高一數(shù)學(xué)教案(匯編15篇)
作為一名辛苦耕耘的教育工作者,通常需要用到教案來輔助教學(xué),編寫教案有利于我們準(zhǔn)確把握教材的重點與難點,進而選擇恰當(dāng)?shù)慕虒W(xué)方法。優(yōu)秀的教案都具備一些什么特點呢?下面是小編為大家收集的高一數(shù)學(xué)教案,供大家參考借鑒,希望可以幫助到有需要的朋友。
高一數(shù)學(xué)教案1
教學(xué)目標(biāo)
1、掌握平面向量的數(shù)量積及其幾何意義;
2、掌握平面向量數(shù)量積的重要性質(zhì)及運算律;
3、了解用平面向量的數(shù)量積可以處理垂直的問題;
4、掌握向量垂直的條件、
教學(xué)重難點
教學(xué)重點:平面向量的數(shù)量積定義
教學(xué)難點:平面向量數(shù)量積的定義及運算律的理解和平面向量數(shù)量積的應(yīng)用
教學(xué)過程
1、平面向量數(shù)量積(內(nèi)積)的定義:已知兩個非零向量a與b,它們的夾角是θ,
則數(shù)量|a||b|cosq叫a與b的數(shù)量積,記作a×b,即有a×b=|a||b|cosq,(0≤θ≤π)、
并規(guī)定0向量與任何向量的數(shù)量積為0、
×探究:1、向量數(shù)量積是一個向量還是一個數(shù)量?它的符號什么時候為正?什么時候為負?
2、兩個向量的數(shù)量積與實數(shù)乘向量的積有什么區(qū)別?
(1)兩個向量的數(shù)量積是一個實數(shù),不是向量,符號由cosq的符號所決定、
(2)兩個向量的數(shù)量積稱為內(nèi)積,寫成a×b;今后要學(xué)到兩個向量的外積a×b,而a×b是兩個向量的數(shù)量的積,書寫時要嚴(yán)格區(qū)分、符號“·”在向量運算中不是乘號,既不能省略,也不能用“×”代替、
(3)在實數(shù)中,若a?0,且a×b=0,則b=0;但是在數(shù)量積中,若a?0,且a×b=0,不能推出b=0、因為其中cosq有可能為0、
高一數(shù)學(xué)教案2
一、指導(dǎo)思想:
使學(xué)生在九年義務(wù)教育數(shù)學(xué)課程的基礎(chǔ)上,進一步提高作為未來公民所必要的數(shù)學(xué)素養(yǎng),以滿足個人發(fā)展與社會進步的需要。具體目標(biāo)如下。
1。獲得必要的數(shù)學(xué)基礎(chǔ)知識和基本技能,理解基本的數(shù)學(xué)概念、數(shù)學(xué)結(jié)論的本質(zhì),了解概念、結(jié)論等產(chǎn)生的背景、應(yīng)用,體會其中所蘊涵的數(shù)學(xué)思想和方法,以及它們在后續(xù)學(xué)習(xí)中的作用。通過不同形式的自主學(xué)習(xí)、探究活動,體驗數(shù)學(xué)發(fā)現(xiàn)和創(chuàng)造的歷程。
2。提高空間想像、抽象概括、推理論證、運算求解、數(shù)據(jù)處理等基本能力。
3。提高數(shù)學(xué)地提出、分析和解決問題(包括簡單的實際問題)的能力,數(shù)學(xué)表達和交流的能力,發(fā)展獨立獲取數(shù)學(xué)知識的能力。
4。發(fā)展數(shù)學(xué)應(yīng)用意識和創(chuàng)新意識,力求對現(xiàn)實世界中蘊涵的一些數(shù)學(xué)模式進行思考和作出判斷。
5。提高學(xué)習(xí)數(shù)學(xué)的興趣,樹立學(xué)好數(shù)學(xué)的信心,形成鍥而不舍的鉆研精神和科學(xué)態(tài)度。
6。具有一定的數(shù)學(xué)視野,逐步認識數(shù)學(xué)的科學(xué)價值、應(yīng)用價值和文化價值,形成批判性的思維習(xí)慣,崇尚數(shù)學(xué)的理性精神,體會數(shù)學(xué)的美學(xué)意義,從而進一步樹立辯證唯物主義和歷史唯物主義世界觀。
二、教材特點:
我們所使用的教材是人教版《普通高中課程標(biāo)準(zhǔn)實驗教科書數(shù)學(xué)(a版)》,它在堅持我國數(shù)學(xué)教育優(yōu)良傳統(tǒng)的前提下,認真處理繼承,借簽,發(fā)展,創(chuàng)新之間的關(guān)系,體現(xiàn)基礎(chǔ)性,時代性,典型性和可接受性等到,具有如下特點:
1。親和力:以生動活潑的呈現(xiàn)方式,激發(fā)興趣和美感,引發(fā)學(xué)習(xí)激情。
2。問題性:以恰時恰點的問題引導(dǎo)數(shù)學(xué)活動,培養(yǎng)問題意識,孕育創(chuàng)新精神。
3?茖W(xué)性與思想性:通過不同數(shù)學(xué)內(nèi)容的聯(lián)系與啟發(fā),強調(diào)類比,推廣,特殊化,化歸等思想方法的運用,學(xué)習(xí)數(shù)學(xué)地思考問題的方式,提高數(shù)學(xué)思維能力,培育理性精神。
4。時代性與應(yīng)用性:以具有時代性和現(xiàn)實感的素材創(chuàng)設(shè)情境,加強數(shù)學(xué)活動,發(fā)展應(yīng)用意識。
三、教法分析:
1。選取與內(nèi)容密切相關(guān)的,典型的,豐富的和學(xué)生熟悉的素材,用生動活潑的語言,創(chuàng)設(shè)能夠體現(xiàn)數(shù)學(xué)的概念和結(jié)論,數(shù)學(xué)的思想和方法,以及數(shù)學(xué)應(yīng)用的學(xué)習(xí)情境,使學(xué)生產(chǎn)生對數(shù)學(xué)的親切感,引發(fā)學(xué)生看個究竟的沖動,以達到培養(yǎng)其興趣的目的。
2。通過觀察,思考,探究等欄目,引發(fā)學(xué)生的思考和探索活動,切實改進學(xué)生的學(xué)習(xí)方式。
