函數(shù)的性質(zhì);
b:靈活利用正、余弦函數(shù)的性質(zhì)
(3)德育目標(biāo):
a:滲透數(shù)形結(jié)合的思想
b:培養(yǎng)聯(lián)合變化的觀點(diǎn)
c:提高數(shù)學(xué)素質(zhì)
3、教學(xué)重點(diǎn)和難點(diǎn)的確定及依據(jù);
由于正、余弦函數(shù)的主要性質(zhì)在本節(jié)中有著重要的地位。因此,成為本節(jié)課的重點(diǎn),在教學(xué)中,單調(diào)性、奇偶性和周期性是學(xué)生第一次接觸的三個(gè)概念,而函數(shù)的單調(diào)性、奇偶性以及周期函數(shù),周期,最小正周期的意義是本節(jié)教學(xué)中學(xué)生第一次接觸的內(nèi)容。這在學(xué)生的基礎(chǔ)上理解有一定的難度。因此成為本節(jié)課的難點(diǎn)。那么克服本節(jié)課的難點(diǎn)的關(guān)鍵在于復(fù)習(xí)好正、余弦函數(shù)圖象的意義,充分利用圖形講清正、余弦函數(shù)的特點(diǎn),梳理好講解順序,使學(xué)生通過(guò)適當(dāng)?shù)木毩?xí)正確理解概念、圖象、特性、實(shí)現(xiàn)教學(xué)目標(biāo)和進(jìn)一步提高學(xué)生的學(xué)習(xí)探索能力,充分發(fā)揮學(xué)生的主體作用。
二:教材處理:
正、余弦函數(shù)的性質(zhì),其中定義域、值域、最大值、最小值,學(xué)生以前已接觸過(guò),所以只需簡(jiǎn)單提示。但是單調(diào)性,奇偶性,周期性是學(xué)生第一次接觸到的,考慮到學(xué)生的基礎(chǔ)參差不齊,接受能力不同,因此在教學(xué)中要顧全局,耐心講解,并通過(guò)適當(dāng)?shù)慕叹邌l(fā)調(diào)動(dòng)學(xué)生的主觀能動(dòng)性。
三、教學(xué)方法和手段:
1、教學(xué)方法:?jiǎn)l(fā)誘導(dǎo)式教學(xué)方法,為增強(qiáng)圖象的形象直觀性,增大教學(xué)內(nèi)容,提高效率。我利用計(jì)算機(jī)軟件,在此基礎(chǔ)上,學(xué)生運(yùn)用觀察法、發(fā)現(xiàn)法、學(xué)習(xí)法、歸納法以及練習(xí)法進(jìn)行學(xué)習(xí),在教學(xué)過(guò)程中,首先我以習(xí)提問(wèn)形式引入課題,意義使學(xué)生利用類(lèi)比思想,認(rèn)識(shí)到研究三角函數(shù)的方向所在,減少盲目性。為了有利于學(xué)生正確了解正、余弦圖形的性質(zhì),我又指導(dǎo)了學(xué)生復(fù)習(xí)正、余弦函數(shù)的圖象。再?gòu)慕榻B圖象的特點(diǎn)讓學(xué)生觀察、發(fā)現(xiàn)、歸納函數(shù)的性質(zhì)。同時(shí)結(jié)合不同例子鞏固所學(xué)的知識(shí),訓(xùn)練學(xué)生的知識(shí)應(yīng)用能力。軟件輔助教的充分利用使得教學(xué)生動(dòng)而有條理,使學(xué)生認(rèn)識(shí)到數(shù)歸思想、數(shù)形結(jié)合在學(xué)習(xí)知識(shí)中的作用。
2、教學(xué)手段:根據(jù)本節(jié)課的特點(diǎn),要在正、余弦函數(shù)的圖象的基礎(chǔ)上操作性質(zhì),所以有條件的話不防可用動(dòng)畫(huà)的形式表現(xiàn),給學(xué)生一種直觀形象,不僅激發(fā)了學(xué)生的創(chuàng)造性思維能力,更起到了事半功倍的效果。
四、教學(xué)過(guò)程:
1、復(fù)習(xí)導(dǎo)入:
通過(guò)復(fù)習(xí)已學(xué)過(guò)的正、余弦函數(shù)的圖象,不妨叫學(xué)生自己作圖,這樣不僅復(fù)習(xí)了上節(jié)課的五點(diǎn)作圖法,還可以引出新課,正、余弦函數(shù)的性質(zhì)
2、新課
a:打出多媒體課件,不妨叫學(xué)生自己觀察正、余弦函數(shù)的圖象,定義域和值域,最大值,最小值,學(xué)生應(yīng)該都能觀察出來(lái),只須稍微強(qiáng)調(diào)一下。
b:周期函數(shù)的定義:可有誘導(dǎo)公式sin(x+2kn)=sinx
得出函數(shù)值是按一定的規(guī)律重復(fù)取的,給出定義,講解定義時(shí),要特別強(qiáng)調(diào)“作零常數(shù)t”,及“對(duì)于定義域的每一值,都要有f(x+t)=f(x)成立,也就是說(shuō),如果在定義域內(nèi)的每一個(gè)值使得f(x+t)=f(x)成立。非零常數(shù)t就是周期了,不妨舉一個(gè)例子,是否正弦函數(shù)的周期,sin(n/2+x)是否等于sin(x)還應(yīng)強(qiáng)調(diào)并不是所有的函數(shù)都會(huì)有最小正周期。
c:奇偶性:在講解定義時(shí),應(yīng)該強(qiáng)調(diào),在判斷函數(shù)是否為奇偶函數(shù)時(shí),必須先看其定義域是否關(guān)于原點(diǎn)對(duì)稱(chēng),后再由f(x)=f(-x)或f(-x)=-f(x),也就是說(shuō),定義域關(guān)于原點(diǎn)對(duì)稱(chēng),一個(gè)函數(shù)有奇偶性的必要條件,還應(yīng)強(qiáng)調(diào)并不是所有的函數(shù)都有奇偶性,但也有函數(shù)既是奇函數(shù),也是偶函數(shù)。可以舉例說(shuō)明:奇函數(shù)一定關(guān)于原點(diǎn)對(duì)稱(chēng),偶函數(shù)一定關(guān)于y軸對(duì)稱(chēng)。反之也成立。
d:在講解周期性、奇偶性、單調(diào)性時(shí)可有多媒體課件實(shí)現(xiàn)。
(1)、對(duì)稱(chēng)軸:y=sinx的對(duì)稱(chēng)軸是x=kn+n/2;y=cosx的對(duì)稱(chēng)軸是x=kn;對(duì)稱(chēng)性;
(2)對(duì)稱(chēng)中心:y=sinx的對(duì)稱(chēng)中心是(kn,0)y=cosx的對(duì)稱(chēng)中心是(kn+n/2,0)
當(dāng)y=sinxx∈[-n/2+2kn,n/2+2kn]時(shí),曲線逐漸上升,y的值由-1逐漸增加到1;
單調(diào)性x∈[n/2+2kn,n/2+2kn]時(shí),曲線逐漸下降,y的值由1逐漸減少到-1;
當(dāng)y=cosxx∈[-n+2kn,2kn]時(shí),曲線逐漸上升,y的值由-1逐漸增加到1;
x∈[2kn,n+2kn]時(shí),曲線逐漸下降,y的值由1逐漸減少到-1;
五、例題講解:
例1:
cos(-23n/5)-cos(-17n/4)
問(wèn):能否求出上式的值?能否求出其值比0大還是小?須運(yùn)用我們這節(jié)課所學(xué)的哪部分知識(shí)?
求上式的值大于0還是小于0?
∵y=cosx是偶函數(shù),∴原式為cos(23n/5)-cos(17n/4)
可知cos(23n/5) 即cos(-23n/5)-cos(-17n/4)<0 例2:y=√sinx+1 提出問(wèn)題:學(xué)生能提出什么問(wèn)題? 教師引導(dǎo):上式有沒(méi)有最大值,最小值,值域,什么時(shí)候取得最大值?什么時(shí)候取得最小值?奇偶性如何?能不能畫(huà)出它的圖象?圖象與y=cosx有什么關(guān)系? 求取的最大值的x的值所有集合。 當(dāng)x取最大值時(shí)的取值為x=kn+n/2(k∈r) 即取的最大值的x的值的所有集合為[x∣x=kn+n/2(k∈r)] 例3:y=√sinx的定義域。 由0≦sinx≦1可得: x的定義域?yàn)椋?kn≦x≦&pro d;+2kn(k∈r) 即x的定義域?yàn)閇2kn,n+2kn](k∈r) 問(wèn):可不可以求值域?有沒(méi)有奇偶性?如果有的話,是奇函數(shù)還是偶函數(shù)? 拓展:求上式函數(shù)的奇偶性。一般來(lái)講,學(xué)生會(huì)用定義法求出上式既不是奇函數(shù),也不是偶函數(shù)。 結(jié)果:上式既不是奇函數(shù),也不是偶函數(shù)。 問(wèn):為什么呢? 強(qiáng)調(diào):函數(shù)有奇偶性的必要條件是定義域關(guān)于原點(diǎn)對(duì)稱(chēng)。 六、課堂小結(jié): 通過(guò)本節(jié)學(xué)習(xí),要求掌握正、余弦函數(shù)的性質(zhì)以及性質(zhì)的簡(jiǎn)單應(yīng)用,解決一些相關(guān)問(wèn)題。 七、作業(yè)布置: 使學(xué)生通過(guò)作業(yè)進(jìn)一步掌握和鞏固本節(jié)內(nèi)容 一、教學(xué)背景分析 1、教材結(jié)構(gòu)分析 《圓的方程》安排在高中數(shù)學(xué)第二冊(cè)(上)第七章第六節(jié)、圓作為常見(jiàn)的簡(jiǎn)單幾何圖形,在實(shí)際生活和生產(chǎn)實(shí)踐中有著廣泛的應(yīng)用、圓的方程屬于解析幾何學(xué)的基礎(chǔ)知識(shí),是研究二次曲線的開(kāi)始,對(duì)后續(xù)直線與圓的位置關(guān)系、圓錐曲線等內(nèi)容的學(xué)習(xí),無(wú)論在知識(shí)上還是方法上都有著積極的意義,所以本節(jié)內(nèi)容在整個(gè)解析幾何中起著承前啟后的作用、 2、學(xué)情分析 圓的方程是學(xué)生在初中學(xué)習(xí)了圓的概念和基本性質(zhì)后,又掌握了求曲線方程的一般方法的基礎(chǔ)上進(jìn)行研究的、但由于學(xué)生學(xué)習(xí)解析幾何的時(shí)間還不長(zhǎng)、學(xué)習(xí)程度較淺,且對(duì)坐標(biāo)法的運(yùn)用還不夠熟練,在學(xué)習(xí)過(guò)程中難免會(huì)出現(xiàn)困難、另外學(xué)生在探究問(wèn)題的能力,合作交流的意識(shí)等方面有待加強(qiáng)、 根據(jù)上述教材結(jié)構(gòu)與內(nèi)容分析,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)和心理特征,我制定如下教學(xué)目標(biāo): 3、教學(xué)目標(biāo) 。1)知識(shí)目標(biāo): ①掌握?qǐng)A的標(biāo)準(zhǔn)方程; ②會(huì)由圓的標(biāo)準(zhǔn)方程寫(xiě)出圓的半徑和圓心坐標(biāo),能根據(jù)條件寫(xiě)出圓的標(biāo)準(zhǔn)方程; ③利用圓的標(biāo)準(zhǔn)方程解決簡(jiǎn)單的實(shí)際問(wèn)題、 (2)能力目標(biāo): ①進(jìn)一步培養(yǎng)學(xué)生用代數(shù)方法研究幾何問(wèn)題的能力; ②加深對(duì)數(shù)形結(jié)合思想的理解和加強(qiáng)對(duì)待定系數(shù)法的運(yùn)用; 、墼鰪(qiáng)學(xué)生用數(shù)學(xué)的意識(shí)、 。3)情感目標(biāo): ①培養(yǎng)學(xué)生主動(dòng)探究知識(shí)、合作交流的意識(shí); 、谠隗w驗(yàn)數(shù)學(xué)美的過(guò)程中激發(fā)學(xué)生的學(xué)習(xí)興趣、 根據(jù)以上對(duì)教材、教學(xué)目標(biāo)及學(xué)情的分析,我確定如下的教學(xué)重點(diǎn)和難點(diǎn): 4、教學(xué)重點(diǎn)與難點(diǎn) 。1)重點(diǎn):圓的標(biāo)準(zhǔn)方程的求法及其應(yīng)用、 。2)難點(diǎn): 、贂(huì)根據(jù)不同的已知條件求圓的標(biāo)準(zhǔn)方程; ②選擇恰當(dāng)?shù)淖鴺?biāo)系解決與圓有關(guān)的實(shí)際問(wèn)題、 為使學(xué)生能達(dá)到本節(jié)設(shè)定的教學(xué)目標(biāo),我再?gòu)慕谭ê蛯W(xué)法上進(jìn)行分析: 二、教法學(xué)法分析 1、教法分析為了充分調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性,本節(jié)課采用“啟發(fā)式”問(wèn)題教學(xué)法,用環(huán)環(huán)相扣的問(wèn)題將探究活動(dòng)層層深入,使教師總是站在學(xué)生思維的最近發(fā)展區(qū)上、另外我恰當(dāng)?shù)睦枚嗝襟w課件進(jìn)行輔助教學(xué),借助信息技術(shù)創(chuàng)設(shè)實(shí)際問(wèn)題的情境既能激發(fā)學(xué)生的學(xué)習(xí)興趣,又直觀的引導(dǎo)了學(xué)生建模的過(guò)程、 2、學(xué)法分析通過(guò)推導(dǎo)圓的標(biāo)準(zhǔn)方程,加深對(duì)用坐標(biāo)法求軌跡方程的理解、通過(guò)求圓的標(biāo)準(zhǔn)方程,理解必須具備三個(gè)獨(dú)立的條件才可以確定一個(gè)圓、通過(guò)應(yīng)用圓的標(biāo)準(zhǔn)方程,熟悉用待定系數(shù)法求的過(guò)程、 下面我就對(duì)具體的教學(xué)過(guò)程和設(shè)計(jì)加以說(shuō)明: 三、教學(xué)過(guò)程與設(shè)計(jì) 整個(gè)教學(xué)過(guò)程是由七個(gè)問(wèn)題組成的問(wèn)題鏈驅(qū)動(dòng)的,共分為五個(gè)環(huán)節(jié): 創(chuàng)設(shè)情境啟迪思維深入探究獲得新知應(yīng)用舉例鞏固提高 反饋訓(xùn)練形成方法小結(jié)反思拓展引申 下面我從縱橫兩方面敘述我的教學(xué)程序與設(shè)計(jì)意圖、 首先:縱向敘述教學(xué)過(guò)程 。ㄒ唬﹦(chuàng)設(shè)情境——啟迪思維 問(wèn)題一已知隧道的截面是半徑為4m的半圓,車(chē)輛只能在道路中心線一側(cè)行駛,一輛寬為2.7m,高為3m的貨車(chē)能不能駛?cè)脒@個(gè)隧道? 通過(guò)對(duì)這個(gè)實(shí)際問(wèn)題的探究,把學(xué)生的思維由用勾股定理求線段CD的長(zhǎng)度轉(zhuǎn)移為用曲線的方程來(lái)解決、一方面幫助學(xué)生回顧了舊知——求軌跡方程的一般方法,另一方面,在得到汽車(chē)不能通過(guò)的結(jié)論的同時(shí)學(xué)生自己推導(dǎo)出了圓心在原點(diǎn),半徑為4的圓的標(biāo)準(zhǔn)方程,從而很自然的進(jìn)入了本課的主題、用實(shí)際問(wèn)題創(chuàng)設(shè)問(wèn)題情境,讓學(xué)生感受到問(wèn)題來(lái)源于實(shí)際,應(yīng)用于實(shí)際,激發(fā)了學(xué)生的學(xué)習(xí)興趣和學(xué)習(xí)欲望、這樣獲取的知識(shí),不但易于保持,而且易于遷移、 通過(guò)對(duì)問(wèn)題一的探究,抓住了學(xué)生的注意力,把學(xué)生的思維引到用坐標(biāo)法研究圓的方程上來(lái),此時(shí)再把問(wèn)題深入,進(jìn)入第二環(huán)節(jié)、 (二)深入探究——獲得新知 問(wèn)題二1、根據(jù)問(wèn)題一的探究能不能得到圓心在原點(diǎn),半徑為的圓的方程? 2、如果圓心在,半徑為時(shí)又如何呢? 這一環(huán)節(jié)我首先讓學(xué)生對(duì)問(wèn)題一進(jìn)行歸納,得到圓心在原點(diǎn),半徑為4的圓的標(biāo)準(zhǔn)方程后,引導(dǎo)學(xué)生歸納出圓心在原點(diǎn),半徑為r的圓的標(biāo)準(zhǔn)方程、然后再讓學(xué)生對(duì)圓心不在原點(diǎn)的情況進(jìn)行探究、我預(yù)設(shè)了三種方法等待著學(xué)生的探究結(jié)果,分別是:坐標(biāo)法、圖形變換法、向量平移法、 得到圓的標(biāo)準(zhǔn)方程后,我設(shè)計(jì)了由淺入深的三個(gè)應(yīng)用平臺(tái),進(jìn)入第三環(huán)節(jié)、 。ㄈ⿷(yīng)用舉例——鞏固提高 I、直接應(yīng)用內(nèi)化新知 問(wèn)題三 1、寫(xiě)出下列各圓的標(biāo)準(zhǔn)方程: 。1)圓心在原點(diǎn),半徑為3; (2)經(jīng)過(guò)點(diǎn),圓心在點(diǎn)、 2、寫(xiě)出圓的圓心坐標(biāo)和半徑、 我設(shè)計(jì)了兩個(gè)小問(wèn)題,第一題是直接或間接的給出圓心坐標(biāo)和半徑求圓的標(biāo)準(zhǔn)方程,第二題是給出圓的標(biāo)準(zhǔn)方程求圓心坐標(biāo)和半徑,這兩題比較簡(jiǎn)單,可以安排學(xué)生口答完成,目的是先讓學(xué)生熟練掌握?qǐng)A心坐標(biāo)、半徑與圓的標(biāo)準(zhǔn)方程之間的關(guān)系,為后面探究圓的切線問(wèn)題作準(zhǔn)備、 II、靈活應(yīng)用提升能力 問(wèn)題四 1、求以點(diǎn)為圓心,并且和直線相切的圓的方程、 2、求過(guò)點(diǎn),圓心在直線上且與軸相切的圓的方程、 3、已知圓的方程為,求過(guò)圓上一點(diǎn)的切線方程、 你能歸納出具有一般性的結(jié)論嗎? 已知圓的方程是,經(jīng)過(guò)圓上一點(diǎn)的切線的方程是什么? 我設(shè)計(jì)了三個(gè)小問(wèn)題,第一個(gè)小題有了剛剛解決問(wèn)題三的基礎(chǔ),學(xué)生會(huì)很快求出半徑,根據(jù)圓心坐標(biāo)寫(xiě)出圓的標(biāo)準(zhǔn)方程、第二個(gè)小題有些困難,需要引導(dǎo)學(xué)生應(yīng)用待定系數(shù)法確定圓心坐標(biāo)和半徑再求解,從而理解必須具備三個(gè)獨(dú)立的條件才可以確定一個(gè)圓、第三個(gè)小題解決方法較多,我預(yù)設(shè)了四種方法再一次為學(xué)生的發(fā)散思維創(chuàng)設(shè)了空間、最后我讓學(xué)生由第三小題的結(jié)論進(jìn)行歸納、猜想,在論證經(jīng)過(guò)圓上一點(diǎn)圓的切線方程的過(guò)程中,又一次模擬了真理發(fā)現(xiàn)的過(guò)程,使探究氣氛達(dá)到高潮、 III、實(shí)際應(yīng)用回歸自然 問(wèn)題五 如圖是某圓拱橋的一孔圓拱的示意圖,該圓拱跨度AB=20m,拱高OP=4m,在建造時(shí)每隔4m需用一個(gè)支柱支撐,求支柱的長(zhǎng)度(精確到0.01m) 我選用了教材的例3,它是待定系數(shù)法求出圓的三個(gè)參數(shù)的又一次應(yīng)用,同時(shí)也與引例相呼應(yīng),使學(xué)生形成解決實(shí)際問(wèn)題的一般方法,培養(yǎng)了學(xué)生建模的習(xí)慣和用數(shù)學(xué)的意識(shí)、 (四)反饋訓(xùn)練——形成方法 問(wèn)題六 1、求過(guò)原點(diǎn)和點(diǎn),且圓心在直線上的圓的標(biāo)準(zhǔn)方程、 2、求圓過(guò)點(diǎn)的切線方程、 3、求圓過(guò)點(diǎn)的切線方程、 接下來(lái)是第四環(huán)節(jié)——反饋訓(xùn)練、這一環(huán)節(jié)中,我設(shè)計(jì)三個(gè)小題作為鞏固性訓(xùn)練,給學(xué)生一塊“用武”之地,讓每一位同學(xué)體驗(yàn)學(xué)習(xí)數(shù)學(xué)的樂(lè)趣,成功的喜悅,找到自信,增強(qiáng)學(xué)習(xí)數(shù)學(xué)的愿望與信心、另外第3題是我特意安排的一道求過(guò)圓外一點(diǎn)的圓的切線方程,由于學(xué)生剛剛歸納了過(guò)圓上一點(diǎn)圓的切線方程,因此很容易產(chǎn)生思維的負(fù)遷移,另外這道題目有兩解,學(xué)生容易漏掉斜率不存在的情況,這時(shí)引導(dǎo)學(xué)生用數(shù)形結(jié)合的思想,結(jié)合初中已有的圓的知識(shí)進(jìn)行判斷,這樣的設(shè)計(jì)對(duì)培養(yǎng)學(xué)生思維的嚴(yán)謹(jǐn)性具有良好的效果、 (五)小結(jié)反思——拓展引申 1、課堂小結(jié) 把圓的標(biāo)準(zhǔn)方程與過(guò)圓上一點(diǎn)圓的切線方程加以小結(jié),提煉數(shù)形結(jié)合的思想和待定系數(shù)的方法 ①圓心為,半徑為r的圓的標(biāo)準(zhǔn)方程為: 圓心在原點(diǎn)時(shí),半徑為r的圓的標(biāo)準(zhǔn)方程為: 、谝阎獔A的方程是,經(jīng)過(guò)圓上一點(diǎn)的切線的方程是: 2、分層作業(yè) 。ˋ)鞏固型作業(yè):教材P81—82:(習(xí)題7、6)1,2,4 (B)思維拓展型作業(yè):試推導(dǎo)過(guò)圓上一點(diǎn)的切線方程 3、激發(fā)新疑 問(wèn)題七 1、把圓的標(biāo)準(zhǔn)方程展開(kāi)后是什么形式? 2、方程表示什么圖形? 在本課的結(jié)尾設(shè)計(jì)這兩個(gè)問(wèn)題,作為對(duì)這節(jié)課內(nèi)容的鞏固與延伸,讓學(xué)生體會(huì)知識(shí)的起點(diǎn)與終點(diǎn)都蘊(yùn)涵著問(wèn)題,舊的問(wèn)題解決了,新的問(wèn)題又產(chǎn)生了、在知識(shí)的拓展中再次掀起學(xué)生探究的熱情、另外它為下節(jié)課研究圓的一般方程作了重要的準(zhǔn)備、 以上是我縱向的教學(xué)過(guò)程及簡(jiǎn)單的設(shè)計(jì)意圖,接下來(lái),我從三個(gè)方面橫向的進(jìn)一步闡述我的教學(xué)設(shè)計(jì): 橫向闡述教學(xué)設(shè)計(jì) 。ㄒ唬┩怀鲋攸c(diǎn)抓住關(guān)鍵突破難點(diǎn) 求圓的標(biāo)準(zhǔn)方程既是本節(jié)課的教學(xué)重點(diǎn)也是難點(diǎn),為此我布設(shè)了由淺入深的學(xué)習(xí)環(huán)境,先讓學(xué)生熟悉圓心、半徑與圓的標(biāo)準(zhǔn)方程之間的關(guān)系,逐步理解三個(gè)參數(shù)的重要性,自然形成待定系數(shù)法的解題思路,在突出重點(diǎn)的同時(shí)突破了難點(diǎn)、 第二個(gè)教學(xué)難點(diǎn)就是解決實(shí)際應(yīng)用問(wèn)題,這是學(xué)生固有的難題,主要是因?yàn)閼?yīng)用問(wèn)題的題目冗長(zhǎng),學(xué)生很難根據(jù)問(wèn)題情境構(gòu)建數(shù)學(xué)模型,缺乏解決實(shí)際問(wèn)題的信心,為此我首先用一道題目簡(jiǎn)潔、貼近生活的實(shí)例進(jìn)行引入,激發(fā)學(xué)生的求知欲,同時(shí)我借助多媒體課件的演示,引導(dǎo)學(xué)生真正走入問(wèn)題的情境之中,并從中抽象出數(shù)學(xué)模型,從而消除畏難情緒,增強(qiáng)了信心、最后再形成應(yīng)用圓的標(biāo)準(zhǔn)方程解決實(shí)際問(wèn)題的一般模式,并嘗試應(yīng)用該模式分析和解決第二個(gè)應(yīng)用問(wèn)題——問(wèn)題五、這樣的設(shè)計(jì),使學(xué)生在解決問(wèn)題的同時(shí),形成了方法,難點(diǎn)自然突破、 (二)學(xué)生主體教師主導(dǎo)探究主線 本節(jié)課的設(shè)計(jì)用問(wèn)題做鏈,環(huán)環(huán)相扣,使學(xué)生的探究活動(dòng)貫穿始終、從圓的標(biāo)準(zhǔn)方程的推導(dǎo)到應(yīng)用都是在問(wèn)題的指引、我的指導(dǎo)下,由學(xué)生探究完成的、另外,我重點(diǎn)設(shè)計(jì)了兩次思維發(fā)散點(diǎn),分別是問(wèn)題二和問(wèn)題四的第三問(wèn),要求學(xué)生分組討論,合作交流,為學(xué)生設(shè)立充分的探究空間,學(xué)生在交流成果的過(guò)程中,既體驗(yàn)了科學(xué)研究和真理發(fā)現(xiàn)的復(fù)雜與艱辛,又在我的適度引導(dǎo)、側(cè)面幫助、不斷肯定下順利完成了探究活動(dòng)并走向成功,在一個(gè)個(gè)問(wèn)題的驅(qū)動(dòng)下,高效的完成本節(jié)的學(xué)習(xí)任務(wù)、 (三)培養(yǎng)思維提升能力激勵(lì)創(chuàng)新 為了培養(yǎng)學(xué)生的理性思維,我分別在問(wèn)題一和問(wèn)題四中,設(shè)計(jì)了兩次由特殊到一般的學(xué)習(xí)思路,培養(yǎng)學(xué)生的歸納概括能力、在問(wèn)題的設(shè)計(jì)中,我利用一題多解的探究,縱向挖掘知識(shí)深度,橫向加強(qiáng)知識(shí)間的聯(lián)系,培養(yǎng)了學(xué)生的創(chuàng)新精神,并且使學(xué)生的有效思維量加大,隨時(shí)對(duì)所學(xué)知識(shí)和方法產(chǎn)生有意注意,使能力與知識(shí)的形成相伴而行、 以上是我對(duì)這節(jié)課的教學(xué)預(yù)設(shè),具體的教學(xué)過(guò)程還要根據(jù)學(xué)生在課堂中的具體情況適當(dāng)調(diào)整,向生成性課堂進(jìn)行轉(zhuǎn)變、最后我以赫爾巴特的一句名言結(jié)束我的說(shuō)課,發(fā)揮我們的創(chuàng)造性,力爭(zhēng)“使教育過(guò)程成為一種藝術(shù)的事業(yè)”。 一、說(shuō)教材分析 1、本節(jié)教材的地位和作用 “三垂線定理”是立體幾何的中重要定理,它是在研究了空間直線和平面垂直關(guān)系的基礎(chǔ)上研究空間兩條直線垂直關(guān)系的一個(gè)重要定理。它既是線面垂直關(guān)系的一個(gè)應(yīng)用,又為以后學(xué)習(xí)面面垂直,研究空間距離、空間角、多面體與旋轉(zhuǎn)體的性質(zhì)奠定了基礎(chǔ),同時(shí)這節(jié)課也是培養(yǎng)高一學(xué)生空間想象能力和邏輯思維能力的重要內(nèi)容,對(duì)培養(yǎng)學(xué)生的探索精神和創(chuàng)新能力都有重要意義。 2、教學(xué)內(nèi)容 本節(jié)課的主要內(nèi)容是三垂線定理的引出、證明和初步應(yīng)用。對(duì)定理的引出改變了教材中直接給出定理的做法。通過(guò)討論空間直線與平面內(nèi)直線垂直的問(wèn)題讓學(xué)生逐步發(fā)現(xiàn)定理。這樣,學(xué)生感到自然,好接受。對(duì)教材中的例題有所增加,處理方式也有適當(dāng)改變。 3、教學(xué)目標(biāo) 根據(jù)教學(xué)大綱的要求,本節(jié)教材的特點(diǎn)和高一學(xué)生對(duì)空間圖形的認(rèn)知特點(diǎn),我把本節(jié)課的教學(xué)目的確定為: 。1)理解三垂線定理的證明,準(zhǔn)確把握“空間三線”垂直關(guān)系的實(shí)質(zhì)。 。2)領(lǐng)會(huì)應(yīng)用三垂線定理解題的一般步驟,初步學(xué)會(huì)應(yīng)用定理解決相關(guān)問(wèn)題。 。3)通過(guò)教學(xué)進(jìn)一步培養(yǎng)學(xué)生的空間想象能力和邏輯思維能力。 (4)進(jìn)行辨證唯物主義思想教育、數(shù)學(xué)應(yīng)用意識(shí)教育和數(shù)學(xué)審美教育,提高學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性。 4、教學(xué)重點(diǎn)、難點(diǎn)、關(guān)鍵 對(duì)高二學(xué)生來(lái)說(shuō),空間概念正在形成,因此本節(jié)課的重點(diǎn)是學(xué)生通過(guò)模型演示、推理論證,領(lǐng)會(huì)三垂線定理的實(shí)質(zhì),正確認(rèn)識(shí)“空間三線”的垂直關(guān)系;同時(shí)掌握“線面垂直法”研究空間直線關(guān)系的思想方法。本節(jié)教學(xué)難點(diǎn)是準(zhǔn)確把握“空間三線”垂直關(guān)系的實(shí)質(zhì),掌握應(yīng)用三垂線定理的一般步驟。領(lǐng)會(huì)定理實(shí)質(zhì)的關(guān)鍵是要認(rèn)識(shí)到平面內(nèi)一條直線與斜線及其在平面內(nèi)的射影確定的平面垂直;應(yīng)用定理的關(guān)鍵是要找到平面的垂線,射影就可由垂足與斜足確定,問(wèn)題便會(huì)迎刃而解。 二、說(shuō)教法分析 建立模型,啟發(fā)引導(dǎo),猜想論證,學(xué)習(xí)應(yīng)用,發(fā)展能力。 讓學(xué)生動(dòng)手做模型,教師演示指導(dǎo),讓學(xué)生直觀地感受到空間線面、線線關(guān)系的變化;再在教師的引導(dǎo)下思考線面、線線垂直關(guān)系存在的因果關(guān)系,逐步推理,猜想命題,論證命題,從而發(fā)現(xiàn)定理,揭示定理的實(shí)質(zhì)。對(duì)定理的應(yīng)用,只要求學(xué)生在理解定理的基礎(chǔ)上理清應(yīng)用定理證題的一般步驟,學(xué)會(huì)證明一些簡(jiǎn)單問(wèn)題。 三、說(shuō)學(xué)法指導(dǎo) 教學(xué)矛盾的主要方面是學(xué)生的學(xué),學(xué)是中心,會(huì)學(xué)是目的,因此在教學(xué)中不斷指導(dǎo)學(xué)生學(xué)會(huì)學(xué)習(xí)。根據(jù)立體幾何的教學(xué)特點(diǎn),本節(jié)課主要是教給學(xué)生“動(dòng)手做、動(dòng)腦想、大膽猜、嚴(yán)格證、多訓(xùn)練、勤鉆研”的研討式學(xué)習(xí)方法,這樣做增加了學(xué)生的參與機(jī)會(huì),增強(qiáng)了參與意識(shí),教給了學(xué)生獲取知識(shí)的途徑,思考問(wèn)題的`方法,使學(xué)生真正能成了教學(xué)的主體。也只有這樣做,才能使學(xué)生“學(xué)”有新“思”,“思”有所“得”,“練”有新“獲”,學(xué)生才會(huì)逐步感受到數(shù)學(xué)的美,會(huì)產(chǎn)生一種成功感,從而提高學(xué)生學(xué)習(xí)數(shù)學(xué)學(xué)習(xí)的興趣;也只有這樣做,才能適應(yīng)素質(zhì)教育下培養(yǎng)“創(chuàng)新型”人才的需要。 四、說(shuō)教學(xué)程序 1、(教學(xué)環(huán)節(jié))復(fù)習(xí)提問(wèn): 。1)線與平面垂直的定義?(2)線與平面垂直的判定? (3)什么叫平面的斜線、斜線在平面上的射影?(學(xué)生回答,教師作圖1) 。ㄔO(shè)計(jì)意圖:為本節(jié)課的學(xué)習(xí)做好知識(shí)鋪墊和圖形準(zhǔn)備) 2、(教學(xué)環(huán)節(jié))演示啟發(fā) 由以上復(fù)習(xí)可知,平面的一條垂線垂直于平面內(nèi)的每一條直線,平面的斜線顯然不能垂直于平面內(nèi)的每一條直線,那么平面的斜線在平面內(nèi)有垂線嗎?有幾條?請(qǐng)同學(xué)們來(lái)做做看。(教師引導(dǎo)學(xué)生用三角板和鉛筆在桌面上搭建模型) 通過(guò)以上實(shí)物操作的方法來(lái)表示平面的斜線在平面內(nèi)有垂線,而且有無(wú)數(shù)條。引導(dǎo)學(xué)生進(jìn)一步思考,斜線在平面內(nèi)的垂線與它在平面內(nèi)的射影有什么關(guān)系? 結(jié)論:直線a與射影AO垂直 那么,我們?cè)谄矫鎯?nèi)找斜線的垂線時(shí)能否只找到與其射影垂直的直線,換句話說(shuō),平面內(nèi)的直線a與斜線PO的射影AO垂直時(shí),a與斜線PO垂直嗎? 結(jié)論:根據(jù)觀察a⊥PO,為什么? 。ㄔO(shè)計(jì)意圖:這樣采用觀察、猜想、發(fā)現(xiàn)的方法引出定理比課本上直接給出定理顯得自然,學(xué)生好接受,) 3、(教學(xué)環(huán)節(jié))引導(dǎo)證明 觀察得來(lái)的結(jié)論,必須經(jīng)過(guò)嚴(yán)格證明才能確認(rèn),我們把剛才的問(wèn)題寫(xiě)出來(lái),大家一起來(lái)證明一下。 把定理改為一道普通例題,讓學(xué)生寫(xiě)出證明過(guò)程 (設(shè)計(jì)意圖:讓學(xué)生養(yǎng)成嚴(yán)格論證問(wèn)題的習(xí)慣和正確的書(shū)寫(xiě)格式,培養(yǎng)學(xué)生思維的嚴(yán)密性) 4、揭示定理 這樣我們就找到了判定平面的一條斜線與平面的斜線垂直的方法:只要它與斜線的射影垂直即可。以后我們?cè)谄矫鎯?nèi)做斜線的垂線,只需做它射影的垂線即可,F(xiàn)在我們上面這道題用文字表述出來(lái): 三垂線定理平面內(nèi)的一條直線和這個(gè)平面的一條斜線垂直當(dāng)且僅當(dāng)它和這條斜線的射影垂直。 