3。在教學(xué)中強調(diào)類比,推廣,特殊化,化歸等數(shù)學(xué)思想方法,盡可能養(yǎng)成其邏輯思維的習(xí)慣。
四、學(xué)情分析:
1、基本情況:12班共人,男生人,女生人;本班相對而言,數(shù)學(xué)尖子約人,中上等生約人,中等生約人,中下生約人,后進生約人。
14班共人,男生人,女生人;本班相對而言,數(shù)學(xué)尖子約人,中上等生約人,中等生約人,中下生約人,后進生約人。
2、兩個班均屬普高班,學(xué)習(xí)情況良好,但學(xué)生自覺性差,自我控制能力弱,因此在教學(xué)中需時時提醒學(xué)生,培養(yǎng)其自覺性。班級存在的最大問題是計算能力太差,學(xué)生不喜歡去算題,嫌麻煩,只注重思路,因此在以后的教學(xué)中,重點在于培養(yǎng)學(xué)生的計算能力,同時要進一步提高其思維能力。同時,由于初中課改的原因,高中教材與初中教材銜接力度不夠,需在新授時適機補充一些內(nèi)容。因此時間上可能仍然吃緊。同時,其底子薄弱,因此在教學(xué)時只能注重基礎(chǔ)再基礎(chǔ),爭取每一堂課落實一個知識點,掌握一個知識點。
五、教學(xué)措施:
1、激發(fā)學(xué)生的學(xué)習(xí)興趣。由數(shù)學(xué)活動、故事、吸引人的課、合理的要求、師生談話等途徑樹立學(xué)生的學(xué)習(xí)信心,提高學(xué)習(xí)興趣,在主觀作用下上升和進步。
2、注意從實例出發(fā),從感性提高到理性;注意運用對比的方法,反復(fù)比較相近的概念;注意結(jié)合直觀圖形,說明抽象的知識;注意從已有的知識出發(fā),啟發(fā)學(xué)生思考。
3、加強培養(yǎng)學(xué)生的邏輯思維能力就解決實際問題的能力,以及培養(yǎng)提高學(xué)生的自學(xué)能力,養(yǎng)成善于分析問題的習(xí)慣,進行辨證唯物主義教育。
4、抓住公式的推導(dǎo)和內(nèi)在聯(lián)系;加強復(fù)習(xí)檢查工作;抓住典型例題的分析,講清解題的關(guān)鍵和基本方法,注重提高學(xué)生分析問題的能力。
5、自始至終貫徹教學(xué)四環(huán)節(jié),針對不同的教材內(nèi)容選擇不同教法。
6、重視數(shù)學(xué)應(yīng)用意識及應(yīng)用能力的培養(yǎng)。
高一數(shù)學(xué)教案3
一、教材分析
本節(jié)課選自《普通高中課程標(biāo)準(zhǔn)數(shù)學(xué)教科書—必修1》(人教A版)《1。2。1函數(shù)的概念》共3課時,本節(jié)課是第1課時。生活中的許多現(xiàn)象如物體運動,氣溫升降,投資理財?shù)榷伎梢杂煤瘮?shù)的模型來刻畫,是我們更好地了解自己、認識世界和預(yù)測未來的重要工具。函數(shù)是數(shù)學(xué)的重要的基礎(chǔ)概念之一,是高等數(shù)學(xué)重多學(xué)科的基礎(chǔ)概念和重要的研究對象。同時函數(shù)也是物理學(xué)等其他學(xué)科的重要基礎(chǔ)知識和研究工具,教學(xué)內(nèi)容中蘊涵著極其豐富的辯證思想。
二、學(xué)生學(xué)習(xí)情況分析
函數(shù)是中學(xué)數(shù)學(xué)的主體內(nèi)容,學(xué)生在中學(xué)階段對函數(shù)的認識分三個階段:
。ㄒ唬┏踔袕倪\動變化的角度來刻畫函數(shù),初步認識正比例、反比例、一次和二次函數(shù);
。ǘ└咧杏眉吓c對應(yīng)的觀點來刻畫函數(shù),研究函數(shù)的性質(zhì),學(xué)習(xí)典型的對、指、冪和三解函數(shù);
(三)高中用導(dǎo)數(shù)工具研究函數(shù)的單調(diào)性和最值。
1、有利條件
現(xiàn)代教育心理學(xué)的研究認為,有效的概念教學(xué)是建立在學(xué)生已有知識結(jié)構(gòu)的基礎(chǔ)上的,因此教師在設(shè)計教學(xué)的過程中必須注意在學(xué)生已有知識結(jié)構(gòu)中尋找新概念的固著點,引導(dǎo)學(xué)生通過同化或順應(yīng),掌握新概念,進而完善知識結(jié)構(gòu)。
初中用運動變化的觀點對函數(shù)進行定義的,它反映了歷人們對它的一種認識,而且這個定義較為直觀,易于接受,因此按照由淺入深、力求符合學(xué)生認知規(guī)律的內(nèi)容編排原則,函數(shù)概念在初中介紹到這個程度是合適的。也為我們用集合與對應(yīng)的觀點研究函數(shù)打下了一定的基礎(chǔ)。
2、不利條件
用集合與對應(yīng)的觀點來定義函數(shù),形式和內(nèi)容上都是比較抽象的,這對學(xué)生的理解能力是一個挑戰(zhàn),是本節(jié)課教學(xué)的一個不利條件。
三、教學(xué)目標(biāo)分析
課標(biāo)要求:通過豐富實例,進一步體會函數(shù)是描述變量之間的依賴關(guān)系的重要數(shù)學(xué)模型,在此基礎(chǔ)上學(xué)習(xí)用集合與對應(yīng)的語言來刻畫函數(shù),體會對應(yīng)關(guān)系在刻畫函數(shù)概念中的作用;了解構(gòu)成函數(shù)的要素,會求一些簡單函數(shù)的定義域和值域。
1、知識與能力目標(biāo):
、拍軓募吓c對應(yīng)的角度理解函數(shù)的概念,更要理解函數(shù)的本質(zhì)屬性;
⑵理解函數(shù)的三要素的含義及其相互關(guān)系;
、菚蠛唵魏瘮(shù)的定義域和值域
2、過程與方法目標(biāo):
、磐ㄟ^豐富實例,使學(xué)生建立起函數(shù)概念的背景,體會函數(shù)是描述變量之間依賴關(guān)系的數(shù)學(xué)模型;