高二數(shù)學(xué)三垂線定理說(shuō)課稿這就是著名的三垂線定理,它實(shí)質(zhì)是平面內(nèi)的直線與平面的斜線垂直的判定定理。它集中反映了平面內(nèi)的一條直線、平面的斜線、斜線在平面內(nèi)的射影這三者的關(guān)系。這個(gè)定理之所以著名,不僅在于它給了我們一個(gè)證明線線垂直的重要方法,為研究計(jì)算空間角,空間距離,研究多面體和旋轉(zhuǎn)體的性質(zhì)奠定了基礎(chǔ),而且這個(gè)定理的證明方法“線面垂直法”,也是一種非常重要的方法。 5、(教學(xué)環(huán)節(jié))定理的應(yīng)用 例1課本P155例1 例2課本P155例2 例3補(bǔ)充題:如圖正方體ABCD—A1B1C1D1中求證:(1)BD1⊥AC 。2)BD1⊥B1C(3)BD1⊥平面AB1C 小結(jié):使用三垂線定理證題的一般步驟:一定定平面及平面內(nèi)的一條直線; 二找找平面的垂線、斜線及其射影 三證證平面內(nèi)一直線與斜線垂直 (設(shè)計(jì)意圖:通過(guò)一道簡(jiǎn)單例題的推證,總結(jié)出使用定理的方法,為使學(xué)生形成解題技能打好基礎(chǔ)) 6、(教學(xué)環(huán)節(jié))小結(jié) 本節(jié)課重點(diǎn)學(xué)習(xí)了三垂線定理,應(yīng)學(xué)會(huì)按“一定、二找、三證” 的步驟解決問(wèn)題。(設(shè)計(jì)意圖:使學(xué)生對(duì)本節(jié)課所學(xué)知識(shí)的結(jié)構(gòu)有一個(gè)清晰的認(rèn)識(shí),能抓住重點(diǎn)進(jìn)行課后復(fù)習(xí)。) 7、(教學(xué)環(huán)節(jié))作業(yè)布置練習(xí):P157,題3、5作業(yè):P156,題1、2、4 思考題:在正方體ABCD—A1B1C1D1的各頂點(diǎn)連線中,與BD1垂直的直線有那些?(設(shè)計(jì)意圖:使學(xué)生鞏固本節(jié)課所學(xué)知識(shí),培養(yǎng)學(xué)生自覺(jué)學(xué)習(xí)的習(xí)慣,同時(shí)給學(xué)有余力的學(xué)生留出自由發(fā)展的空間) 五、說(shuō)板書(shū)設(shè)計(jì):塊為定理的板書(shū)及定理的證明,中間第二塊為舉例講解,右邊第三塊為學(xué)生練習(xí)和課堂小結(jié)。這樣的板書(shū)簡(jiǎn)明清楚,重點(diǎn)突出,加深學(xué)生對(duì)重點(diǎn)知識(shí)的理解和掌握,同時(shí)便于記憶,有利于提高教學(xué)效果。 一、概說(shuō) 1.教材分析: 橢圓及其標(biāo)準(zhǔn)方程是圓錐曲線的基礎(chǔ),它的學(xué)習(xí)方法對(duì)整個(gè)這一章具有導(dǎo)向和引領(lǐng)作用,直接影響其他圓錐曲線的學(xué)習(xí)。是后繼學(xué)習(xí)的基礎(chǔ)和范示。同時(shí),也是求曲線方程的深化和鞏固。 2.教學(xué)分析: 橢圓及其標(biāo)準(zhǔn)方程是培養(yǎng)學(xué)生觀察、分析、發(fā)現(xiàn)、概括、推理和探索能力的極好素材。本節(jié)課通過(guò)創(chuàng)設(shè)情景、動(dòng)手操作、總結(jié)歸納,應(yīng)用提升等探究性活動(dòng),培養(yǎng)學(xué)生的數(shù)學(xué)創(chuàng)新精神和實(shí)踐能力,使學(xué)生掌握坐標(biāo)法的規(guī)律,掌握數(shù)學(xué)學(xué)科研究的基本過(guò)程與方法。 3.學(xué)生分析: 高中二年級(jí)學(xué)生正值身心發(fā)展的鼎盛時(shí)期,思維活躍,又有了相應(yīng)知識(shí)基礎(chǔ),所以他們樂(lè)于探索、敢于探究。但高中生的邏輯思維能力尚屬經(jīng)驗(yàn)型,運(yùn)算能力不是很強(qiáng),有待于訓(xùn)練。 基于上述分析,我采取的是教學(xué)方法是“問(wèn)題誘導(dǎo)--啟發(fā)討論--探索結(jié)果”以及“直觀觀察--歸納抽象--總結(jié)規(guī)律”的一種研究性教學(xué)方法,注重“引、思、探、練”的結(jié)合。 引導(dǎo)學(xué)生學(xué)習(xí)方式發(fā)生轉(zhuǎn)變,采用激發(fā)興趣、主動(dòng)參與、積極體驗(yàn)、自主探究的學(xué)習(xí),形成師生互動(dòng)的教學(xué)氛圍。 我設(shè)定的教學(xué)重點(diǎn)是:橢圓定義的理解及標(biāo)準(zhǔn)方程的推導(dǎo)。 教學(xué)難點(diǎn)是:標(biāo)準(zhǔn)方程的推導(dǎo)。 二、目標(biāo)說(shuō)明: 根據(jù)數(shù)學(xué)教學(xué)大綱要求確立“三位一體”的教學(xué)目標(biāo)。 1.知識(shí)與技能目標(biāo): 理解橢圓定義、掌握標(biāo)準(zhǔn)方程及其推導(dǎo)。 2.過(guò)程與方法目標(biāo):注重?cái)?shù)形結(jié)合,掌握解析法研究幾何問(wèn)題的一般方法,注重探索能力的培養(yǎng)。 3.情感、態(tài)度和價(jià)值觀目標(biāo): (1)探究方法激發(fā)學(xué)生的求知欲,培養(yǎng)濃厚的學(xué)習(xí)興趣。 (2)進(jìn)行數(shù)學(xué)美育的滲透,用哲學(xué)的觀點(diǎn)指導(dǎo)學(xué)習(xí)。 三、過(guò)程說(shuō)明: 依據(jù)“一個(gè)為本,四個(gè)調(diào)整”的新的教學(xué)理念和上述教學(xué)目標(biāo)設(shè)計(jì)教學(xué)過(guò)程!耙詫W(xué)生發(fā)展為本,新型的師生關(guān)系、新型的教學(xué)目標(biāo)、新型的教學(xué)方式、新型的呈現(xiàn)方式”體現(xiàn)如下: (一)對(duì)教材的重組與拓展:根據(jù)教學(xué)目標(biāo),選擇教學(xué)內(nèi)容,遵循拓展、開(kāi)放、綜合的原則。教材中對(duì)橢圓定義盡管很?chē)?yán)密,但不夠直觀,所以增加了影音文件:海爾波譜彗星的運(yùn)行軌道圖,最后,讓學(xué)生交流用幾何畫(huà)板畫(huà)橢圓以及5個(gè)探究性問(wèn)題,作為對(duì)教材的拓展。 (二)在教學(xué)過(guò)程中的體現(xiàn): 1.新課導(dǎo)入:以影音文件“海爾波譜彗星的運(yùn)行軌道示意圖”導(dǎo)入,呈現(xiàn)方式具有新異性,激發(fā)學(xué)習(xí)興趣;畫(huà)板畫(huà)圖,增強(qiáng)動(dòng)手操作意識(shí),直觀形象從而引入橢圓定義,進(jìn)而研究橢圓標(biāo)準(zhǔn)方程。 2.新課呈現(xiàn): 學(xué)生通過(guò)觀看文件、動(dòng)手操作,然后自己總結(jié)橢圓定義,符合從感性上升為理性的認(rèn)知規(guī)律,而且提升了抽象概括的能力。然后,進(jìn)行推導(dǎo)橢圓的標(biāo)準(zhǔn)方程,培養(yǎng)運(yùn)算能力,進(jìn)而探討標(biāo)準(zhǔn)方程的特點(diǎn)。教師作為熱烈討論的平等氛圍中的引導(dǎo)者,鼓勵(lì)學(xué)生大膽探究、勇于創(chuàng)新,積極談?wù)摵蛥⑴c體驗(yàn),培養(yǎng)嚴(yán)謹(jǐn)?shù)倪壿嬎季S,抽象概括的能力,滲透數(shù)學(xué)美學(xué)教育,掌握數(shù)形結(jié)合的重要數(shù)學(xué)思想,最后的幾個(gè)探究性問(wèn)題鼓勵(lì)學(xué)生積極探索,敢于探究,轉(zhuǎn)變學(xué)習(xí)方式。 3.鞏固應(yīng)用 根據(jù)定義及其標(biāo)準(zhǔn)方程,設(shè)計(jì)三組九道練習(xí)題,引導(dǎo)學(xué)生聯(lián)系、思考、討論、反饋、矯正,增強(qiáng)運(yùn)用能力。 4.繼續(xù)探究: (1)觀察橢圓形狀,不同原因在哪里; (2)改變繩長(zhǎng)或變換焦點(diǎn)位置再畫(huà)橢圓,發(fā)現(xiàn)關(guān)系; (3)用幾何畫(huà)板交流畫(huà)圖,觀察形狀變化; (4)如何描述形狀變化? 引導(dǎo)學(xué)生探究欲望,開(kāi)展研究性學(xué)習(xí)。 四、評(píng)價(jià)說(shuō)明 本節(jié)課的學(xué)生評(píng)價(jià)堅(jiān)持形成性評(píng)價(jià)和階段性評(píng)價(jià)相結(jié)合的原則。 (一)形成性評(píng)價(jià):從操作能力、概括能力、學(xué)習(xí)興趣、交流合作、情緒情感方面對(duì)學(xué)習(xí)效果進(jìn)行過(guò)程評(píng)價(jià)。對(duì)出現(xiàn)問(wèn)題的學(xué)生,教師指出其可取之處并耐心引導(dǎo),這樣有助于培養(yǎng)他們勇于面對(duì)挫折,持之以恒地科學(xué)探索精神;當(dāng)學(xué)生做的精彩有創(chuàng)新,教師給予學(xué)生充分的鼓勵(lì),從而進(jìn)一步激發(fā)學(xué)生創(chuàng)造的潛能,提高他們的創(chuàng)新能力。 (二)階段性評(píng)價(jià):從單元測(cè)試、期中測(cè)試等方面對(duì)學(xué)生的階段性學(xué)習(xí)成果進(jìn)行測(cè)試。評(píng)價(jià)結(jié)果以每次測(cè)試成績(jī)和學(xué)生平時(shí)的綜合表現(xiàn)為依據(jù)。同時(shí)要進(jìn)行學(xué)生的自我評(píng)價(jià)以及教師對(duì)行動(dòng)的綜合性評(píng)價(jià)。 (三)教師自我反思評(píng)價(jià):本課充分體現(xiàn)了“一個(gè)為本,四個(gè)調(diào)整”的新課程理念。 五、說(shuō)課總結(jié) 這節(jié)課使用計(jì)算機(jī)網(wǎng)絡(luò)技術(shù),展現(xiàn)知識(shí)的發(fā)生過(guò)程,是學(xué)生始終處于問(wèn)題探索研究狀態(tài)之中,激情引趣。注重?cái)?shù)學(xué)科學(xué)研究方法的掌握,是研究性教學(xué)的一次有益嘗試。有利于改變學(xué)生的學(xué)習(xí)方式,有利于學(xué)生自主探究,有利于學(xué)生的實(shí)踐能力和創(chuàng)新意識(shí)的培養(yǎng)。 各位老師好: 我是戶(hù)縣二中的李敏,今天講的課題是《平面向量的坐標(biāo)的表示》,本節(jié)課是高中數(shù)學(xué)北師大版必修4第二章第4節(jié)的內(nèi)容,下面我將從四個(gè)方面對(duì)本節(jié)課的教學(xué)設(shè)計(jì)來(lái)加以說(shuō)明。 一、學(xué)情分析 本節(jié)課是在學(xué)生已學(xué)知識(shí)的基礎(chǔ)上進(jìn)行展開(kāi)學(xué)習(xí)的,也是對(duì)以前所學(xué)知識(shí)的鞏固和發(fā)展,但對(duì)學(xué)生的知識(shí)準(zhǔn)備情況來(lái)看,學(xué)生對(duì)相關(guān)基礎(chǔ)知識(shí)掌握情況是很好,所以在復(fù)習(xí)時(shí)要及時(shí)對(duì)學(xué)生相關(guān)知識(shí)進(jìn)行提問(wèn),然后開(kāi)展對(duì)本節(jié)課的鞏固性復(fù)習(xí)。而本節(jié)課學(xué)生會(huì)遇到的困難有:數(shù)軸、坐標(biāo)的表示;平面向量的坐標(biāo)表示;平面向量的坐標(biāo)運(yùn)算。 二、高考的考點(diǎn)分析: 在歷年高考試題中,平面向量占有重要地位,近幾年更是有所加強(qiáng)。這些試題不僅平面向量的相關(guān)概念等基本知識(shí),而且?计矫嫦蛄康倪\(yùn)算;平面向量共線的條件;用坐標(biāo)表示兩個(gè)向量的夾角等知識(shí)的解題技能?疾閷W(xué)生在數(shù)學(xué)學(xué)習(xí)和研究過(guò)程中知識(shí)的遷移、融會(huì),進(jìn)而考查學(xué)生的學(xué)習(xí)潛能和數(shù)學(xué)素養(yǎng),為考生展現(xiàn)其創(chuàng)新意識(shí)和發(fā)揮創(chuàng)造能力提高廣闊的空間,相關(guān)題型經(jīng)常在高考試卷里出現(xiàn),而且經(jīng)常以選擇、填空、解答題的形式出現(xiàn)。 三、復(fù)習(xí)目標(biāo) 1.會(huì)用坐標(biāo)表示平面向量的加法、減法與數(shù)乘運(yùn)算. 2.理解用坐標(biāo)表示的平面向量共線的條件. 3.掌握數(shù)量積的坐標(biāo)表達(dá)式,會(huì)進(jìn)行平面向量數(shù)量積的運(yùn)算. 4.能用坐標(biāo)表示兩個(gè)向量的夾角,理解用坐標(biāo)表示的平面向量垂直的條件. 教學(xué)重難點(diǎn)的確定與突破: 根據(jù)《20xx高考大綱》和對(duì)近幾年高考試題的分析,我確定本節(jié)的教學(xué)重點(diǎn)為:平面向量的坐標(biāo)表示及運(yùn)算。難點(diǎn)為:平面向量坐標(biāo)運(yùn)算與表示的理解。我將引導(dǎo)學(xué)生通過(guò)復(fù)習(xí)指導(dǎo),歸納概念與運(yùn)算規(guī)律,模仿例題解決習(xí)題等過(guò)程來(lái)達(dá)到突破重難點(diǎn)。 四、說(shuō)教法 根據(jù)本節(jié)課是復(fù)習(xí)課,我采用了“自學(xué)、指導(dǎo)、練習(xí)”的教學(xué)方法,即通過(guò)對(duì)知識(shí)點(diǎn)、考點(diǎn)的復(fù)習(xí),圍繞教學(xué)目標(biāo)和重難點(diǎn)提出一系列精心設(shè)計(jì)的問(wèn)題,在教師的指導(dǎo)下,用做題來(lái)復(fù)習(xí)和鞏固舊知識(shí)點(diǎn)。 五、說(shuō)學(xué)法 根據(jù)平時(shí)作業(yè)中的問(wèn)題來(lái)看,學(xué)生會(huì)本節(jié)課遇到的困難有:數(shù)軸、坐標(biāo)的表示;平面向量的坐標(biāo)表示;平面向量的坐標(biāo)運(yùn)算等方面。根據(jù)學(xué)情,所以我將指導(dǎo)通過(guò)“自學(xué),探究,模仿”等過(guò)程完成本節(jié)課的學(xué)習(xí)。 六、說(shuō)過(guò)程 (一) 知識(shí)梳理: 1.向量坐標(biāo)的求法 (1)若向量的起點(diǎn)是坐標(biāo)原點(diǎn),則終點(diǎn)坐標(biāo)即為向量的坐標(biāo). (2)設(shè)A(x1,y1),B(x2,y2),則 。絖________________ ||=_______________ 。ǘ┢矫嫦蛄孔鴺(biāo)運(yùn)算 1.向量加法、減法、數(shù)乘向量 設(shè) =(x1,y1), =(x2,y2),則 + = - = λ = . 2.向量平行的坐標(biāo)表示 設(shè) =(x1,y1), =(x2,y2),則 ∥ ________________. 。ㄈ┖诵目键c(diǎn)習(xí)題演練 考點(diǎn)1.平面向量的坐標(biāo)運(yùn)算 例1.已知A(-2,4),B(3,-1),C(-3,-4).設(shè) (1)求3 + -3 ; (2)求滿足 =m +n 的實(shí)數(shù)m,n; 練:(20xx江蘇,6)已知向量 =(2,1), =(1,-2),若m +n =(9,-8) (m,n∈R),則m-n的值為 . 考點(diǎn)2平面向量共線的坐標(biāo)表示 例2:平面內(nèi)給定三個(gè)向量 =(3,2), =(-1,2), =(4,1) 若( +k )∥(2 - ),求實(shí)數(shù)k的值; 練:(20xx,四川,4)已知向量 =(1,2), =(1,0), =(3,4).若λ為實(shí)數(shù),( +λ )∥ ,則λ= ( ) 思考:向量共線有哪幾種表示形式?兩向量共線的充要條件有哪些作用? 考點(diǎn)3平面向量數(shù)量積的坐標(biāo)運(yùn)算 例3“已知正方形ABCD的邊長(zhǎng)為1,點(diǎn)E是AB邊上的動(dòng)點(diǎn), 則的值為 ; 的最大值為 . 【提示】解決涉及幾何圖形的向量數(shù)量積運(yùn)算問(wèn)題時(shí),可建立直角坐標(biāo)系利用向量的數(shù)量積的坐標(biāo)表示來(lái)運(yùn)算,這樣可以使數(shù)量積的運(yùn)算變得簡(jiǎn)捷. 練:(20xx,安徽,13)設(shè) =(1,2), =(1,1), = +k .若 ⊥ ,則實(shí)數(shù)k的值等于( ) 【思考】?jī)煞橇阆蛄?⊥ 的充要條件: =0 . 考點(diǎn)4:平面向量模的坐標(biāo)表示 例4:(20xx湖南,理8)已知點(diǎn)A,B,C在圓x2+y2=1上運(yùn)動(dòng),且AB⊥BC,若點(diǎn)P的坐標(biāo)為(2,0),則的最大值為( ) A.6 B.7 C.8 D.9 練:(20xx,上海,12) 在平面直角坐標(biāo)系中,已知A(1,0),B(0,-1),P是曲線上一個(gè)動(dòng)點(diǎn),則 的取值范圍是? 1、教學(xué)目標(biāo) 1、知識(shí)與技能 (1)正確理解樣本數(shù)據(jù)標(biāo)準(zhǔn)差的意義和作用,學(xué)會(huì)計(jì)算數(shù)據(jù)的標(biāo)準(zhǔn)差。 (2)能根據(jù)實(shí)際問(wèn)題的需要合理地選取樣本,從樣本數(shù)據(jù)中提取基本的數(shù)字特征(如平均數(shù)、標(biāo)準(zhǔn)差),并做出合理的解釋。 (3)會(huì)用樣本的基本數(shù)字特征估計(jì)總體的基本數(shù)字特征。 (4)形成對(duì)數(shù)據(jù)處理過(guò)程進(jìn)行初步評(píng)價(jià)的意識(shí)。 2、過(guò)程與方法 在解決統(tǒng)計(jì)問(wèn)題的過(guò)程中,進(jìn)一步體會(huì)用樣本估計(jì)總體的思想,理解數(shù)形結(jié)合的數(shù)學(xué)思想和邏輯推理的數(shù)學(xué)方法。 3、情感態(tài)度與價(jià)值觀 會(huì)用隨機(jī)抽樣的方法和樣本估計(jì)總體的思想解決一些簡(jiǎn)單的實(shí)際問(wèn)題,認(rèn)識(shí)統(tǒng)計(jì)的作用,能夠辨證地理解數(shù)學(xué)知識(shí)與現(xiàn)實(shí)世界的聯(lián)系。 2重點(diǎn)難點(diǎn) 重點(diǎn):用樣本平均數(shù)和標(biāo)準(zhǔn)差估計(jì)總體的平均數(shù)與標(biāo)準(zhǔn)差。 難點(diǎn):能應(yīng)用相關(guān)知識(shí)解決簡(jiǎn)單的實(shí)際問(wèn)題。 3教學(xué)過(guò)程3.1第一學(xué)時(shí)評(píng)論(0) 新設(shè)計(jì) 【創(chuàng)設(shè)情境】 在一次射擊比賽中,甲、乙兩名運(yùn)動(dòng)員各射擊10次,命中環(huán)數(shù)如下﹕ 甲運(yùn)動(dòng)員﹕7,8,6,8,6,5,8,10,7,4; 乙運(yùn)動(dòng)員﹕9,5,7,8,7,6,8,6,7,7. 觀察上述樣本數(shù)據(jù),你能判斷哪個(gè)運(yùn)動(dòng)員發(fā)揮的更穩(wěn)定些嗎?為了從整體上更好地把握總體的規(guī)律,我們要通過(guò)樣本的數(shù)據(jù)對(duì)總體的數(shù)字特征進(jìn)行研究。——用樣本的數(shù)字特征估計(jì)總體的數(shù)字特征(板出課題)。 【探究新知】 <一>、眾數(shù)、中位數(shù)、平均數(shù) 〖探究〗:P62 (1)怎樣將各個(gè)樣本數(shù)據(jù)匯總為一個(gè)數(shù)值,并使它成為樣本數(shù)據(jù)的“中心點(diǎn)”? (2)能否用一個(gè)數(shù)值來(lái)描寫(xiě)樣本數(shù)據(jù)的離散程度?(讓學(xué)生回憶初中所學(xué)的一些統(tǒng)計(jì)知識(shí),思考后展開(kāi)討論) 初中我們?cè)?jīng)學(xué)過(guò)眾數(shù),中位數(shù),平均數(shù)等各種數(shù)字特征,應(yīng)當(dāng)說(shuō),這些數(shù)字都能夠?yàn)槲覀兲峁╆P(guān)于樣本數(shù)據(jù)的特征信息。例如前面一節(jié)在調(diào)查100位居民的月均用水量的問(wèn)題中,從這些樣本數(shù)據(jù)的頻率分布直方圖可以看出,月均用水量的眾數(shù)是2.25t(最高的矩形的中點(diǎn))(圖略見(jiàn)課本第62頁(yè))它告訴我們,該市的月均用水量為2. 25t的居民數(shù)比月均用水量為其他值的居民數(shù)多,但它并沒(méi)有告訴我們到底多多少。 〖提問(wèn)〗:請(qǐng)大家翻回到課本第56頁(yè)看看原來(lái)抽樣的數(shù)據(jù),有沒(méi)有2.25這個(gè)數(shù)值呢?根據(jù)眾數(shù)的定義,2.25怎么會(huì)是眾數(shù)呢?為什么?(請(qǐng)大家思考作答) 分析:這是因?yàn)闃颖緮?shù)據(jù)的頻率分布直方圖把原始的一些數(shù)據(jù)給遺失的原因,而2.25是由樣本數(shù)據(jù)的頻率分布直方圖得來(lái)的,所以存在一些偏差。 〖提問(wèn)〗:那么如何從頻率分布直方圖中估計(jì)中位數(shù)呢? 分析:在樣本數(shù)據(jù)中,有50%的個(gè)體小于或等于中位數(shù),也有50%的個(gè)體大于或等于中位數(shù)。因此,在頻率分布直方圖中,矩形的面積大小正好表示頻率的大小,即中位數(shù)左邊和右邊的直方圖的面積應(yīng)該相等。由此可以估計(jì)出中位數(shù)的值為2.02。(圖略見(jiàn)課本63頁(yè)圖2.2-6) 〖思考〗:2.02這個(gè)中位數(shù)的估計(jì)值,與樣本的中位數(shù)值2.0不一樣,你能解釋其中的原因嗎?(原因同上:樣本數(shù)據(jù)的頻率分布直方圖把原始的一些數(shù)據(jù)給遺失了) 課本63頁(yè)圖2.2-6)顯示,大部分居民的月均用水量在中部(2.02t左右),但是也有少數(shù)居民的月均用水量特別高,顯然,對(duì)這部分居民的用水量作出限制是非常合理的。 〖思考〗:中位數(shù)不受少數(shù)幾個(gè)極端值的影響,這在某些情況下是一個(gè)優(yōu)點(diǎn),但是它對(duì)極端值的不敏感有時(shí)也會(huì)成為缺點(diǎn),你能舉例說(shuō)明嗎?(讓學(xué)生討論,并舉例) <二>、標(biāo)準(zhǔn)差、方差 1.標(biāo)準(zhǔn)差 平均數(shù)為我們提供了樣本數(shù)據(jù)的重要信息,可是,有時(shí)平均數(shù)也會(huì)使我們作出對(duì)總體的片面判斷。某地區(qū)的統(tǒng)計(jì)顯示,該地區(qū)的中學(xué)生的平均身高為176㎝,給我們的印象是該地區(qū)的中學(xué)生生長(zhǎng)發(fā)育好,身高較高。但是,假如這個(gè)平均數(shù)是從五十萬(wàn)名中學(xué)生抽出的五十名身高較高的學(xué)生計(jì)算出來(lái)的話,那么,這個(gè)平均數(shù)就不能代表該地區(qū)所有中學(xué)生的身體素質(zhì)。因此,只有平均數(shù)難以概括樣本數(shù)據(jù)的實(shí)際狀態(tài)。 例如,在一次射擊選拔比賽中,甲、乙兩名運(yùn)動(dòng)員各射擊10次,命中環(huán)數(shù)如下﹕ 甲運(yùn)動(dòng)員﹕7,8,6,8,6,5,8,10,7,4; 乙運(yùn)動(dòng)員﹕9,5,7,8,7,6,8,6,7,7. 觀察上述樣本數(shù)據(jù),你能判斷哪個(gè)運(yùn)動(dòng)員發(fā)揮的更穩(wěn)定些嗎?如果你是教練,選哪位選手去參加正式比賽? 我們知道,。 兩個(gè)人射擊的平均成績(jī)是一樣的。那么,是否兩個(gè)人就沒(méi)有水平差距呢?(觀察P66圖2.2-8)直觀上看,還是有差異的。很明顯,甲的成績(jī)比較分散,乙的成績(jī)相對(duì)集中,因此我們從另外的角度來(lái)考察這兩組數(shù)據(jù)。 考察樣本數(shù)據(jù)的分散程度的大小,最常用的統(tǒng)計(jì)量是標(biāo)準(zhǔn)差。標(biāo)準(zhǔn)差是樣本數(shù)據(jù)到平均數(shù)的一種平均距離,一般用s表示。 樣本數(shù)據(jù)的標(biāo)準(zhǔn)差的算法: (1)、算出樣本數(shù)據(jù)的平均數(shù)。 (2)、算出每個(gè)樣本數(shù)據(jù)與樣本數(shù)據(jù)平均數(shù)的差: (3)、算出(2)中的平方。 (4)、算出(3)中n個(gè)平方數(shù)的平均數(shù),即為樣本方差。 (5)、算出(4)中平均數(shù)的算術(shù)平方根,,即為樣本標(biāo)準(zhǔn)差。 其計(jì)算公式為: 顯然,標(biāo)準(zhǔn)差較大,數(shù)據(jù)的離散程度較大;標(biāo)準(zhǔn)差較小,數(shù)據(jù)的離散程度較小。 〖提問(wèn)〗:標(biāo)準(zhǔn)差的取值范圍是什么?標(biāo)準(zhǔn)差為0的樣本數(shù)據(jù)有什么特點(diǎn)? 從標(biāo)準(zhǔn)差的定義和計(jì)算公式都可以得出:。當(dāng)時(shí),意味著所有的樣本數(shù)據(jù)都等于樣本平均數(shù)。 (在課堂上,如果條件允許的話,可以給學(xué)生簡(jiǎn)單的介紹一下利用計(jì)算機(jī)來(lái)計(jì)算標(biāo)準(zhǔn)差的方法。) 2.方差 從數(shù)學(xué)的角度考慮,人們有時(shí)用標(biāo)準(zhǔn)差的平方(即方差)來(lái)代替標(biāo)準(zhǔn)差,作為測(cè)量樣本數(shù)據(jù)分散程度的工具: 在刻畫(huà)樣本數(shù)據(jù)的分散程度上,方差和標(biāo)準(zhǔn)差是一樣的,但在解決實(shí)際問(wèn)題時(shí),一般多采用標(biāo)準(zhǔn)差。 【例題精析】 〖例1〗:畫(huà)出下列四組樣本數(shù)據(jù)的直方圖,說(shuō)明他們的異同點(diǎn)。 (1)5,5,5,5,5,5,5,5,5 (2)4,4,4,5,5,5,6,6,6 (3)3,3,4,4,5,6,6,7,7 (4)2,2,2,2,5,8,8,8,8 分析:先畫(huà)出數(shù)據(jù)的直方圖,根據(jù)樣本數(shù)據(jù)算出樣本數(shù)據(jù)的平均數(shù),利用標(biāo)準(zhǔn)差的計(jì)算公式即可算出每一組數(shù)據(jù)的標(biāo)準(zhǔn)差。 解:(圖略,可查閱課本P68) 四組數(shù)據(jù)的平均數(shù)都是5.0,標(biāo)準(zhǔn)差分別為:0.00,0.82,1.49,2.83。 他們有相同的平均數(shù),但他們有不同的標(biāo)準(zhǔn)差,說(shuō)明數(shù)據(jù)的分散程度是不一樣的。 〖例2〗:(見(jiàn)課本P69) 分析:比較兩個(gè)人的生產(chǎn)質(zhì)量,只要比較他們所生產(chǎn)的零件內(nèi)徑尺寸所組成的兩個(gè)總體的平均數(shù)與標(biāo)準(zhǔn)差的大小即可,根據(jù)用樣本估計(jì)總體的思想,我們可以通過(guò)抽樣分別獲得相應(yīng)的樣本數(shù)據(jù),然后比較這兩個(gè)樣本數(shù)據(jù)的平均數(shù)、標(biāo)準(zhǔn)差,以此作為兩個(gè)總體之間的差異的估計(jì)值。 【課堂精練】練習(xí)1. 2. 3 4 【課堂小結(jié)】 用樣本的數(shù)字特征估計(jì)總體的數(shù)字特征分兩類(lèi): 用樣本平均數(shù)估計(jì)總體平均數(shù)。 用樣本標(biāo)準(zhǔn)差估計(jì)總體標(biāo)準(zhǔn)差。樣本容量越大,估計(jì)就越精確。 平均數(shù)對(duì)數(shù)據(jù)有“取齊”的作用,代表一組數(shù)據(jù)的平均水平。 標(biāo)準(zhǔn)差描述一組數(shù)據(jù)圍繞平均數(shù)波動(dòng)的大小,反映了一組數(shù)據(jù)變化的幅度。 一、教學(xué)設(shè)計(jì) ——人教A版數(shù)學(xué)選修2-3第1章第3節(jié)第2課時(shí) 一、教材背景分析 1.教材的地位和作用 《“楊輝三角”與二項(xiàng)式系數(shù)的性質(zhì)》是全日制普通高級(jí)中學(xué)教科書(shū)人教A版選修2-3第1章第3節(jié)第2課時(shí). 教科書(shū)將二項(xiàng)式系數(shù)性質(zhì)的討論與“楊輝三角”結(jié)合起來(lái),是因?yàn)椤皸钶x三角”蘊(yùn)含了豐富的內(nèi)容,由它可以直觀看出二項(xiàng)式系數(shù)的性質(zhì),“楊輝三角”是我國(guó)古代數(shù)學(xué)重要成就之一,顯示了我國(guó)古代人民的卓越智慧和才能,應(yīng)抓住這一題材,對(duì)學(xué)生進(jìn)行愛(ài)國(guó)主義教育,激勵(lì)學(xué)生的民族自豪感. 本節(jié)內(nèi)容以前面學(xué)習(xí)的二項(xiàng)式定理為基礎(chǔ),由于二項(xiàng)式系數(shù)組成的數(shù)列就是一個(gè)離散函數(shù),引導(dǎo)學(xué)生從函數(shù)的角度研究二項(xiàng)式系數(shù)的性質(zhì),便于建立知識(shí)的前后聯(lián)系,使學(xué)生體會(huì)用函數(shù)知識(shí)研究問(wèn)題的方法,可以畫(huà)出它的圖象,利用幾何直觀、數(shù)形結(jié)合、特殊到一般的數(shù)學(xué)思想方法進(jìn)行思考,這對(duì)發(fā)現(xiàn)規(guī)律,形成證明思路等都有好處. 這一過(guò)程不僅有利于培養(yǎng)學(xué)生的思維能力、理性精神和實(shí)踐能力,也有利于學(xué)生理解本節(jié)課的核心數(shù)學(xué)知識(shí),發(fā)展其數(shù)學(xué)應(yīng)用意識(shí). 研究二項(xiàng)式系數(shù)這組特定的組合數(shù)的性質(zhì),對(duì)鞏固二項(xiàng)式定理,建立相關(guān)知識(shí)之間的聯(lián)系,進(jìn)一步認(rèn)識(shí)組合數(shù)、進(jìn)行組合數(shù)的計(jì)算和變形都有重要的作用,對(duì)后續(xù)學(xué)習(xí)微分方程等也具有重要地位. 2.學(xué)情分析 知識(shí)結(jié)構(gòu):學(xué)生已學(xué)習(xí)兩個(gè)計(jì)數(shù)原理和二項(xiàng)式定理,再讓學(xué)生課前探究“楊輝三角”包含的規(guī)律,結(jié)合“楊輝三角”,并從函數(shù)的角度研究二項(xiàng)式系數(shù)的性質(zhì). 心理特征:高二的學(xué)生已經(jīng)具備了一定的分析、探究問(wèn)題的能力,恰時(shí)恰點(diǎn)的問(wèn)題引導(dǎo)就能建立知識(shí)之間的相互聯(lián)系,解決相關(guān)問(wèn)題. 3.教學(xué)重點(diǎn)與難點(diǎn) 重點(diǎn):體會(huì)用函數(shù)知識(shí)研究問(wèn)題的方法,理解二項(xiàng)式系數(shù)的性質(zhì). 難點(diǎn):結(jié)合函數(shù)圖象,理解增減性與最大值時(shí),根據(jù)n的奇偶性確定相應(yīng)的分界點(diǎn);利用賦值法證明二項(xiàng)式系數(shù)的性質(zhì). 關(guān)鍵:函數(shù)思想的滲透. 二、教學(xué)目標(biāo) 1.通過(guò)課前組織學(xué)生開(kāi)展“了解楊輝三角、探究與發(fā)現(xiàn)楊輝三角包含的規(guī)律”的學(xué)習(xí)活動(dòng),讓學(xué)生感受我國(guó)古代數(shù)學(xué)成就及其數(shù)學(xué)美,激發(fā)學(xué)生的民族自豪感. 2.通過(guò)學(xué)生從函數(shù)的角度研究二項(xiàng)式系數(shù)的性質(zhì),建立知識(shí)的前后聯(lián)系,體會(huì)用函數(shù)知識(shí)研究問(wèn)題的方法,培養(yǎng)學(xué)生的觀察能力和歸納推理能力. 3.