、圃诤瘮(shù)實例中,通過對關(guān)鍵詞的強調(diào)和引導(dǎo)使學(xué)發(fā)現(xiàn)它們的共同特征,在此基礎(chǔ)上再用集合與對應(yīng)的語言來刻畫函數(shù),體會對應(yīng)關(guān)系在刻畫函數(shù)概念中的作用。
3、情感、態(tài)度與價值觀目標(biāo):
感受生活中的數(shù)學(xué),感悟事物之間聯(lián)系與變化的辯證唯物主義觀點。
四、教學(xué)重點、難點分析
1、教學(xué)重點:對函數(shù)概念的理解,用集合與對應(yīng)的語言來刻畫函數(shù);
重點依據(jù):初中是從變量的角度來定義函數(shù),高中是用集合與對應(yīng)的語言來刻畫函數(shù)。二者反映的本質(zhì)是一致的,即“函數(shù)是一種對應(yīng)關(guān)系”。但是,初中定義并未完全揭示出函數(shù)概念的本質(zhì),對y?1這樣的函數(shù)用運動變化的觀點也很難解釋。在以函數(shù)為重要內(nèi)容的高中階段,課本應(yīng)將函數(shù)定義為兩個數(shù)集之間的一種對應(yīng)關(guān)系,按照這種觀點,使我們對函數(shù)概念有了更深一層的認識,也很容易說明y?1這函數(shù)表達式。因此,分析兩種函數(shù)概念的關(guān)系,讓學(xué)生融會貫通地理解函數(shù)的概念應(yīng)為本節(jié)課的重點。
突出重點:重點的突出依賴于對函數(shù)概念本質(zhì)屬性的把握,使學(xué)生通過表面的語言描述抓住概念的精髓。
2、教學(xué)難點:
第一:從實際問題中提煉出抽象的概念;
第二:符號“y=f(x)”的含義的理解。
難點依據(jù):數(shù)學(xué)語言的抽象概括難度較大,對符號y=f(x)的理解會受到以前知識的負遷移。
突破難點:難點的突破要依托豐富的實例,從集合與對應(yīng)的角度恰當(dāng)?shù)匾龑?dǎo),而對抽象符號的理解則要結(jié)合函數(shù)的三要素和小例子進行說明。
五、教法與學(xué)法分析
1、教法分析
本節(jié)課我主要采用教師導(dǎo)學(xué)法、知識遷移法和知識對比法,從學(xué)生熟悉的豐富實例出發(fā),關(guān)注學(xué)生的原有的知識基礎(chǔ),注重概念的形成過程,從初中的函數(shù)概念自然過度到函數(shù)的近代定我。
2、學(xué)法分析
在教學(xué)過程中我注意在教學(xué)中引導(dǎo)學(xué)生用模型法分析函數(shù)問題、通過自主學(xué)習(xí)法總結(jié)“區(qū)間”的知識。
高一數(shù)學(xué)教案4
教學(xué)目標(biāo)
1、使學(xué)生掌握指數(shù)函數(shù)的概念,圖象和性質(zhì)。
(1)能根據(jù)定義判斷形如什么樣的函數(shù)是指數(shù)函數(shù),了解對底數(shù)的限制條件的合理性,明確指數(shù)函數(shù)的定義域。
(2)能在基本性質(zhì)的指導(dǎo)下,用列表描點法畫出指數(shù)函數(shù)的圖象,能從數(shù)形兩方面認識指數(shù)函數(shù)的性質(zhì)。
(3)能利用指數(shù)函數(shù)的性質(zhì)比較某些冪形數(shù)的大小,會利用指數(shù)函數(shù)的圖象畫出形如的圖象。
2、通過對指數(shù)函數(shù)的概念圖象性質(zhì)的學(xué)習(xí),培養(yǎng)學(xué)生觀察,分析歸納的能力,進一步體會數(shù)形結(jié)合的思想方法。
3、通過對指數(shù)函數(shù)的研究,讓學(xué)生認識到數(shù)學(xué)的應(yīng)用價值,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。使學(xué)生善于從現(xiàn)實生活中數(shù)學(xué)的發(fā)現(xiàn)問題,解決問題。
教學(xué)建議
教材分析
(1)指數(shù)函數(shù)是在學(xué)生系統(tǒng)學(xué)習(xí)了函數(shù)概念,基本掌握了函數(shù)的性質(zhì)的基礎(chǔ)上進行研究的,它是重要的基本初等函數(shù)之一,作為常見函數(shù),它既是函數(shù)概念及性質(zhì)的第一次應(yīng)用,也是今后學(xué)習(xí)對數(shù)函數(shù)的基礎(chǔ),同時在生活及生產(chǎn)實際中有著廣泛的應(yīng)用,所以指數(shù)函數(shù)應(yīng)重點研究。
(2)本節(jié)的教學(xué)重點是在理解指數(shù)函數(shù)定義的基礎(chǔ)上掌握指數(shù)函數(shù)的圖象和性質(zhì)。難點是對底數(shù)在和時,函數(shù)值變化情況的區(qū)分。
(3)指數(shù)函數(shù)是學(xué)生完全陌生的一類函數(shù),對于這樣的函數(shù)應(yīng)怎樣進行較為系統(tǒng)的理論研究是學(xué)生面臨的重要問題,所以從指數(shù)函數(shù)的研究過程中得到相應(yīng)的結(jié)論固然重要,但更為重要的是要了解系統(tǒng)研究一類函數(shù)的方法,所以在教學(xué)中要特別讓學(xué)生去體會研究的方法,以便能將其遷移到其他函數(shù)的研究。
教法建議
(1)關(guān)于指數(shù)函數(shù)的定義按照課本上說法它是一種形式定義即解析式的特征必須是的樣子,不能有一點差異,諸如等都不是指數(shù)函數(shù)。
(2)對底數(shù)的限制條件的理解與認識也是認識指數(shù)函數(shù)的重要內(nèi)容。如果有可能盡量讓學(xué)生自己去研究對底數(shù),指數(shù)都有什么限制要求,教師再給予補充或用具體例子加以說明,因為對這個條件的認識不僅關(guān)系到對指數(shù)函數(shù)的認識及性質(zhì)的分類討論,還關(guān)系到后面學(xué)習(xí)對數(shù)函數(shù)中底數(shù)的認識,所以一定要真正了解它的由來。