通過(guò)體驗(yàn)“發(fā)現(xiàn)規(guī)律、尋找聯(lián)系、探究證明、性質(zhì)運(yùn)用”的學(xué)習(xí)過(guò)程,使學(xué)生掌握二項(xiàng)式系數(shù)的一些性質(zhì),體會(huì)應(yīng)用數(shù)形結(jié)合、特殊到一般進(jìn)行歸納、賦值法等重要數(shù)學(xué)思想方法解決問(wèn)題的“再創(chuàng)造”過(guò)程. 4.通過(guò)恰時(shí)恰點(diǎn)的問(wèn)題引入、引申,采用學(xué)生課前自主探究、課上合作探究、課下延伸探究的學(xué)習(xí)方式,培養(yǎng)學(xué)生問(wèn)題意識(shí),提高學(xué)生思維能力,孕育學(xué)生創(chuàng)新精神,激發(fā)學(xué)生探索、研究我國(guó)古代數(shù)學(xué)的熱情. 三、教法選擇和學(xué)法指導(dǎo) 教法:?jiǎn)栴}引導(dǎo)、合作探究. 學(xué)法:從課前探究和課上展示中感知規(guī)律,結(jié)合“楊輝三角”和函數(shù)圖象性質(zhì)領(lǐng)悟性質(zhì),在探究證明性質(zhì)中理解知識(shí),螺旋上升地學(xué)習(xí)核心數(shù)學(xué)知識(shí)和滲透重要數(shù)學(xué)思想. 四、教學(xué)基本流程設(shè)計(jì) 五、教學(xué)過(guò)程 1. 展示成果話楊輝 課前開(kāi)展學(xué)習(xí)活動(dòng):了解“楊輝三角”的歷史背景、地位和作用,探究與發(fā)現(xiàn)“楊輝三角”包含的規(guī)律. 。1)學(xué)生從不同的角度暢談“楊輝三角”,對(duì)它有何了解及認(rèn)識(shí). 。2)各小組展示探究與發(fā)現(xiàn)的成果——“楊輝三角”包含的一些規(guī)律. 【設(shè)計(jì)意圖】引導(dǎo)學(xué)生開(kāi)展課外學(xué)習(xí),了解“楊輝三角”,探究與發(fā)現(xiàn)“楊輝三角”包含的規(guī)律,弘揚(yáng)我國(guó)古代數(shù)學(xué)文化;展示探究與發(fā)現(xiàn)的楊輝三角的規(guī)律,為學(xué)習(xí)二項(xiàng)式系數(shù)的性質(zhì)埋下伏筆. 2. 感知規(guī)律悟性質(zhì) 通過(guò)課外學(xué)習(xí),同學(xué)們觀察發(fā)現(xiàn)了楊輝三角的一些規(guī)律,并且知道楊輝三角的第 行就是 展開(kāi)式的二項(xiàng)式系數(shù), 展開(kāi)式的二項(xiàng)式系數(shù)具有楊輝三角同行中的規(guī)律——對(duì)稱(chēng)性和增減性與最大值. 【設(shè)計(jì)意圖】尋找二項(xiàng)式系數(shù)與楊輝三角的關(guān)系,從而讓學(xué)生理解二項(xiàng)式系數(shù)具有楊輝三角同行中的規(guī)律. 3. 聯(lián)系舊知探新知 【問(wèn)題提出】怎樣證明 展開(kāi)式的二項(xiàng)式系數(shù)具有對(duì)稱(chēng)性和增減性與最大值呢? 【問(wèn)題探究】探究:(1) 展開(kāi)式的二項(xiàng)式系數(shù) , 可以看成是以 為自變量的函數(shù) 嗎?它的定義域是什么? (2)畫(huà)出 和7時(shí)函數(shù) 的圖象,并觀察分析他們是否具有對(duì)稱(chēng)性和增減性與最大值. 。3)結(jié)合楊輝三角和所畫(huà)函數(shù)圖象說(shuō)明或證明二項(xiàng)式系數(shù)的性質(zhì). 對(duì)稱(chēng)性:與首末兩端“等距離”的兩個(gè)二項(xiàng)式系數(shù)相等. . 增減性與最大值: ,所以 相對(duì)于 的增減情況由 決定.由 可知,當(dāng) 時(shí),二項(xiàng)式系數(shù)是逐漸增大的.由對(duì)稱(chēng)性知它的后半部分是逐漸減小的,且在中間取得最大值.當(dāng) 的偶數(shù)時(shí),中間的一項(xiàng)取得最大值;當(dāng) 是奇數(shù)時(shí),中間的兩項(xiàng) , 相等,且同時(shí)取得最大值. 【設(shè)計(jì)意圖】教師引導(dǎo)學(xué)生用函數(shù)思想探究二項(xiàng)式系數(shù)的性質(zhì),學(xué)生畫(huà)圖并觀察分析圖象性質(zhì);運(yùn)用特殊到一般、數(shù)形結(jié)合的數(shù)學(xué)思想歸納二項(xiàng)式系數(shù)的性質(zhì),升華認(rèn)識(shí);通過(guò)分組討論、自主探究、合作交流,說(shuō)明或證明二項(xiàng)式系數(shù)的對(duì)稱(chēng)性和增減性與最大值,提高學(xué)生合作意識(shí). 4. 合作交流議方法 【繼續(xù)探究】問(wèn)題: 展開(kāi)式的各二項(xiàng)式系數(shù)的和是多少? 探究:(1)計(jì)算 展開(kāi)式的二項(xiàng)式系數(shù)的和( =1,2,3,4,5,6). 。2)猜想 展開(kāi)式的二項(xiàng)式系數(shù)的和. (3)怎樣證明你猜想的結(jié)論成立? 賦值法:已知 , 令 ,則 . 這就是說(shuō), 的展開(kāi)式的各個(gè)二項(xiàng)式系數(shù)的和等于 . 元集合子集的個(gè)數(shù)(兩個(gè)計(jì)數(shù)原理). 分類(lèi)計(jì)數(shù)原理: 分步計(jì)數(shù)原理: 個(gè)2相乘,即 . 所以 . 【問(wèn)題拓展】你能求 嗎? 在展開(kāi)式 中,令 , 則得 , 即 ,所以 , 在 的展開(kāi)式中,奇數(shù)項(xiàng)的二項(xiàng)式系數(shù)的和等于偶數(shù)項(xiàng)的二項(xiàng)式系數(shù)的和. 【設(shè)計(jì)意圖】通過(guò)學(xué)生歸納猜想各二項(xiàng)式系數(shù)的和,引導(dǎo)學(xué)生驗(yàn)證猜想結(jié)論是否正確;同時(shí)為了突破利用賦值法證明二項(xiàng)式系數(shù)性質(zhì)的難點(diǎn),引導(dǎo)學(xué)生從模型化的角度出發(fā),多角度的分析問(wèn)題、探究問(wèn)題、解決問(wèn)題,將學(xué)生思維推向高潮,既加深學(xué)生對(duì)前后知識(shí)的內(nèi)在聯(lián)系的理解,又從深度和廣度上讓學(xué)生感受數(shù)學(xué)知識(shí)的串聯(lián)和呼應(yīng). 5. 反饋升華撥思路 練1. 的展開(kāi)式中的第四項(xiàng)和第八項(xiàng)的二項(xiàng)式系數(shù)相等,則 等于 . 練2. 的展開(kāi)式中前 項(xiàng)的二項(xiàng)式系數(shù)逐漸增大,后半部分逐漸減小,二項(xiàng)式系數(shù)取得最大值的是第 項(xiàng). 練3.已知 ,求: 。1) ;(2) . 【設(shè)計(jì)意圖】促進(jìn)學(xué)生進(jìn)一步掌握二項(xiàng)式系數(shù)的性質(zhì),學(xué)會(huì)用賦值法解決問(wèn)題,促進(jìn)其有意識(shí)的運(yùn)用. 6. 懸念小結(jié)再求索 【課堂小結(jié)】 通過(guò)本節(jié)課的學(xué)習(xí),你有什么收獲和體會(huì)(從數(shù)學(xué)和生活的角度)?還有什么疑問(wèn)嗎? 【課堂延伸】今天同學(xué)們展示了一些楊輝三角的規(guī)律,但是作為我國(guó)古代數(shù)學(xué)重要成就之一的楊輝三角還有更多有趣的規(guī)律,相信大家一定有極高的熱情和嚴(yán)謹(jǐn)?shù)膽B(tài)度去探究與發(fā)現(xiàn)楊輝三角的奧妙之處. 【課外活動(dòng)】(研究性學(xué)習(xí)) 活動(dòng)主題:楊輝三角中的奧妙. 活動(dòng)目標(biāo):探究與發(fā)現(xiàn)楊輝三角中的更多奧妙. 活動(dòng)方案步驟:查閱資料,收集信息;獨(dú)立思考,發(fā)現(xiàn)規(guī)律,猜想證明;合作探究,小組討論,形成初步結(jié)論;與指導(dǎo)老師及其他小組成員交流展示;撰寫(xiě)研究性學(xué)習(xí)報(bào)告. 【設(shè)計(jì)意圖】通過(guò)課堂的整理、總結(jié)與反思,使學(xué)生更好的掌握主干知識(shí),體會(huì)探究過(guò)程中滲透的數(shù)學(xué)思想方法,再次感受我國(guó)古代數(shù)學(xué)成就,激勵(lì)自己努力學(xué)習(xí).“楊輝三角”還有很多有趣的規(guī)律,讓學(xué)生帶著問(wèn)題走進(jìn)課堂,帶著疑問(wèn)離開(kāi)教室,培養(yǎng)學(xué)生自主研修的習(xí)慣,提高學(xué)生探究問(wèn)題、解決問(wèn)題的能力.設(shè)計(jì)研究性學(xué)習(xí)活動(dòng),誘發(fā)學(xué)生創(chuàng)造性的想象和推理.同時(shí)教會(huì)學(xué)生如何開(kāi)展研究性學(xué)習(xí). 一、教材分析 本節(jié)課人教版普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(shū)數(shù)學(xué)必修3第三章概率第二節(jié)古典概型的第一課時(shí)。古典概型是在隨機(jī)事件的概率之后,幾何概型之前進(jìn)行教學(xué)的。古典概型是一種理想的數(shù)學(xué)模型,也是一種最基本的概率模型,它的引入避免了大量的重復(fù)試驗(yàn),而且得到的是概率準(zhǔn)確值,有利于理解概率的概念,有利于計(jì)算一些簡(jiǎn)單事件的概率,有利于解釋生活中的一些現(xiàn)象與問(wèn)題。而接下來(lái)要學(xué)習(xí)的幾何概型與古典概型有很多相通之處,學(xué)好古典概型可以為學(xué)習(xí)幾何概型奠定基礎(chǔ),起到了承前啟后的作用。古典概型在高等數(shù)學(xué)中概率論中也占有相當(dāng)重要的地位,為學(xué)生學(xué)習(xí)高等數(shù)學(xué)做好銜接和鋪墊。 二、學(xué)情分析 認(rèn)知分析: 學(xué)生已經(jīng)了解概率的意義,掌握了概率的基本性質(zhì),知道了互斥事件和對(duì)立事件的概率公式,這三者形成了學(xué)生思維的“最近發(fā)展區(qū)”。 此時(shí)學(xué)生們并沒(méi)有學(xué)習(xí)排列組合的知識(shí)。隨機(jī)事件的概率在教材中主要通過(guò)觀察和試驗(yàn)的方法,得到一些事件的概率估計(jì),學(xué)生的認(rèn)知水平更多的停留在感性認(rèn)識(shí)的層面,還未上升到理性認(rèn)識(shí)的高度。 能力分析: 學(xué)生已經(jīng)具備了一定的歸納、猜想能力,但數(shù)學(xué)的理性的思維能力和應(yīng)用意識(shí)仍需提高。 但對(duì)知識(shí)的理解和方法的掌握在一些細(xì)節(jié)上不完備,反映在解題中就是思維不慎密,過(guò)程不完整,解決問(wèn)題的能力還略顯單薄。 情感分析: 由于本章開(kāi)始的內(nèi)容起點(diǎn)低,坡度小,與實(shí)際聯(lián)系緊密,多數(shù)學(xué)生對(duì)本章的學(xué)習(xí)有一定的興趣,心里有想好好學(xué)習(xí)的意愿和信心。 三、教學(xué)目標(biāo) 在新課標(biāo)讓學(xué)生經(jīng)歷“學(xué)數(shù)學(xué)、做數(shù)學(xué)、用數(shù)學(xué)”的理念指導(dǎo)下,以教材為背景,我將本節(jié)課的教學(xué)目標(biāo)分為以下三個(gè)方面: 知識(shí)與技能: 1。理解古典概型的概念 2。利用古典概型求解隨機(jī)事件的概率 過(guò)程與方法: 在教學(xué)過(guò)程中,進(jìn)一步發(fā)展學(xué)發(fā)現(xiàn)問(wèn)題,分析問(wèn)題,解決問(wèn)題的能力;培養(yǎng)學(xué)生歸納、類(lèi)比等合情推理能力;培養(yǎng)學(xué)生的應(yīng)用能力與意識(shí)。 情感態(tài)度與價(jià)值觀: 激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的熱情,培養(yǎng)學(xué)生勇于探索,善于發(fā)現(xiàn)的創(chuàng)新思想;結(jié)合問(wèn)題的現(xiàn)實(shí)意義,培養(yǎng)學(xué)生的合作精神。 四、教學(xué)重點(diǎn)與難點(diǎn) 重點(diǎn):理解古典概型的概念及概率公式,并能簡(jiǎn)單應(yīng)用。 難點(diǎn):基本事件的理解。 對(duì)于本節(jié)課難點(diǎn)的確定我認(rèn)真研讀了教材和教參,開(kāi)始確定了三個(gè)教學(xué)難點(diǎn)。結(jié)合自己的教學(xué)經(jīng)驗(yàn)并同組教師進(jìn)行探討后,最后確定為一個(gè):基本事件的理解。因?yàn)楸竟?jié)課只要能對(duì)基本事件理解到位,判斷是否為古典概型,以及發(fā)現(xiàn)古典概型的概率公式就基本上都能迎刃而解了。對(duì)于難點(diǎn)的突破,我并沒(méi)有要求學(xué)生一步到位,而把理解的過(guò)程貫穿在本節(jié)課的始終。采用的方法是先是體驗(yàn),后了解,然后再體驗(yàn),最后爭(zhēng)取讓學(xué)生達(dá)到理解的層次。 五、教法學(xué)法 教法:根據(jù)本節(jié)課的特點(diǎn),采取引導(dǎo)發(fā)現(xiàn)與歸納概括相結(jié)合的教學(xué)方法,融入問(wèn)題式教學(xué)。通過(guò)提出問(wèn)題、分析問(wèn)題、解決問(wèn)題等教學(xué)過(guò)程一步步歸納概括出古典概型的概念及其概率公式,再通過(guò)具體問(wèn)題的提出和解決,讓學(xué)生體會(huì)到成功的喜悅,從而激發(fā)學(xué)生的學(xué)習(xí)興趣,調(diào)動(dòng)他們的主觀能動(dòng)性。采用多媒體教學(xué)手段,增強(qiáng)直觀性增大教學(xué)容量,力爭(zhēng)提高課堂教學(xué)效率。 學(xué)法:首先應(yīng)該給自己積極的心理暗示,數(shù)學(xué)是可以學(xué)好的,也是有樂(lè)趣的,更是有用的。在教師的引導(dǎo)下,認(rèn)真觀察思考,大膽嘗試,以提高提出問(wèn)題、分析問(wèn)題、解決問(wèn)題的能力。注重?cái)?shù)學(xué)思想的提升,通過(guò)數(shù)學(xué)語(yǔ)言的組織表達(dá),鍛煉自己思維的嚴(yán)密性。合作探究,共同進(jìn)步,體驗(yàn)成功的喜悅,培養(yǎng)合作意識(shí)和能力,為以后的發(fā)展打下良好的基礎(chǔ)。 六、教學(xué)過(guò)程 1、聚焦課堂 通過(guò)實(shí)驗(yàn)和觀察的方法,我們可以得到一些事件的概率估計(jì)。但這種方法耗時(shí)多,而且得到的僅是概率的近似值。在一些特殊情況下,我們需要尋找計(jì)算事件概率的通用方法。今天我們要學(xué)習(xí)的就是概率的一種特殊模型———古典概型。 2、明確目標(biāo) 。1)理解基本事件的含義 (2)理解古典概型及其概率計(jì)算公式,解決一些簡(jiǎn)單的古典概型問(wèn)題。3。問(wèn)題驅(qū)動(dòng) 那到底什么樣的概率模型是古典概型呢?古典概型的概率又如何求解呢?為了弄清這兩個(gè)問(wèn)題,先讓學(xué)生先考察兩個(gè)試驗(yàn),分析一下事件的構(gòu)成。 。1)拋擲一枚質(zhì)地均勻的硬幣一次(2)拋擲一枚質(zhì)地均勻的骰子一次 教師提出問(wèn)題:以上兩個(gè)試驗(yàn)的結(jié)果分別有哪些?這些結(jié)果具有哪些特點(diǎn)?把每個(gè)試驗(yàn)結(jié)果看成一個(gè)事件,它們都是隨機(jī)事件嗎?第二個(gè)試驗(yàn)中“出現(xiàn)偶數(shù)數(shù)點(diǎn)”可以用這些結(jié)果表示嗎?這些隨機(jī)試驗(yàn)結(jié)果出現(xiàn)的可能性相等嗎?學(xué)生思考并討論,結(jié)合教師提出的問(wèn)題談?wù)勛约旱目捶ā?/p> 設(shè)計(jì)意圖:對(duì)于這兩個(gè)試驗(yàn),我并沒(méi)有讓學(xué)生分組動(dòng)手實(shí)際操作,情形足夠簡(jiǎn)單,背景足夠熟悉,無(wú)需動(dòng)手操作。大量的重復(fù)試驗(yàn)可能會(huì)導(dǎo)致學(xué)生變得茫然,覺(jué)得無(wú)聊,并不能真正的激發(fā)他們的學(xué)習(xí)興趣趣,反而浪費(fèi)了時(shí)間。