關(guān)于指數(shù)函數(shù)圖象的繪制,雖然是用列表描點法,但在具體教學(xué)中應(yīng)避免描點前的盲目列表計算,也應(yīng)避免盲目的連點成線,要把表列在關(guān)鍵之處,要把點連在恰當(dāng)之處,所以應(yīng)在列表描點前先把函數(shù)的性質(zhì)作一些簡單的討論,取得對要畫圖象的存在范圍,大致特征,變化趨勢的大概認識后,以此為指導(dǎo)再列表計算,描點得圖象。
高一數(shù)學(xué)教案5
教學(xué)目標(biāo)
1、應(yīng)用正弦余弦定理解斜三角形應(yīng)用題的一般步驟及基本思路
(1)分析,(2)建模,(3)求解,(4)檢驗;
2、實際問題中的有關(guān)術(shù)語、名稱:
(1)仰角與俯角:均是指視線與水平線所成的角;
(2)方位角:是指從正北方向順時針轉(zhuǎn)到目標(biāo)方向線的夾角;
(3)方向角:常見的如:正東方向、東南方向、北偏東、南偏西等;
3、用正弦余弦定理解實際問題的常見題型有:
測量距離、測量高度、測量角度、計算面積、航海問題、物理問題等;
教學(xué)重難點
1、應(yīng)用正弦余弦定理解斜三角形應(yīng)用題的一般步驟及基本思路
(1)分析,(2)建模,(3)求解,(4)檢驗;
2、實際問題中的有關(guān)術(shù)語、名稱:
(1)仰角與俯角:均是指視線與水平線所成的角;
(2)方位角:是指從正北方向順時針轉(zhuǎn)到目標(biāo)方向線的夾角;
(3)方向角:常見的如:正東方向、東南方向、北偏東、南偏西等;
3、用正弦余弦定理解實際問題的常見題型有:
測量距離、測量高度、測量角度、計算面積、航海問題、物理問題等;
教學(xué)過程
一、知識歸納
1、應(yīng)用正弦余弦定理解斜三角形應(yīng)用題的一般步驟及基本思路
(1)分析,(2)建模,(3)求解,(4)檢驗;
2、實際問題中的有關(guān)術(shù)語、名稱:
(1)仰角與俯角:均是指視線與水平線所成的角;
(2)方位角:是指從正北方向順時針轉(zhuǎn)到目標(biāo)方向線的夾角;
(3)方向角:常見的如:正東方向、東南方向、北偏東、南偏西等;
3、用正弦余弦定理解實際問題的常見題型有:
測量距離、測量高度、測量角度、計算面積、航海問題、物理問題等;
二、例題討論
一)利用方向角構(gòu)造三角形
四)測量角度問題
例4、在一個特定時段內(nèi),以點E為中心的7海里以內(nèi)海域被設(shè)為警戒水域.點E正北55海里處有一個雷達觀測站A.某時刻測得一艘勻速直線行駛的船只位于點A北偏東。
高一數(shù)學(xué)教案6
教學(xué)目標(biāo):
1、理解對數(shù)的概念,能夠進行對數(shù)式與指數(shù)式的互化;
2、滲透應(yīng)用意識,培養(yǎng)歸納思維能力和邏輯推理能力,提高數(shù)學(xué)發(fā)現(xiàn)能力。
教學(xué)重點:
對數(shù)的概念
教學(xué)過程:
一、問題情境:
1、(1)莊子:一尺之棰,日取其半,萬世不竭、①取5次,還有多長?②取多少次,還有0、125尺?
(2)假設(shè)20xx年我國國民生產(chǎn)總值為a億元,如果每年平均增長8%,那么經(jīng)過多少年國民生產(chǎn)總值是20xx年的2倍?
抽象出:1、=?,=0、125x=?2、=2x=?
2、問題:已知底數(shù)和冪的值,如何求指數(shù)?你能看得出來嗎?
二、學(xué)生活動:
1、討論問題,探究求法、
2、概括內(nèi)容,總結(jié)對數(shù)概念、
3、研究指數(shù)與對數(shù)的關(guān)系、
三、建構(gòu)數(shù)學(xué):
1)引導(dǎo)學(xué)生自己總結(jié)并給出對數(shù)的概念、
2)介紹對數(shù)的表示方法,底數(shù)、真數(shù)的含義、
3)指數(shù)式與對數(shù)式的關(guān)系、
4)常用對數(shù)與自然對數(shù)、
探究:
、咆摂(shù)與零沒有對數(shù)、
、,、
、菍(shù)恒等式(教材P58練習(xí)6)
、;②、
、葍煞N對數(shù):
①常用對數(shù):;
②自然對數(shù):、
(5)底數(shù)的取值范圍為;真數(shù)的取值范圍為、
四、數(shù)學(xué)運用:
1、例題:
例1、(教材P57例1)將下列指數(shù)式改寫成對數(shù)式:
(1)=16;(2)=;(3)=20;(4)=0、45、
例2、(教材P57例2)將下列對數(shù)式改寫成指數(shù)式:
。1);(2)3=—2;(3);(4)(補充)ln10=2、303
例3、(教材P57例3)求下列各式的值:
、牛虎;⑶(補充)、
2、練習(xí):
P58(練習(xí))1,2,3,4,5、
五、回顧小結(jié):
本節(jié)課學(xué)習(xí)了以下內(nèi)容:
、艑(shù)的定義;
⑵指數(shù)式與對數(shù)式互換;
⑶求對數(shù)式的值(利用計算器求對數(shù)值)、
六、課外作業(yè):P63習(xí)題1,2,3,4、
高一數(shù)學(xué)教案7
一、教學(xué)目標(biāo)
1.知識與技能:掌握畫三視圖的基本技能,豐富學(xué)生的空間想象力。
2.過程與方法:通過學(xué)生自己的親身實踐,動手作圖,體會三視圖的作用。
3.情感態(tài)度與價值觀:提高學(xué)生空間想象力,體會三視圖的作用。
二、教學(xué)重點:
畫出簡單幾何體、簡單組合體的三視圖;
難點:識別三視圖所表示的空間幾何體。
三、學(xué)法指導(dǎo):
觀察、動手實踐、討論、類比。
四、教學(xué)過程
(一)創(chuàng)設(shè)情景,揭開課題
展示廬山的風(fēng)景圖——“橫看成嶺側(cè)看成峰,遠近高低各不同”,這說明從不同的角度看同一物體視覺的效果可能不同,要比較真實反映出物體,我們可從多角度觀看物體。
(二)講授新課
1、中心投影與平行投影:
中心投影:光由一點向外散射形成的投影;
平行投影:在一束平行光線照射下形成的投影。
正投影:在平行投影中,投影線正對著投影面。
2、三視圖:
正視圖:光線從幾何體的前面向后面正投影,得到的投影圖;
側(cè)視圖:光線從幾何體的左面向右面正投影,得到的投影圖;
俯視圖:光線從幾何體的上面向下面正投影,得到的投影圖。
三視圖:幾何體的正視圖、側(cè)視圖和俯視圖統(tǒng)稱為幾何體的三視圖。
三視圖的畫法規(guī)則:長對正,高平齊,寬相等。
長對正:正視圖與俯視圖的長相等,且相互對正;
高平齊:正視圖與側(cè)視圖的高度相等,且相互對齊;
寬相等:俯視圖與側(cè)視圖的寬度相等。
3、畫長方體的三視圖:
正視圖、側(cè)視圖和俯視圖分別是從幾何體的正前方、正左方和正上方觀察到有幾何體的正投影圖,它們都是平面圖形。
長方體的三視圖都是長方形,正視圖和側(cè)視圖、側(cè)視圖和俯視圖、俯視圖和正視圖都各有一條邊長相等。
4、畫圓柱、圓錐的三視圖:
5、探究:畫出底面是正方形,側(cè)面是全等的三角形的棱錐的三視圖。
高一數(shù)學(xué)教案8
一、教材
《直線與圓的位置關(guān)系》是高中人教版必修2第四章第二節(jié)的內(nèi)容,直線和圓的位置關(guān)系是本章的重點內(nèi)容之一。從知識體系上看,它既是點與圓的位置關(guān)系的延續(xù)與提高,又是學(xué)習(xí)切線的判定定理、圓與圓的位置關(guān)系的基礎(chǔ)。從數(shù)學(xué)思想方法層面上看它運用運動變化的觀點揭示了知識的發(fā)生過程以及相關(guān)知識間的內(nèi)在聯(lián)系,滲透了數(shù)形結(jié)合、分類討論、類比、化歸等數(shù)學(xué)思想方法,有助于提高學(xué)生的思維品質(zhì)。
二、學(xué)情
學(xué)生初中已經(jīng)接觸過直線與圓相交、相切、相離的定義和判定;且在上節(jié)的學(xué)習(xí)過程中掌握了點的坐標(biāo)、直線的方程、圓的方程以及點到直線的距離公式;掌握利用方程組的方法來求直線的交點;具有用坐標(biāo)法研究點與圓的位置關(guān)系的基礎(chǔ);具有一定的數(shù)形結(jié)合解題思想的基礎(chǔ)。
三、教學(xué)目標(biāo)
(一)知識與技能目標(biāo)
能夠準(zhǔn)確用圖形表示出直線與圓的三種位置關(guān)系;可以利用聯(lián)立方程的方法和求點到直線的距離的方法簡單判斷出直線與圓的關(guān)系。
(二)過程與方法目標(biāo)
經(jīng)歷操作、觀察、探索、總結(jié)直線與圓的位置關(guān)系的判斷方法,從而鍛煉觀察、比較、概括的邏輯思維能力。
(三)情感態(tài)度價值觀目標(biāo)
激發(fā)求知欲和學(xué)習(xí)興趣,鍛煉積極探索、發(fā)現(xiàn)新知識、總結(jié)規(guī)律的能力,解題時養(yǎng)成歸納總結(jié)的良好習(xí)慣。
四、教學(xué)重難點
(一)重點
用解析法研究直線與圓的位置關(guān)系。
(二)難點
體會用解析法解決問題的數(shù)學(xué)思想。
五、教學(xué)方法
根據(jù)本節(jié)課教材內(nèi)容的特點,為了更直觀、形象地突出重點,突破難點,借助信息技術(shù)工具,以幾何畫板為平臺,通過圖形的動態(tài)演示,變抽象為直觀,為學(xué)生的數(shù)學(xué)探究與數(shù)學(xué)思維提供支持.在教學(xué)中采用小組合作學(xué)習(xí)的方式,這樣可以為不同認知基礎(chǔ)的學(xué)生提供學(xué)習(xí)機會,同時有利于發(fā)揮各層次學(xué)生的作用,教師始終堅持啟發(fā)式教學(xué)原則,設(shè)計一系列問題串,以引導(dǎo)學(xué)生的數(shù)學(xué)思維活動。
六、教學(xué)過程
(一)導(dǎo)入新課
教師借助多媒體創(chuàng)設(shè)泰坦尼克號的情景,并從中抽象出數(shù)學(xué)模型:已知冰山的分布是一個半徑為r的圓形區(qū)域,圓心位于輪船正西的l處,問,輪船如何航行能夠避免撞到冰山呢?如何行駛便又會撞到冰山呢?
教師引導(dǎo)學(xué)生回顧初中已經(jīng)學(xué)習(xí)的直線與圓的位置關(guān)系,將所想到的航行路線轉(zhuǎn)化成數(shù)學(xué)簡圖,即相交、相切、相離。
設(shè)計意圖:在已有的知識基礎(chǔ)上,提出新的問題,有利于保持學(xué)生知識結(jié)構(gòu)的連續(xù)性,同時開闊視野,激發(fā)學(xué)生的學(xué)習(xí)興趣。
(二)新課教學(xué)——探究新知
教師提問如何判斷直線與圓的位置關(guān)系,學(xué)生先獨立思考幾分鐘,然后同桌兩人為一組交流,并整理出本組同學(xué)所想到的思路。在整個交流討論中,教師既要有對正確認識的贊賞,又要有對錯誤見解的分析及對該學(xué)生的鼓勵。
判斷方法:
(1)定義法:看直線與圓公共點個數(shù)
即研究方程組解的個數(shù),具體做法是聯(lián)立兩個方程,消去x(或y)后所得一元二次方程,判斷△和0的大小關(guān)系。
(2)比較法:圓心到直線的距離d與圓的半徑r做比較,
(三)合作探究——深化新知
教師進一步拋出疑問,對比兩種方法,由學(xué)生觀察實踐發(fā)現(xiàn),兩種方法本質(zhì)相同,但比較法只適合于直線與圓,而定義法適用范圍更廣。教師展示較為基礎(chǔ)的題目,學(xué)生解答,總結(jié)思路。
已知直線3x+4y-5=0與圓x2+y2=1,判斷它們的位置關(guān)系?