數(shù)學(xué)中有的知識(shí)點(diǎn)或概念理解起來(lái)比較困難,不可能一蹴而就,先讓學(xué)生體驗(yàn),幫助學(xué)生感知基本事件的含義,并為基本事件的理解這一難點(diǎn)的突破做好鋪墊,讓學(xué)生體驗(yàn)基本事件的的定義和特點(diǎn)的同時(shí),鼓勵(lì)學(xué)生用自己的語(yǔ)言描述,提高學(xué)生的數(shù)學(xué)語(yǔ)言的組織能力和表達(dá)能力。 4、合作探究、成果展示、師生評(píng)價(jià) 師生互動(dòng)中,得出基本事件的定義和特點(diǎn)(教師板書(shū)) 。ㄟ^(guò)渡性語(yǔ)言)基本事件是我們解決古典概型的前提和基礎(chǔ),為了加深同學(xué)們對(duì)基本事件的理解,我們?cè)賮?lái)看兩道例題。 例1、從字母a,b,c,d中任意取出兩個(gè)不同字母的試驗(yàn)中,有哪些基本事件? 學(xué)生獨(dú)立思考后回答,教師板書(shū)解題過(guò)程,強(qiáng)調(diào)書(shū)寫(xiě)的規(guī)范性。 基本事件為A??a,b?,B??a,c?,c??a,d?,D??b,c?,E??b,d?,F(xiàn)??c,d?(教師板書(shū)) 例2 。某人射擊5槍?zhuān)辛?槍?zhuān)噷?xiě)出所有的基本事件(⊙表示命中,X表示未命中 ) 方法一:請(qǐng)同學(xué)們列舉出所有基本事件(教師板書(shū))(列舉法) 方法二:教師簡(jiǎn)單介紹樹(shù)狀圖(教師板書(shū)),并告知學(xué)生樹(shù)狀圖也是列舉法的一種表現(xiàn)形式。(樹(shù)狀圖) 設(shè)計(jì)意圖:在列舉法學(xué)習(xí)中,增加一個(gè)例子,分別用樹(shù)形狀圖與直接列舉法展示思維過(guò)程,讓學(xué)生感受求基本事件個(gè)數(shù)的一般方法,從而化解由于沒(méi)有學(xué)習(xí)排列組合而學(xué)習(xí)概率這一教學(xué)困惑。 通過(guò)思考拋硬幣、擲骰子的試驗(yàn)和例1、2,讓學(xué)生認(rèn)真體會(huì)這些試驗(yàn)的共同特點(diǎn),得出古典概型的定義。古典概型的定義(教師板書(shū)) 你能舉例說(shuō)明現(xiàn)實(shí)生活中一些古典概型的例子嗎? 設(shè)計(jì)意圖:通過(guò)舉例,加強(qiáng)學(xué)生對(duì)古典概型的認(rèn)識(shí),讓學(xué)生初步體會(huì)把一些實(shí)際問(wèn)題轉(zhuǎn)化成數(shù)學(xué)問(wèn)題加以解決,培養(yǎng)學(xué)生的應(yīng)用意識(shí)。 古典概型是最基本的概率模型,是高考的重點(diǎn),在高等數(shù)學(xué)概率論中也占有相當(dāng)重要的地位,在現(xiàn)實(shí)生活中也有著比較廣泛的應(yīng)用。學(xué)好古典概型是學(xué)習(xí)其它概型的基礎(chǔ)。下面我們看幾個(gè)問(wèn)題,幫助大家深化一下對(duì)古典概型概念的理解。問(wèn)題(1)問(wèn)題(2)問(wèn)題(3)問(wèn)題(4)問(wèn)題(5) 學(xué)生獨(dú)立思考后交換意見(jiàn),學(xué)生代表發(fā)言,其他同學(xué)評(píng)價(jià)補(bǔ)充。 設(shè)計(jì)意圖:通過(guò)正、反兩方面的例子,特別是舉一些破壞了古典概型兩個(gè)重要特征的例子,以突破古典概型識(shí)別的這一重要知識(shí)點(diǎn),前兩個(gè)問(wèn)題還可以為以后學(xué)習(xí)幾何概型埋下伏筆。 在解決前面的問(wèn)題和理解古典概型的概念之后,再引導(dǎo)學(xué)生探究問(wèn)題:例2中,所命中的三槍中,恰好有2槍連中的概率為多少? 學(xué)生先獨(dú)立思考,然后小組內(nèi)相互交流,代表發(fā)言,其他同學(xué)評(píng)價(jià)補(bǔ)充。 基本事件總數(shù)為n的古典概型中,包含的基本事件數(shù)為m的隨機(jī)事件A的概率是多少? 學(xué)生概括總結(jié)出古典概型的概率計(jì)算公式:p(A)?事件A所含基本事件個(gè)數(shù)(教師板書(shū)) 基本事件總數(shù) 設(shè)計(jì)意圖:考慮在學(xué)生原有的認(rèn)知基礎(chǔ)上,使學(xué)生逐步感受由特殊到一般的合情推理過(guò)程,讓學(xué)生體驗(yàn)到認(rèn)知的自然升華。在概率的計(jì)算上,鼓勵(lì)學(xué)生嘗試列表和畫(huà)出樹(shù)狀圖,讓學(xué)生感受求基本事件個(gè)數(shù)的一般方法,從而化解由于沒(méi)有學(xué)習(xí)排列組合而學(xué)習(xí)概率這一教學(xué)困惑。 過(guò)渡性語(yǔ)言引出下面的例題與變式。 例3。單選題是標(biāo)準(zhǔn)化考試中常用的題型,一般是從A,B,C,D四個(gè)選項(xiàng)中選擇一個(gè)正確答案。如果考生掌握了考察的內(nèi)容,他可以選擇唯一正確的答案。假設(shè)考生不會(huì)做,他隨機(jī)的選擇一個(gè)答案,問(wèn)他答對(duì)的概率是多少? 變式:在標(biāo)準(zhǔn)化考試中既有單選題又有多選題,多選題是從A,B,C,D四個(gè)選項(xiàng)中選出所有正確的答案,同學(xué)們可能有一種感覺(jué),如果不知道正確答案,多選題更難猜對(duì),這是為什么? 學(xué)生先獨(dú)立思考,然后小組內(nèi)相互交流,合作探究,代表發(fā)言,其他同學(xué)評(píng)價(jià)補(bǔ)充。對(duì)于此變式的解題過(guò)程,教師板書(shū)并強(qiáng)調(diào)解題過(guò)程的規(guī)范性。 設(shè)計(jì)意圖:在課本例題后增加一個(gè)變式訓(xùn)練,變式的基本事件為15個(gè),暗示學(xué)生在基本事件較多的試驗(yàn)中,需用分類(lèi)討論的思想,才能補(bǔ)充不漏快速地寫(xiě)出所有基本事件。鍛煉學(xué)生思維的嚴(yán)密性,與嚴(yán)謹(jǐn)?shù)闹螌W(xué)態(tài)度,并再次感受列舉出所有基本事件在解決古典概型問(wèn)題的必要性和重要性。 5、拓展提升 練習(xí)1:有同學(xué)認(rèn)為,同時(shí)拋擲兩枚質(zhì)地均勻的硬幣一次看成一次試驗(yàn),出現(xiàn)的結(jié)果有三種情況:全是正面,一正一反,全是反面。所以一次試驗(yàn)中的基本事件有三個(gè),并且概率都是1。你認(rèn)為他說(shuō)的對(duì)嗎? 3 設(shè)計(jì)意圖:這個(gè)練習(xí)可以檢驗(yàn)學(xué)生基本事件的理解程度,根據(jù)學(xué)生的實(shí)際情況,決定是否進(jìn)行動(dòng)手試驗(yàn)。如果學(xué)生真的沒(méi)有理解到位,那就必須進(jìn)行動(dòng)手進(jìn)行試驗(yàn)了,下面的練習(xí)2就必須舍棄。原因有兩點(diǎn): 1。課上時(shí)間有限2;臼录睦斫膺@個(gè)難點(diǎn)不能突破,練習(xí)2存在的價(jià)值也就。 練習(xí)2:同時(shí)擲兩個(gè)骰子,計(jì)算: 。1)一共有多少種不同的結(jié)果?(多少個(gè)基本事件)(2)其中向上的點(diǎn)數(shù)之和是5的結(jié)果有多少種? 。3)向上的點(diǎn)數(shù)之和是5的概率是多少?(4)向上的點(diǎn)數(shù)之和是幾的概率最大?此時(shí)的概率是多少? 請(qǐng)學(xué)生思考,小組交流后代表發(fā)言。 設(shè)計(jì)意圖:不同思維的角度將古典概型中學(xué)生最容易錯(cuò)的忽視基本事件的“等可能性”暴露出來(lái),以引起學(xué)生的注意,在教材的基礎(chǔ)上增加最后一問(wèn),使學(xué)生對(duì)表格能有進(jìn)一步的認(rèn)識(shí)。本節(jié)課最后一次加深學(xué)生對(duì)基本事件的理解,再次嘗試突破本節(jié)課的教學(xué)難點(diǎn)。 6、當(dāng)堂反思: 師生共同總結(jié)本節(jié)課的內(nèi)容,學(xué)生反思教學(xué)目標(biāo)的完成情況,對(duì)于學(xué)習(xí)中的新問(wèn)題課下可以多多思考,多多交流,積極找到解決問(wèn)題的辦法。 七、評(píng)價(jià)設(shè)計(jì)說(shuō)明 根據(jù)本節(jié)課的特點(diǎn),采用引導(dǎo)發(fā)現(xiàn)和歸納概括相結(jié)合的教學(xué)方法。通過(guò)“八步流程”的教學(xué)模式,觀察對(duì)比、概括歸納古典概型的概念及其概率公式,再通過(guò)具體問(wèn)題的提出和解決,讓學(xué)生體會(huì)成功的喜悅,來(lái)激發(fā)學(xué)生的學(xué)習(xí)興趣,調(diào)動(dòng)學(xué)生的主體能動(dòng)性,讓每一個(gè)學(xué)生充分地參與到學(xué)習(xí)活動(dòng)中來(lái)。本節(jié)課以問(wèn)題為紐帶,在探究過(guò)程中,通過(guò)與學(xué)生的交流,注意其思想變化,進(jìn)行恰當(dāng)引導(dǎo);通過(guò)觀察課上練習(xí)和課后作業(yè),課下個(gè)別談話的方式,了解學(xué)生知識(shí)技能和學(xué)習(xí)方法的不足,用以指導(dǎo)今后的教學(xué)。 尊敬的各位評(píng)委、老師: 您們好! 今天我說(shuō)課的內(nèi)容是人教版高二第二冊(cè)(上)第七章第三節(jié)第4課時(shí):“點(diǎn)到直線的距離”. 下面根據(jù)我寫(xiě)的教案,把我對(duì)本節(jié)課的教材分析、教學(xué)方法和教學(xué)用具、教學(xué)過(guò)程以及教學(xué)評(píng)價(jià)等方面的認(rèn)識(shí)做一個(gè)說(shuō)明.敬請(qǐng)各位專(zhuān)家多提寶貴意見(jiàn). 一、關(guān)于教材分析 1、教材的地位和作用 “點(diǎn)到直線的距離”是在學(xué)生學(xué)習(xí)直線方程的基礎(chǔ)上,進(jìn)一步研究?jī)芍本位置關(guān)系的一節(jié)內(nèi)容,我們知道兩條直線相交后,進(jìn)一步的量化關(guān)系是角度,而兩條直線平行后,進(jìn)一步的量化關(guān)系是距離,而平行線間的距離是通過(guò)點(diǎn)到直線距離來(lái)解決的.此外在研究直線與圓的位置關(guān)系、曲線上的點(diǎn)到直線的距離以及解析幾何中有關(guān)三角形面積的計(jì)算等問(wèn)題時(shí),都要涉及點(diǎn)到直線的距離.所以“點(diǎn)到直線的距離公式”是平面解析幾何的一個(gè)重要知識(shí)點(diǎn).由于這一節(jié)是直線內(nèi)容的結(jié)尾部分,學(xué)生已經(jīng)具備直線的有關(guān)知識(shí)(如交點(diǎn)、垂直、向量、三角形等),因此,一方面公式的推導(dǎo)成為可能,另一方面公式的推導(dǎo)也是檢驗(yàn)學(xué)生是否真正掌握所學(xué)知識(shí)點(diǎn)的一個(gè)很好的課題.通過(guò)公式推導(dǎo)的獲得,可以培養(yǎng)學(xué)生分析問(wèn)題、解決問(wèn)題的能力,以及自主探究和合作學(xué)習(xí)的能力. 2教學(xué)目標(biāo)分析 我確定教學(xué)目標(biāo)的依據(jù)有以下三條: 。1)教學(xué)大綱、考試大綱的要求 。2)新教材的特點(diǎn) 。3)所教學(xué)生的實(shí)際情況 教學(xué)目標(biāo)包括:知識(shí)、能力、德育等方面的內(nèi)容. “點(diǎn)到直線的距離公式”是平面解析幾何重要的基礎(chǔ)知識(shí),也是教學(xué)大綱和考試大綱要求掌握的一個(gè)知識(shí)點(diǎn).按照大綱“在傳授知識(shí)的同時(shí),滲透數(shù)學(xué)思想方法,培養(yǎng)學(xué)生數(shù)學(xué)能力”的教學(xué)要求,結(jié)合新教材向量的引入,又根據(jù)所帶班級(jí)學(xué)生基礎(chǔ)和素質(zhì)教好的情況,我把本節(jié)課的教學(xué)目標(biāo)確定為: (1)讓學(xué)生理解點(diǎn)到直線距離公式的推導(dǎo)思想,掌握點(diǎn)到直線距離公式及其應(yīng)用,會(huì)用點(diǎn)到直線距離求兩平行線間的距離; (2)通過(guò)推導(dǎo)公式方法的發(fā)現(xiàn),培養(yǎng)學(xué)生觀察、思考、分析、歸納等數(shù)學(xué)能力;在推導(dǎo)過(guò)程中,滲透數(shù)形結(jié)合、轉(zhuǎn)化(或化歸)等數(shù)學(xué)思想以及特殊與一般的方法; 。3)通過(guò)本節(jié)學(xué)習(xí),引導(dǎo)學(xué)生用聯(lián)系與轉(zhuǎn)化的觀點(diǎn)看問(wèn)題,體驗(yàn)在探索問(wèn)題的過(guò)程中獲得的成功感. 3、教學(xué)重點(diǎn):點(diǎn)到直線距離公式的推導(dǎo)和應(yīng)用. 教學(xué)難點(diǎn):發(fā)現(xiàn)點(diǎn)到直線距離公式的推導(dǎo)方法. 二、關(guān)于教學(xué)方法和教學(xué)用具的說(shuō)明 1、教學(xué)方法的選擇 。1)指導(dǎo)思想:在“以生為本”理念的指導(dǎo)下,充分體現(xiàn)“教師為主導(dǎo),學(xué)生為主體”. 。2)教學(xué)方法:?jiǎn)栴}解決法、討論法等. 本節(jié)課的任務(wù)主要是公式推導(dǎo)思路的獲得和公式的推導(dǎo)及應(yīng)用.我選擇的是問(wèn)題解決法、討論法等.通過(guò)一系列問(wèn)題,創(chuàng)造思維情境,通過(guò)師生互動(dòng),讓學(xué)生體驗(yàn)、探究、發(fā)現(xiàn)知識(shí)的形成和應(yīng)用過(guò)程,以及思考問(wèn)題的方法,促進(jìn)思維發(fā)展;學(xué)生自主學(xué)習(xí),分工合作,使學(xué)生真正成為教學(xué)的主體. 2、教學(xué)用具的選用 在選用教學(xué)用具時(shí),我考慮到,在本節(jié)課的公式推導(dǎo)和例題求解中思路較多,所以采用了計(jì)算機(jī)多媒體和實(shí)物投影儀作為輔助教具.它可以將數(shù)學(xué)問(wèn)題形象、直觀顯示,便于學(xué)生思考,實(shí)物投影儀展示學(xué)生不同解題方案,提高課堂效率. 三、關(guān)于教學(xué)過(guò)程的設(shè)計(jì) “數(shù)學(xué)是思維的體操”,一題多解可以培養(yǎng)和提高學(xué)生思維的靈活性,及分析問(wèn)題和解決問(wèn)題的能力.課程標(biāo)準(zhǔn)指出,教學(xué)中應(yīng)注意溝通各部分內(nèi)容之間的聯(lián)系,通過(guò)類(lèi)比、聯(lián)想、知識(shí)的遷移和應(yīng)用等方式,使學(xué)生體會(huì)知識(shí)間的有機(jī)聯(lián)系,感受數(shù)學(xué)的整體性.課標(biāo)又指出,鼓勵(lì)學(xué)生積極參與教學(xué)活動(dòng).為此,在具體教學(xué)過(guò)程中,把本節(jié)課分為以下:“創(chuàng)設(shè)情境提出問(wèn)題——自主探索推導(dǎo)公式——變式訓(xùn)練學(xué)會(huì)應(yīng)用——學(xué)生小結(jié)教師點(diǎn)評(píng)——課外練習(xí)鞏固提高”五個(gè)環(huán)節(jié)來(lái)完成.下面對(duì)每個(gè)環(huán)節(jié)進(jìn)行具體說(shuō)明. 。ㄒ唬創(chuàng)設(shè)情境提出問(wèn)題] 1、這一環(huán)節(jié)要解決的主要問(wèn)題是: 創(chuàng)設(shè)情境,引導(dǎo)學(xué)生分析實(shí)際問(wèn)題,由實(shí)際問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題,揭示本課任務(wù).同時(shí)激發(fā)學(xué)生學(xué)習(xí)興趣,培養(yǎng)學(xué)生數(shù)學(xué)建模能力. 2、具體教學(xué)安排: 多媒體顯示實(shí)例,電信局線路問(wèn)題,實(shí)際怎樣解決?能否轉(zhuǎn)化為解析幾何問(wèn)題? 學(xué)生很快想到建立坐標(biāo)系.如何建立坐標(biāo)系?建系不同,點(diǎn)和直線方程不同,用點(diǎn)的坐標(biāo)和直線方程如何解決距離問(wèn)題,由此引出本課課題“點(diǎn)到直線的距離”. (二)[自主探索推導(dǎo)公式] 1、這一環(huán)節(jié)要解決的主要問(wèn)題是: 充分發(fā)揮學(xué)生的主體作用,引導(dǎo)學(xué)生發(fā)現(xiàn)點(diǎn)到直線距離公式的推導(dǎo)方法,并推導(dǎo)出公式.在公式的推導(dǎo)過(guò)程中,圍繞兩條線索:明線為知識(shí)的學(xué)習(xí),暗線為特殊與一般的邏輯方法以及轉(zhuǎn)化、數(shù)形結(jié)合等數(shù)學(xué)思想的滲透. 2、具體教學(xué)安排: 2.1學(xué)生初探解決特例 首先提出問(wèn)題:怎樣用解析幾何方法求解點(diǎn)到直線距離?由于字母的運(yùn)算有難度,引導(dǎo)學(xué)生從直線的特殊情況入手,這樣問(wèn)題比較容易解決.學(xué)生應(yīng)該能想到,如果直線是坐標(biāo)軸或平行坐標(biāo)軸的時(shí)候問(wèn)題比較容易解決,給予學(xué)生肯定的評(píng)價(jià).學(xué)生自己完成推導(dǎo)過(guò)程,選兩名學(xué)生進(jìn)行板演. 2.2師生互動(dòng)獲取思路 特殊情況已經(jīng)解決,引導(dǎo)學(xué)生考慮一般直線的情況.通過(guò)學(xué)生思考,教師收集得到思路一:過(guò)P作PQ ⊥ l于Q點(diǎn),根據(jù)點(diǎn)斜式寫(xiě)出直線PQ方程,由PQ與l聯(lián)立方程組解得Q點(diǎn)坐標(biāo),然后利用兩點(diǎn)距離公式求得. 我及時(shí)評(píng)價(jià)這種方法思路自然,是一種解決辦法.為了拓展學(xué)生思維,我們根據(jù)已有的知識(shí)和經(jīng)驗(yàn),還有什么辦法能解決?為此我啟發(fā)學(xué)生,提出問(wèn)題: (1)求線段長(zhǎng)度可以構(gòu)造圖形嗎? (2)什么圖形?如何構(gòu)造?(學(xué)生經(jīng)過(guò)討論,得到構(gòu)造三角形,把線段放在直角三角形中.)但是如何構(gòu)造又是一個(gè)難點(diǎn). (3)第三個(gè)頂點(diǎn)在什么位置? (4)特殊情況與一般情況有聯(lián)系嗎? 學(xué)生通過(guò)觀察、討論會(huì)提出第三個(gè)頂點(diǎn)的不同位置:可能在直線l與x軸的交點(diǎn)M或與y軸交點(diǎn)N;或根據(jù)特殊情況的證法提示,過(guò)P點(diǎn)作x、y軸的平行線與直線l的交點(diǎn)R、S.或同時(shí)做x、y軸平行線.這樣就收集到思路二、三、四. 三種思路已經(jīng)有了,它們的共性是什么?學(xué)生能觀察出都在三角形中.我繼續(xù)引導(dǎo):能不能不構(gòu)造三角形?而是其它數(shù)學(xué)相關(guān)量?我們剛學(xué)習(xí)了向量知識(shí),能否用向量知識(shí)解決問(wèn)題呢?(由于在前面學(xué)習(xí)的向量知識(shí)中,向量的?梢员硎緝牲c(diǎn)之間的距離,而證明兩直線垂直時(shí)也已經(jīng)用到向量知識(shí),法向量又是本節(jié)課后閱讀材料,本班學(xué)生基礎(chǔ)和素質(zhì)較好,在學(xué)習(xí)直線方向向量時(shí)已經(jīng)布置閱讀). 提出問(wèn)題:線段的長(zhǎng)度就是對(duì)應(yīng)向量的模,那么如何求得向量PQ的模呢?根據(jù)實(shí)際情況提示一方面PQ的方向完全由直線的方向而定(與法向量共線),另一方面PQ的長(zhǎng)度又與點(diǎn)P有關(guān),它的長(zhǎng)度又如何控制下來(lái)?所以有思路五,由師生一起分析,取λλ(A, B )法向量n=,而PQ = n,以下只要求得,就可以得到距離. 2.3分工合作自主完成 學(xué)生提出了不同的解決方案,究竟哪種好呢?如果讓每位學(xué)生都去用不同解法探求,在課堂上時(shí)間顯然是不允許的,但教學(xué)中又要培養(yǎng)學(xué)生的運(yùn)算能力,如何解決這種矛盾呢?現(xiàn)代教育要求學(xué)生要有自主學(xué)習(xí)、合作學(xué)習(xí)能力,因此我叫學(xué)生對(duì)五種思路進(jìn)行分組練習(xí). 在學(xué)生求解過(guò)程中,我巡視,觀看學(xué)生解題,了解情況,根據(jù)課堂時(shí)間的實(shí)際情況,選取做好的學(xué)生的解題過(guò)程用實(shí)物投影儀顯示.這樣不僅能讓全體學(xué)生看到不同思路的具體解法,還能得出最佳解題方案,接著我展示最佳解題方案的規(guī)范步驟.目的讓學(xué)生有良好的規(guī)范的書(shū)面表達(dá)習(xí)慣,起到教師典范的作用. 2.4公式小結(jié)概括提升 公式推導(dǎo)出,學(xué)生有了成功的喜悅.我也給予了肯定.但是由于公式的結(jié)果是一般情況得出的,而對(duì)于當(dāng)A = 0,或B = 0時(shí),點(diǎn)在直線上是否成立,它們與當(dāng)AB ≠ 0時(shí),點(diǎn)在直線外有什么關(guān)系?這并沒(méi)有驗(yàn)證.而我們要求學(xué)生考慮問(wèn)題要全面,為此我提出提問(wèn):①上式是由條件下當(dāng)AB ≠ 0時(shí)得出,對(duì)當(dāng)A = 0,或B = 0時(shí)成立嗎?②點(diǎn)P在直線l上成立嗎?③公式結(jié)構(gòu)特點(diǎn)是什么?用公式時(shí)直線方程是什么形式?通過(guò)學(xué)生的討論,使學(xué)生了解公式適用的范圍:任意點(diǎn)、任意直線.同時(shí)體現(xiàn)整體認(rèn)識(shí)和分類(lèi)討論思想. 依據(jù)新課程的理念,教師要?jiǎng)?chuàng)造性地使用教材.在公式的推導(dǎo)過(guò)程中,我做了和教材不同的處理方法:(1)先特殊后一般的證法,(2)多角度構(gòu)造三角形,(3)知識(shí)聯(lián)系,向量解決.目的是讓學(xué)生在考慮問(wèn)題時(shí)有特殊到一般的意識(shí),符合學(xué)生認(rèn)知規(guī)律,使問(wèn)題的解決循序漸進(jìn).向量是新教材內(nèi)容,是一種很好的數(shù)學(xué)工具,和解析幾何結(jié)合應(yīng)用是現(xiàn)在新教材知識(shí)的交匯點(diǎn).而多角度考慮問(wèn)題,發(fā)散學(xué)生思維. 。ㄈ變式訓(xùn)練學(xué)會(huì)應(yīng)用] 1、這一環(huán)節(jié)解決的主要問(wèn)題是: 通過(guò)練習(xí),熟悉公式結(jié)構(gòu),記憶并簡(jiǎn)單應(yīng)用公式.通過(guò)例題的不同解法,進(jìn)一步讓學(xué)生體會(huì)轉(zhuǎn)化(或化歸)的數(shù)學(xué)思想. 2、具體教學(xué)安排: 由學(xué)生完成下列練習(xí): 。1)解決課堂提出的實(shí)際問(wèn)題.(學(xué)生口答) 。2)求點(diǎn)P0(-1,2)到下列直線的距離: ①3x=2 ②5y=3 ③2x+y=10 ④y=-4x+1 設(shè)計(jì)說(shuō)明:練習(xí)1的設(shè)計(jì)解決了上課開(kāi)始提出的實(shí)際問(wèn)題.練習(xí)2的設(shè)計(jì)故意選特殊直線和非直線方程一般式,主要強(qiáng)調(diào)在公式應(yīng)用時(shí),直線方程是一般式,應(yīng)用公式的準(zhǔn)確性. 例題(3)求平行線2x-7y+8=0和2x-7y-6=0的距離. 我選取的是課本例題,課本只有一種具體點(diǎn)的解法.我通過(guò)本節(jié)課的學(xué)習(xí),讓學(xué)生對(duì)知識(shí)從深度和廣度上進(jìn)行挖掘.通過(guò)幾何畫(huà)板的演示,讓學(xué)生直觀看到思考問(wèn)題的方法.除了選擇直線上的點(diǎn),還可以選取原點(diǎn),求它到兩條直線的距離,然后作和.或者選取直線外的點(diǎn)P,求它到兩條直線的距離,然后作差.由特殊點(diǎn)到任意點(diǎn),由特殊直線到任意直線,從而延伸出兩平行線間的距離.目的是在整個(gè)過(guò)程中,讓學(xué)生注意體會(huì)解題方法中的靈活性以及轉(zhuǎn)化等數(shù)學(xué)思想方法. 。ㄋ模學(xué)生小結(jié)教師點(diǎn)評(píng)] 1、這一環(huán)節(jié)解決的主要問(wèn)題和達(dá)到的目的是: 通過(guò)師生共同小結(jié),鞏固所學(xué)知識(shí),提煉用到的解決問(wèn)題的方法,其中蘊(yùn)涵的數(shù)學(xué)思想方法,培養(yǎng)學(xué)生歸納概括能力. 2、具體教學(xué)安排: 本節(jié)課小結(jié)主要由學(xué)生完成知識(shí)總結(jié),通過(guò)學(xué)習(xí)知識(shí)所體驗(yàn)到的數(shù)學(xué)思想方法,由學(xué)生總結(jié)和相互補(bǔ)充,教師適當(dāng)點(diǎn)評(píng),加以經(jīng)驗(yàn)總結(jié). 。ㄎ澹課外練習(xí)鞏固提高] 1課本習(xí)題7.3的第13題—16題; 2 總結(jié)寫(xiě)出點(diǎn)到直線距離公式的多種方法. 設(shè)計(jì)說(shuō)明:作業(yè)1是課本習(xí)題,檢查學(xué)生所學(xué)知識(shí)掌握的程度.作業(yè)2是根據(jù)課堂分析,讓學(xué)生總結(jié)公式推導(dǎo)的方法.除了課堂上想到的方法還可以繼續(xù)思考,比如在用兩點(diǎn)距離公式整體代換等方法,發(fā)揮學(xué)生學(xué)習(xí)的自主性和思維的廣闊性. 四、關(guān)于教學(xué)評(píng)價(jià)的設(shè)計(jì) 新課程標(biāo)準(zhǔn)提出要加強(qiáng)過(guò)程性評(píng)價(jià),因而在具體教學(xué)過(guò)程中,我對(duì)于學(xué)生的語(yǔ)言與行為的表現(xiàn),及時(shí)給予肯定性的表?yè)P(yáng)和鼓勵(lì);學(xué)生思維暴露出問(wèn)題時(shí)及時(shí)評(píng)價(jià),矯正思維方向,調(diào)整教學(xué)思路;為了獲得后反饋信息,布置作業(yè),通過(guò)觀察學(xué)生完成作業(yè)情況,了解學(xué)生在知識(shí)技能和數(shù)學(xué)方法方面的收獲和不足,指導(dǎo)我今后教學(xué).整個(gè)教學(xué)評(píng)價(jià)是在師生互動(dòng)中完成的. 以上是我對(duì)這節(jié)課的設(shè)計(jì),懇請(qǐng)各位專(zhuān)家和老師批評(píng)、指正. 謝謝! 各位領(lǐng)導(dǎo),各位老師: 我說(shuō)課的課題是《任意角的三角函數(shù)》,內(nèi)容取自人教版普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(shū)《數(shù)學(xué)》④(必修)第1。2。1節(jié)。 一、教材結(jié)構(gòu)與內(nèi)容簡(jiǎn)析 本節(jié)內(nèi)容在全書(shū)及章節(jié)的地位:三角函數(shù)是描述周期運(yùn)動(dòng)現(xiàn)象的重要的數(shù)學(xué)模型,有非常廣泛的應(yīng)用。三角函數(shù)的定義是在初中對(duì)銳角三角函數(shù)的定義以及剛學(xué)過(guò)的“角的概念的推廣”的基礎(chǔ)上討論和研究的。三角函數(shù)的定義是本章最基本的概念,對(duì)三角內(nèi)容的整體學(xué)習(xí)至關(guān)重要,是其他所有知識(shí)的出發(fā)點(diǎn)。緊緊扣住三角函數(shù)定義這個(gè)寶貴的源泉,可以自然地導(dǎo)出本章的具體內(nèi)容:三角函數(shù)線、定義域、符號(hào)判斷、值域、同角三角函數(shù)關(guān)系、多組誘導(dǎo)公式、多組變換公式、圖象和性質(zhì)。 三角函數(shù)的定義在教材中起著承前啟后的作用,一方面,通過(guò)這部分內(nèi)容的學(xué)習(xí),可以幫助學(xué)生更加深入理解函數(shù)這一基本概念,另一方面它又為平面向量、解析幾何等內(nèi)容的學(xué)習(xí)作必要的準(zhǔn)備。三角函數(shù)知識(shí)還是物理學(xué)、高等數(shù)學(xué)、測(cè)量學(xué)、天文學(xué)的重要基礎(chǔ)。 三角函數(shù)定義必然是學(xué)好全章內(nèi)容的關(guān)鍵,如果學(xué)生掌握不好,將直接影響到后續(xù)內(nèi)容的學(xué)習(xí),由三角函數(shù)定義的基礎(chǔ)性和應(yīng)用的廣泛性決定了本節(jié)教材的重點(diǎn)就是定義本身。 數(shù)學(xué)思想方法分析:作為一名數(shù)學(xué)老師,不僅要傳授給學(xué)生數(shù)學(xué)知識(shí),更重要的是傳授給學(xué)生數(shù)學(xué)思想、數(shù)學(xué)意識(shí),因此本節(jié)課在教學(xué)中力圖向?qū)W生展示嘗試類(lèi)比、數(shù)形結(jié)合等數(shù)學(xué)思想方法。 二、教學(xué)重點(diǎn)、難點(diǎn)、關(guān)鍵 教學(xué)重點(diǎn):任意角的三角函數(shù)的定義,三角函數(shù)的符號(hào)規(guī)律。 教學(xué)難點(diǎn):任意角的三角函數(shù)概念的建構(gòu)過(guò)程。 教學(xué)關(guān)鍵:如何想到建立直角坐標(biāo)系;六個(gè)比值的確定性( α確定,比值也隨之確定)與依賴(lài)性(比值隨著α的變化而變化)。 三、學(xué)情分析 學(xué)生已經(jīng)掌握的內(nèi)容及學(xué)生學(xué)習(xí)能力 1。 學(xué)生在初中時(shí)已經(jīng)學(xué)習(xí)了基本的銳角三角函數(shù)的定義,掌握了銳角三角函數(shù)的一些常見(jiàn)的知識(shí)和求法。 2。學(xué)生的運(yùn)算能力較差。 3。部分同學(xué)對(duì)數(shù)學(xué)的學(xué)習(xí)有相當(dāng)?shù)呐d趣和積極性。 4。在探究問(wèn)題的能力,合作交流的意識(shí)等方面發(fā)展不夠均衡,必須在老師一定的指導(dǎo)下才能進(jìn)行。 四、 教學(xué)目標(biāo) 根據(jù)上述教材結(jié)構(gòu)與內(nèi)容分析,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)心理特征 ,我制定如下教學(xué)目標(biāo): 1;A(chǔ)知識(shí)目標(biāo):使學(xué)生正確理解任意角的正弦、余弦、正切的定義,了解余切、正割、余割的定義; 2。能力訓(xùn)練目標(biāo):通過(guò)學(xué)生積極參與知識(shí)的“發(fā)現(xiàn)”與“形成”的過(guò)程,培養(yǎng)合情猜測(cè)的能力。 3。情感目標(biāo):通過(guò)學(xué)習(xí),滲透數(shù)形結(jié)合和類(lèi)比的數(shù)學(xué)思想,培養(yǎng)學(xué)生良好的思維習(xí)慣。 下面,為了講清重點(diǎn)、難點(diǎn),使學(xué)生能達(dá)到本節(jié)設(shè)定的教學(xué)目標(biāo),我再?gòu)慕谭ê蛯W(xué)法上談?wù)劊?/p> 五、教學(xué)理念和方法 教學(xué)中注意用新課程理念處理傳統(tǒng)教材,學(xué)生的數(shù)學(xué)學(xué)習(xí)活動(dòng)不僅要接受、記憶、模仿和練習(xí),而且要自主探索、合作交流、師生互動(dòng),教師發(fā)揮組織者、引導(dǎo)者、合作者的作用,引導(dǎo)學(xué)生主體參與、揭示本質(zhì)、經(jīng)歷過(guò)程。 根據(jù)本節(jié)課內(nèi)容、高一學(xué)生認(rèn)知特點(diǎn)和我自己的教學(xué)風(fēng)格,本節(jié)課采用“啟發(fā)探索、講練結(jié)合”的方法組織教學(xué)教法, 在課堂結(jié)構(gòu)上,設(shè)計(jì)了 ①創(chuàng)設(shè)情境——揭示課題②推廣認(rèn)知——形成概念③鞏固新知——探求規(guī)律④總結(jié)反思——提高認(rèn)識(shí)⑤任務(wù)后延——自主探究五個(gè)層次的學(xué)法,它們環(huán)環(huán)相扣,層層深入,從而順利完成教學(xué)目標(biāo)。 