讓學(xué)生自主探索,討論交流,并闡述自己的解題思路。
當(dāng)已知了直線與圓的方程之后,圓心坐標(biāo)和半徑r易得到,問題的關(guān)鍵是如何得到圓心到直線的距離d,他的本質(zhì)是點到直線的距離,便可以直接利用點到直線的距離公式求d。類比前面所學(xué)利用直線方程求兩直線交點的方法,聯(lián)立直線與圓的方程,組成方程組,通過方程組解得個數(shù)確定直線與圓的交點個數(shù),進一步確定他們的位置關(guān)系。最后明確解題步驟。
(四)歸納總結(jié)——鞏固新知
為了將結(jié)論由特殊推廣到一般引導(dǎo)學(xué)生思考:
可由方程組的解的不同情況來判斷:
當(dāng)方程組有兩組實數(shù)解時,直線l與圓C相交;
當(dāng)方程組有一組實數(shù)解時,直線l與圓C相切;
當(dāng)方程組沒有實數(shù)解時,直線l與圓C相離。
活動:我將抽取兩位同學(xué)在黑板上扮演,并在巡視過程中對部分學(xué)生加以指導(dǎo)。最后對黑板上的兩名學(xué)生的解題過程加以分析完善。通過對基礎(chǔ)題的練習(xí),鞏固兩種判斷直線與圓的位置關(guān)系判斷方法,并使每一個學(xué)生獲得后續(xù)學(xué)習(xí)的信心。
(五)小結(jié)作業(yè)
在小結(jié)環(huán)節(jié),我會以口頭提問的方式:
(1)這節(jié)課學(xué)習(xí)的主要內(nèi)容是什么?
(2)在數(shù)學(xué)問題的解決過程中運用了哪些數(shù)學(xué)思想?
設(shè)計意圖:啟發(fā)式的課堂小結(jié)方式能讓學(xué)生主動回顧本節(jié)課所學(xué)的知識點。也促使學(xué)生對知識網(wǎng)絡(luò)進行主動建構(gòu)。
作業(yè):在學(xué)生回顧本堂學(xué)習(xí)內(nèi)容明確兩種解題思路后,教師讓學(xué)生對比兩種解法,那種更簡捷,明確本節(jié)課主要用比較d與r的關(guān)系來解決這類問題,對用方程組解的個數(shù)的判斷方法,要求學(xué)生課外做進一步的探究,下一節(jié)課匯報。
七、板書設(shè)計
我的板書本著簡介、直觀、清晰的原則,這就是我的板書設(shè)計。
高一數(shù)學(xué)教案9
一、教材
首先談?wù)勎覍滩牡睦斫猓秲蓷l直線平行與垂直的判定》是人教A版高中數(shù)學(xué)必修2第三章3.1.2的內(nèi)容,本節(jié)課的內(nèi)容是兩條直線平行與垂直的判定的推導(dǎo)及其應(yīng)用,學(xué)生對于直線平行和垂直的概念已經(jīng)十分熟悉,并且在上節(jié)課學(xué)習(xí)了直線的傾斜角與斜率,為本節(jié)課的學(xué)習(xí)打下了基礎(chǔ)。
二、學(xué)情
教材是我們教學(xué)的工具,是載體。但我們的教學(xué)是要面向?qū)W生的,高中學(xué)生本身身心已經(jīng)趨于成熟,管理與教學(xué)難度較大,那么為了能夠成為一個合格的高中教師,深入了解所面對的學(xué)生可以說是必修課。本階段的學(xué)生思維能力已經(jīng)非常成熟,能夠有自己獨立的思考,所以應(yīng)該積極發(fā)揮這種優(yōu)勢,讓學(xué)生獨立思考探索。
三、教學(xué)目標(biāo)
根據(jù)以上對教材的分析以及對學(xué)情的把握,我制定了如下三維教學(xué)目標(biāo):
(一)知識與技能
掌握兩條直線平行與垂直的判定,能夠根據(jù)其判定兩條直線的位置關(guān)系。
(二)過程與方法
在經(jīng)歷兩條直線平行與垂直的判定過程中,提升邏輯推理能力。
(三)情感態(tài)度價值觀
在猜想論證的過程中,體會數(shù)學(xué)的嚴(yán)謹性。
四、教學(xué)重難點
我認為一節(jié)好的數(shù)學(xué)課,從教學(xué)內(nèi)容上說一定要突出重點、突破難點。而教學(xué)重點的確立與我本節(jié)課的內(nèi)容肯定是密不可分的。那么根據(jù)授課內(nèi)容可以確定本節(jié)課的教學(xué)重點是:兩條直線平行與垂直的判定。本節(jié)課的教學(xué)難點是:兩條直線平行與垂直的'判定的推導(dǎo)。
五、教法和學(xué)法
現(xiàn)代教學(xué)理論認為,在教學(xué)過程中,學(xué)生是學(xué)習(xí)的主體,教師是學(xué)習(xí)的組織者、引導(dǎo)者,教學(xué)的一切活動都必須以強調(diào)學(xué)生的主動性、積極性為出發(fā)點。根據(jù)這一教學(xué)理念,結(jié)合本節(jié)課的內(nèi)容特點和學(xué)生的年齡特征,本節(jié)課我采用講授法、練習(xí)法、小組合作等教學(xué)方法。
六、教學(xué)過程
下面我將重點談?wù)勎覍虒W(xué)過程的設(shè)計。
(一)新課導(dǎo)入
首先是導(dǎo)入環(huán)節(jié),那么我采用復(fù)習(xí)導(dǎo)入,回顧上節(jié)課所學(xué)的直線的傾斜角與斜率并順勢提問:能否通過直線的斜率,來判斷兩條直線的位置關(guān)系呢?