接下來(lái),我再具體談一談這堂課的教學(xué)過(guò)程: 六、教學(xué)程序及設(shè)想 總體來(lái)說(shuō), 由舊及新,由易及難,逐步加強(qiáng),逐步推進(jìn),給定定義后通過(guò)應(yīng)用定義又逐步發(fā)現(xiàn)新知識(shí),拓展、完善定義。 先由初中的直角三角形中銳角三角函數(shù)的定義,過(guò)度到直角坐標(biāo)系中銳角三角函數(shù)的定義,再發(fā)展到直角坐標(biāo)系中任意角三角函數(shù)的定義。 。ㄒ唬﹦(chuàng)設(shè)情境——揭示課題 問(wèn)題1:在初中我們學(xué)習(xí)了銳角三角函數(shù),那么銳角三角函數(shù)是如何定義的? 【設(shè)計(jì)意圖】學(xué)生在初中學(xué)習(xí)了銳角的三角函數(shù)概念,現(xiàn)在學(xué)習(xí)任意角的三角函數(shù),又是一種推廣和拓展的過(guò)程(類(lèi)似于從有理數(shù)到實(shí)數(shù)的擴(kuò)展)。溫故知新,要讓學(xué)生體會(huì)知識(shí)的產(chǎn)生、發(fā)展過(guò)程,就要從源頭上開(kāi)始,從學(xué)生現(xiàn)有認(rèn)知狀況開(kāi)始,對(duì)銳角三角函數(shù)的復(fù)習(xí)就必不可少。 問(wèn)題 2:角的概念推廣之后,這樣的三角函數(shù)定義還適用嗎? 問(wèn)題 3:若將銳角放入直角坐標(biāo)系中,你能用角的終邊上的點(diǎn)的坐標(biāo)來(lái)表示銳角三角函數(shù)嗎? 留時(shí)間讓學(xué)生獨(dú)立思考或自由討論,教師參與討論或巡回對(duì)學(xué)困生作啟發(fā)引導(dǎo)。 能表示嗎?怎樣表示?針對(duì)剛才的問(wèn)題點(diǎn)名讓學(xué)生回答。 用角的對(duì)邊、鄰邊、斜邊比值的說(shuō)法顯然是受到阻礙了,由于前面已經(jīng)以直角坐標(biāo)系為工具來(lái)研究任意角了,學(xué)生一般會(huì)想到(否則教師進(jìn)行提示)繼續(xù)用直角坐標(biāo)系來(lái)研究任意角的三角函數(shù)。 【設(shè)計(jì)意圖】 從學(xué)生現(xiàn)有知識(shí)水平和認(rèn)知能力出發(fā),創(chuàng)設(shè)問(wèn)題情景,讓學(xué)生產(chǎn)生認(rèn)知沖突,進(jìn)行必要的啟發(fā),將學(xué)生思維引上自主探索、合作交流的“再創(chuàng)造”征程。 教師對(duì)學(xué)生回答情況進(jìn)行點(diǎn)評(píng)后布置任務(wù)情景:請(qǐng)同學(xué)們用直角坐標(biāo)系重新研究銳角三角函數(shù)定義! 師生共做(學(xué)生口述,教師板書(shū)圖形和比值)。 問(wèn)題 4:對(duì)于確定的角 ,這三個(gè)比值是否與P在 的終邊上的位置有關(guān)?為什么? 先讓學(xué)生想象思考,作出主觀判斷,再引導(dǎo)學(xué)生觀察右圖, 聯(lián)系相似三角形知識(shí),探索發(fā)現(xiàn): 對(duì)于銳角α的每一個(gè)確定值, 六個(gè)比值都是確定的,不會(huì)隨P在終邊上的移動(dòng)而變化。 得出結(jié)論(強(qiáng)調(diào)):當(dāng)α為銳角時(shí),六個(gè)比值隨α的變化而變化;但對(duì)于銳角α的每一個(gè)確定值,六個(gè)比值都是確定的,不會(huì)隨P在終邊上的移動(dòng)而變化。 所以,六個(gè)比值分別是以角α為自變量、以比值為函數(shù)值的函數(shù)。 (二)推廣認(rèn)知——形成概念 將銳角的比值情形推廣到任意角α后,水到渠成,師生共同進(jìn)行探索和推廣出:任意角的三角函數(shù)定義。同時(shí)教師強(qiáng)調(diào):由于弧度制使角和實(shí)數(shù)建立了一一對(duì)應(yīng)關(guān)系,所以三角函數(shù)是以實(shí)數(shù)為自變量的函數(shù),對(duì)數(shù)學(xué)學(xué)習(xí)能力較好的同學(xué)起到了很好的指導(dǎo)作用。 教師指出: sinα、csα、tanα的定義域必須緊扣三角函數(shù)定義在理解的基礎(chǔ)上記熟,ctα、cscα、secα的定義域不要求記憶。 。P(guān)于值域,到后面再學(xué)習(xí))。 【設(shè)計(jì)意圖】定義域是函數(shù)三要素之一,研究函數(shù)必須明確定義域。 指導(dǎo)學(xué)生根據(jù)定義自主探索確定三角函數(shù)定義域,有利于在理解的基礎(chǔ)上記住它、應(yīng)用它,也增進(jìn)對(duì)三角函數(shù)概念的掌握。 (三)鞏固新知——探求規(guī)律 為了使學(xué)生達(dá)到對(duì)知識(shí)的深化理解,進(jìn)而達(dá)到鞏固提高的效果, 例1。已知角 的終邊過(guò)點(diǎn) ,求 的六個(gè)三角函數(shù)值 要求:讀完題目,思考:計(jì)算什么?需要準(zhǔn)備什么?閉目心算,對(duì)照板書(shū),模仿書(shū)面表達(dá)格式。 鞏固定義之后,我特地設(shè)計(jì)了一組即時(shí)訓(xùn)練題,以鞏固和加深對(duì)三角函數(shù)概念的理解,通過(guò)課堂積極主動(dòng)的練習(xí)活動(dòng),培養(yǎng)學(xué)生分析解決問(wèn)題的能力。 例2。 求 的正弦、余弦和正切值。 分析: 終邊上有無(wú)窮多個(gè)點(diǎn),根據(jù)三角函數(shù)的定義,只要知道 終邊上任意一個(gè)點(diǎn)的坐標(biāo),就可以計(jì)算這個(gè)角的三角函數(shù)值(或判斷其無(wú)意義) 師生探索:緊扣三角函數(shù)定義求解,首先要在終邊上取定一點(diǎn)。終邊在哪兒呢?取定哪一點(diǎn)呢?任意點(diǎn)、還是特殊點(diǎn)?要靈活,只要能夠算出三角函數(shù)值,都可以。 取特殊點(diǎn)能使計(jì)算更簡(jiǎn)明。 等待學(xué)生基本理解和掌握三角函數(shù)定義后,觀察、分析初、高中所計(jì)算的函數(shù)值有何變化,讓學(xué)生意識(shí)到三角函數(shù)值的正負(fù)與角所在象限有關(guān), 然后引導(dǎo)學(xué)生緊緊抓住三角函數(shù)定義來(lái)分析,從而導(dǎo)出三角函數(shù)值的正負(fù)與角所在象限的關(guān)系,進(jìn)而由教師總結(jié)符號(hào)記憶方法,便于學(xué)生記憶。 【設(shè)計(jì)意圖】判斷三角函數(shù)值的正負(fù)符號(hào),是本章教材的一項(xiàng)重要的知識(shí)、技能要求。 要引導(dǎo)學(xué)生抓住定義、數(shù)形結(jié)合判斷和記憶三角函數(shù)值的正負(fù)符號(hào),并總結(jié)出形象的“才”字符號(hào)法則,這也是理解和記憶的關(guān)鍵。 。ㄋ模┛偨Y(jié)反思——提高認(rèn)識(shí) 由學(xué)生總結(jié)本節(jié)課所學(xué)習(xí)的主要內(nèi)容:⑴任意角的三角函數(shù)的定義及其定義域;⑵三角函數(shù)的符號(hào)規(guī)律。讓學(xué)生通過(guò)知識(shí)性?xún)?nèi)容的小結(jié),把課堂教學(xué)傳授的知識(shí)盡快化為學(xué)生的素質(zhì);通過(guò)數(shù)學(xué)思想方法的小結(jié),使學(xué)生更深刻地理解數(shù)學(xué)思想方法在解題中的地位和應(yīng)用,并且逐漸培養(yǎng)學(xué)生的良好的個(gè)性品質(zhì)目標(biāo)。 (五)任務(wù)后延——自主探究 學(xué)生經(jīng)過(guò)以上四個(gè)環(huán)節(jié)的學(xué)習(xí),已經(jīng)初步掌握了任意角的三角函數(shù)的定義及三角函數(shù)的符號(hào)規(guī)律,有待進(jìn)一步提高認(rèn)知水平,因此我針對(duì)學(xué)生素質(zhì)的差異設(shè)計(jì)了有層次的作業(yè),其中思考題的設(shè)計(jì)思想是:綜合練習(xí)鞏固提高,更為下節(jié)的學(xué)習(xí)內(nèi)容打下基礎(chǔ),同時(shí)留給學(xué)生課后自主探究,這樣既使學(xué)生掌握基礎(chǔ)知識(shí),又使學(xué)有佘力的學(xué)生有所提高,從而達(dá)到拔尖和“減負(fù)”的目的,以有利于全體學(xué)生的發(fā)展。 六、簡(jiǎn)述板書(shū)設(shè)計(jì)。 ctα、cscα、secα的定義寫(xiě)在sinα、csα、tanα的左下方,突出本節(jié)重要內(nèi)容的主體地位。 結(jié)束:以上,我僅從說(shuō)教材,說(shuō)學(xué)情,說(shuō)教法,說(shuō)學(xué)法,說(shuō)教學(xué)程序上說(shuō)明了“教什么”和“怎么教”,闡明了“為什么這樣教”。 希望各位領(lǐng)導(dǎo) 、同行對(duì)本堂說(shuō)課提出寶貴意見(jiàn)。 一、教材分析: 1、教材的地位與作用。 本節(jié)資料是在學(xué)生學(xué)習(xí)了"事件的可能性的基礎(chǔ)上來(lái)學(xué)習(xí)如何預(yù)測(cè)不確定事件(隨機(jī)事件)發(fā)生的可能性的大小。"用概率預(yù)測(cè)隨機(jī)發(fā)生的可能性大小,在日常生活、自然、科技領(lǐng)域有著廣泛的應(yīng)用,學(xué)習(xí)本單元知識(shí),無(wú)論是今后繼續(xù)深造(高中學(xué)習(xí)概率的乘法定理)還是參加社會(huì)實(shí)踐活動(dòng)都是十分必要的。概率的概念比較抽象,概率的定義學(xué)生較難理解。 在教材的處理上,采取小單元教學(xué),本節(jié)課安排讓學(xué)生了解求隨機(jī)事件概率的兩種方法,目的是讓學(xué)生能夠比較系統(tǒng)地理解概率的意義及求概率的方法,為下頭學(xué)習(xí)求比較復(fù)雜的情景的概率打下基礎(chǔ)。 2、重點(diǎn)與難點(diǎn)。 重點(diǎn):對(duì)概率意義的理解,經(jīng)過(guò)多次重復(fù)實(shí)驗(yàn),用頻率預(yù)測(cè)概率的方法,以及用列舉法求概率的方法。 難點(diǎn):對(duì)概率意義的理解和用列舉法求概率過(guò)程中在各種可能性相同條件下某一事件可能發(fā)生的總數(shù)及總的結(jié)果數(shù)的分析。 二、目的分析: 知識(shí)與技能:掌握用頻率預(yù)測(cè)概率和用列舉法求概率方法。 過(guò)程與方法:組織學(xué)生自主探究,合作交流,引導(dǎo)學(xué)生觀察試驗(yàn)和統(tǒng)計(jì)的結(jié)果,進(jìn)而進(jìn)行分析、歸納、總結(jié),了解并感受概率的定義的過(guò)程,引導(dǎo)學(xué)生從數(shù)學(xué)的視角觀察客觀世界,用數(shù)學(xué)的思維思考客觀世界,以數(shù)學(xué)的語(yǔ)言描述客觀世界。 情感態(tài)度價(jià)值觀:學(xué)生經(jīng)歷觀察、分析、歸納、確認(rèn)等數(shù)學(xué)活動(dòng),感受數(shù)學(xué)活動(dòng)充滿了探索性與創(chuàng)造性,感受量變與質(zhì)變的對(duì)立統(tǒng)一規(guī)律,同時(shí)為概率的精準(zhǔn)、新穎、獨(dú)特的思維方法所震撼,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的熱情,增強(qiáng)對(duì)數(shù)學(xué)價(jià)值觀的認(rèn)識(shí)。 三、教法、學(xué)法分析: 引導(dǎo)學(xué)生自主探究、合作交流、觀察分析、歸納總結(jié),讓學(xué)生經(jīng)歷知識(shí)(概率定義計(jì)算公式)的產(chǎn)生和發(fā)展過(guò)程,讓學(xué)生在數(shù)學(xué)活動(dòng)中學(xué)習(xí)數(shù)學(xué)、掌握數(shù)學(xué),并能應(yīng)用數(shù)學(xué)解決現(xiàn)實(shí)生活中的實(shí)際問(wèn)題,教師是學(xué)生學(xué)習(xí)的組織者、合作者和指導(dǎo)者,精心設(shè)計(jì)教學(xué)情境,有序組織學(xué)生活動(dòng),讓課堂充滿生機(jī)活力,體現(xiàn)"教"為"學(xué)"服務(wù)這一宗旨。 四、教學(xué)過(guò)程分析: 1、引導(dǎo)學(xué)生探究 精心設(shè)計(jì)問(wèn)題一,學(xué)生經(jīng)過(guò)對(duì)問(wèn)題一的探究,一方面復(fù)習(xí)前面學(xué)過(guò)的"確定事件和不確定事件"的知識(shí),為學(xué)好本節(jié)資料理清知識(shí)障礙,二是讓學(xué)生明確為什么要學(xué)習(xí)概率(如何預(yù)測(cè)隨機(jī)事件可能性發(fā)生大小)。引導(dǎo)學(xué)生對(duì)問(wèn)題二的探究與觀察實(shí)驗(yàn)數(shù)據(jù),使學(xué)生了解概率這一重要概念的實(shí)際背景,感受并相信隨機(jī)事件的發(fā)生中存在著統(tǒng)計(jì)規(guī)律性,感受數(shù)學(xué)規(guī)律的真實(shí)的發(fā)現(xiàn)過(guò)程。 2、歸納概括 學(xué)生從試驗(yàn)中得到的統(tǒng)計(jì)數(shù)字及概率呈現(xiàn)穩(wěn)定在某一數(shù)值附近這一規(guī)律,讓學(xué)生明確概率定義的由來(lái)。 引導(dǎo)學(xué)生重新對(duì)問(wèn)題一和問(wèn)題二的探究,分析某事件發(fā)生的各種可能性在全部可能發(fā)生結(jié)果中所占比例,得到用列舉法求概率的公式,引導(dǎo)學(xué)生進(jìn)行理性思維,邏輯分析,既培養(yǎng)學(xué)生的分析問(wèn)題本事,又讓學(xué)生明確用列舉法求概率這一簡(jiǎn)便快捷方法的合理性。 3、舉例應(yīng)用 、乓龑(dǎo)學(xué)生對(duì)教材書(shū)例題、問(wèn)題一、問(wèn)題二中問(wèn)題的進(jìn)一步分析與探究,讓學(xué)生掌握用列舉法求概率的方法。 ⑵引導(dǎo)學(xué)生對(duì)練習(xí)中的問(wèn)題思考與探究,鞏固對(duì)概率公式的應(yīng)用及加深對(duì)概率意義的理解。 深化發(fā)展 、旁O(shè)置3個(gè)小題目,引導(dǎo)學(xué)生歸納、分析、總結(jié),加深對(duì)知識(shí)與方法的理解,并學(xué)會(huì)靈活運(yùn)用。 、谱寣W(xué)生設(shè)計(jì)活動(dòng)資料,對(duì)知識(shí)進(jìn)行升華和拓展,引導(dǎo)學(xué)生創(chuàng)造性地運(yùn)用知識(shí)思考問(wèn)題和解決問(wèn)題,從而培養(yǎng)學(xué)生的創(chuàng)新意識(shí)和創(chuàng)新本事。 【高二數(shù)學(xué)說(shuō)課稿】相關(guān)文章: 命題高二數(shù)學(xué)說(shuō)課稿06-13 高二數(shù)學(xué)《導(dǎo)數(shù)概念》說(shuō)課稿09-09 高二數(shù)學(xué)條件概率說(shuō)課稿08-31 高二數(shù)學(xué)《函數(shù)單調(diào)性》說(shuō)課稿03-31 高二數(shù)學(xué)《點(diǎn)到直線的距離》說(shuō)課稿10-13 高二的數(shù)學(xué)說(shuō)課稿(15篇)11-07高二數(shù)學(xué)說(shuō)課稿6
高二數(shù)學(xué)說(shuō)課稿7
高二數(shù)學(xué)說(shuō)課稿8
高二數(shù)學(xué)說(shuō)課稿9
高二數(shù)學(xué)說(shuō)課稿10
高二數(shù)學(xué)說(shuō)課稿11
高二數(shù)學(xué)說(shuō)課稿12
高二數(shù)學(xué)說(shuō)課稿13
高二數(shù)學(xué)說(shuō)課稿14
高二數(shù)學(xué)說(shuō)課稿15