利用上節(jié)課所學(xué)的知識進行導(dǎo)入,很好的克服學(xué)生的畏難情緒。
(二)新知探索
接下來是教學(xué)中最重要的新知探索環(huán)節(jié),我主要采用講解法、小組合作、啟發(fā)法等。
高一數(shù)學(xué)教案10
一、教學(xué)目標(biāo)
1、知識與技能
。1)通過實物操作,增強學(xué)生的直觀感知。
(2)能根據(jù)幾何結(jié)構(gòu)特征對空間物體進行分類。
。3)會用語言概述棱柱、棱錐、圓柱、圓錐、棱臺、圓臺、球的結(jié)構(gòu)特征。
。4)會表示有關(guān)于幾何體以及柱、錐、臺的分類。
2、過程與方法
。1)讓學(xué)生通過直觀感受空間物體,從實物中概括出柱、錐、臺、球的幾何結(jié)構(gòu)特征。
。2)讓學(xué)生觀察、討論、歸納、概括所學(xué)的知識。
3、情感態(tài)度與價值觀
。1)使學(xué)生感受空間幾何體存在于現(xiàn)實生活周圍,增強學(xué)生學(xué)習(xí)的積極性,同時提高學(xué)生的觀察能力。
。2)培養(yǎng)學(xué)生的空間想象能力和抽象括能力。
二、教學(xué)重點、難點
重點:讓學(xué)生感受大量空間實物及模型、概括出柱、錐、臺、球的結(jié)構(gòu)特征。 難點:柱、錐、臺、球的結(jié)構(gòu)特征的概括。
三、教學(xué)用具
。1)學(xué)法:觀察、思考、交流、討論、概括。
。2)實物模型、投影儀 四、教學(xué)思路
(一)創(chuàng)設(shè)情景,揭示課題
1、教師提出問題:在我們生活周圍中有不少有特色的建筑物,你能舉出一些例子嗎?這些建筑的幾何結(jié)構(gòu)特征如何?引導(dǎo)學(xué)生回憶,舉例和相互交流。教師對學(xué)生的活動及時給予評價。
2、所舉的建筑物基本上都是由這些幾何體組合而成的,(展示具有柱、錐、臺、球結(jié)構(gòu)特征的空間物體),你能通過觀察。根據(jù)某種標(biāo)準(zhǔn)對這些空間物體進行分類嗎?這是我們所要學(xué)習(xí)的內(nèi)容。
(二)、研探新知
1、引導(dǎo)學(xué)生觀察物體、思考、交流、討論,對物體進行分類,分辯棱柱、圓柱、棱錐。
2、觀察棱柱的幾何物件以及投影出棱柱的圖片,它們各自的特點是什么?它們的共同特點是什么?
3、組織學(xué)生分組討論,每小組選出一名同學(xué)發(fā)表本組討論結(jié)果。在此基礎(chǔ)上得出棱柱的主要結(jié)構(gòu)特征。
。1)有兩個面互相平行;
(2)其余各面都是平行四邊形;
(3)每相鄰兩上四邊形的公共邊互相平行。概括出棱柱的概念。
4、教師與學(xué)生結(jié)合圖形共同得出棱柱相關(guān)概念以及棱柱的表示。
5、提出問題:各種這樣的棱柱,主要有什么不同?可不可以根據(jù)不同對棱柱分類?
請列舉身邊具有已學(xué)過的幾何結(jié)構(gòu)特征的物體,并說出組成這些物體的幾何結(jié)構(gòu)特征?它們由哪些基本幾何體組成的?
6、以類似的方法,讓學(xué)生思考、討論、概括出棱錐、棱臺的結(jié)構(gòu)特征,并得出相關(guān)的概念,分類以及表示。
7、讓學(xué)生觀察圓柱,并實物模型演示,如何得到圓柱,從而概括出圓標(biāo)的概念以及相關(guān)的概念及圓柱的表示。
8、引導(dǎo)學(xué)生以類似的方法思考圓錐、圓臺、球的結(jié)構(gòu)特征,以及相關(guān)概念和表示,借助實物模型演示引導(dǎo)學(xué)生思考、討論、概括。
9、教師指出圓柱和棱柱統(tǒng)稱為柱體,棱臺與圓臺統(tǒng)稱為臺體,圓錐與棱錐統(tǒng)稱為錐體。
10、現(xiàn)實世界中,我們看到的物體大多由具有柱、錐、臺、球等幾何結(jié)構(gòu)特征的物體組合而成。請列舉身邊具有已學(xué)過的幾何結(jié)構(gòu)特征的物體,并說出組成這些物體的幾何結(jié)構(gòu)特征?它們由哪些基本幾何體組成的?
(三)質(zhì)疑答辯,排難解惑,發(fā)展思維,教師提出問題,讓學(xué)生思考。
1、有兩個面互相平行,其余后面都是平行四邊形的幾何體是不是棱柱(舉反例說明,如圖)
2、棱柱的何兩個平面都可以作為棱柱的底面嗎?
3、課本P8,習(xí)題1.1 A組第1題。
4、圓柱可以由矩形旋轉(zhuǎn)得到,圓錐可以由直角三角形旋轉(zhuǎn)得到,圓臺可以由什么圖形旋轉(zhuǎn)得到?如何旋轉(zhuǎn)?
5、棱臺與棱柱、棱錐有什么關(guān)系?圓臺與圓柱、圓錐呢?
四、鞏固深化
練習(xí):課本P7 練習(xí)1、2(1)(2) 課本P8 習(xí)題1.1 第2、3、4題 五、歸納整理
由學(xué)生整理學(xué)習(xí)了哪些內(nèi)容 六、布置作業(yè)
課本P8 練習(xí)題1.1 B組第1題
課外練習(xí) 課本P8 習(xí)題1.1 B組第2題
高一數(shù)學(xué)教案11
學(xué) 習(xí) 目 標(biāo)
1明確空間直角坐標(biāo)系是如何建立;明確空間中任意一點如何表示;
2 能夠在空間直角坐標(biāo)系中求出點坐標(biāo)
教 學(xué) 過 程
一 自 主 學(xué) 習(xí)
1平面直角坐標(biāo)系建立方法,點坐標(biāo)確定過程、表示方法?
2一個點在平面怎么表示?在空間呢?
3關(guān)于一些對稱點坐標(biāo)求法
關(guān)于坐標(biāo)平面 對稱點 ;
關(guān)于坐標(biāo)平面 對稱點 ;
關(guān)于坐標(biāo)平面 對稱點 ;
關(guān)于 軸對稱點 ;
關(guān)于 對軸稱點 ;
關(guān)于 軸對稱點 ;
二 師 生 互動
例1在長方體 中, , 寫出 四點坐標(biāo)
討論:若以 點為原點,以射線 方向分別為 軸,建立空間直角坐標(biāo)系,則各頂點坐標(biāo)又是怎樣呢?
變式:已知 ,描出它在空間位置
例2 為正四棱錐, 為底面中心,若 ,試建立空間直角坐標(biāo)系,并確定各頂點坐標(biāo)
練1 建立適當(dāng)直角坐標(biāo)系,確定棱長為3正四面體各頂點坐標(biāo)
練2 已知 是棱長為2正方體, 分別為 和 中點,建立適當(dāng)空間直角坐標(biāo)系,試寫出圖中各中點坐標(biāo)
三 鞏 固 練 習(xí)
1 關(guān)于空間直角坐標(biāo)系敘述正確是( )
A 中 位置是可以互換
B空間直角坐標(biāo)系中點與一個三元有序數(shù)組是一種一一對應(yīng)關(guān)系
C空間直角坐標(biāo)系中三條坐標(biāo)軸把空間分為八個部分
D某點在不同空間直角坐標(biāo)系中坐標(biāo)位置可以相同
2 已知點 ,則點 關(guān)于原點對稱點坐標(biāo)為( )
A B C D
3 已知 三個頂點坐標(biāo)分別為 ,則 重心坐標(biāo)為( )
A B C D
4 已知 為平行四邊形,且 , 則頂點 坐標(biāo)
5 方程 幾何意義是
四 課 后 反 思
五 課 后 鞏 固 練 習(xí)
1 在空間直角坐標(biāo)系中,給定點 ,求它分別關(guān)于坐標(biāo)平面,坐標(biāo)軸和原點對稱點坐標(biāo)
2 設(shè)有長方體 ,長、寬、高分別為 是線段 中點分別以 所在直線為 軸, 軸, 軸,建立空間直角坐標(biāo)系
、徘 坐標(biāo);
、魄 坐標(biāo);
高一數(shù)學(xué)教案12
教學(xué)目的:
(1)理解兩個集合的并集與交集的的含義,會求兩個簡單集合的并集與交集;
(2)能用Venn圖表達集合的關(guān)系及運算,體會直觀圖示對理解抽象概念的作用。
課型:
新授課
教學(xué)重點:
集合的交集與并集的概念;
教學(xué)難點:
集合的交集與并集“是什么”,“為什么”,“怎樣做”;
教學(xué)過程:
一、引入課題
我們兩個實數(shù)除了可以比較大小外,還可以進行加法運算,類比實數(shù)的加法運算,兩個集合是否也可以“相加”呢?
思考(P9思考題),引入并集概念。
二、新課教學(xué)
1、并集
一般地,由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,稱為集合A與B的并集(Union)
記作:A∪B讀作:“A并B”
即:A∪B={x|x∈A,或x∈B}
Venn圖表示:
說明:兩個集合求并集,結(jié)果還是一個集合,是由集合A與B的所有元素組成的集合(重復(fù)元素只看成一個元素)。
例題1求集合A與B的并集
、 A={6,8,10,12} B={3,6,9,12}
② A={x|-1≤x≤2} B={x|0≤x≤3}
(過度)問題:在上圖中我們除了研究集合A與B的并集外,它們的公共部分(即問號部分)還應(yīng)是我們所關(guān)心的,我們稱其為集合A與B的交集。
2、交集
一般地,由屬于集合A且屬于集合B的元素所組成的集合,叫做集合A與B的交集(intersection)。
記作:A∩B讀作:“A交B”
即:A∩B={x|∈A,且x∈B}
交集的Venn圖表示
說明:兩個集合求交集,結(jié)果還是一個集合,是由集合A與B的公共元素組成的集合。
例題2求集合A與B的交集
、 A={6,8,10,12} B={3,6,9,12}
、 A={x|-1≤x≤2} B={x|0≤x≤3}
拓展:求下列各圖中集合A與B的并集與交集(用彩筆圖出)
說明:當(dāng)兩個集合沒有公共元素時,兩個集合的交集是空集,而不能說兩個集合沒有交集
3、例題講解
例3(P12例1):理解所給集合的含義,可借助venn圖分析
例4 P12例2):先“化簡”所給集合,搞清楚各自所含元素后,再進行運算。
4、集合基本運算的一些結(jié)論:
A∩B A,A∩B B,A∩A=A,A∩ = ,A∩B=B∩A
A A∪B,B A∪B,A∪A=A,A∪ =A,A∪B=B∪A
若A∩B=A,則A B,反之也成立
若A∪B=B,則A B,反之也成立
若x∈(A∩B),則x∈A且x∈B
若x∈(A∪B),則x∈A,或x∈B
高一數(shù)學(xué)教案13
一、教材分析
1、 教材的地位和作用:
函數(shù)是數(shù)學(xué)中最主要的概念之一,而函數(shù)概念貫穿在中學(xué)數(shù)學(xué)的始終,概念是數(shù)學(xué)的基礎(chǔ),概念性強是函數(shù)理論的一個顯著特點,只有對概念作到深刻理解,才能正確靈活地加以應(yīng)用。本課中對函數(shù)概念理解的程度會直接影響其它知識的學(xué)習(xí),所以函數(shù)的第一課時非常的重要。
2、 教學(xué)目標(biāo)及確立的依據(jù):
教學(xué)目標(biāo):
(1) 教學(xué)知識目標(biāo):了解對應(yīng)和映射概念、理解函數(shù)的近代定義、函數(shù)三要素,以及對函數(shù)抽象符號的理解。
(2) 能力訓(xùn)練目標(biāo):通過教學(xué)培養(yǎng)的抽象概括能力、邏輯思維能力。
(3) 德育滲透目標(biāo):使懂得一切事物都是在不斷變化、相互聯(lián)系和相互制約的辯證唯物主義觀點。
教學(xué)目標(biāo)確立的依據(jù):
函數(shù)是數(shù)學(xué)中最主要的概念之一,而函數(shù)概念貫穿整個中學(xué)數(shù)學(xué),如:數(shù)、式、方程、函數(shù)、排列組合、數(shù)列極限等都是以函數(shù)為中心的代數(shù)。加強函數(shù)教學(xué)可幫助學(xué)好其他的內(nèi)容。而掌握好函數(shù)的概念是學(xué)好函數(shù)的基石。
3、教學(xué)重點難點及確立的依據(jù):
教學(xué)重點:映射的概念,函數(shù)的近代概念、函數(shù)的三要素及函數(shù)符號的理解。
教學(xué)難點:映射的概念,函數(shù)近代概念,及函數(shù)符號的理解。
重點難點確立的依據(jù):
映射的概念和函數(shù)的近代定義抽象性都比較強,要求學(xué)生的理性認識的能力也比較高,對于剛剛升入高中不久的來說不易理解。而且由于函數(shù)在高考中可以以低、中、高擋題出現(xiàn),所以近年來有一種“函數(shù)熱”的趨勢,所以本節(jié)的重點難點必然落在映射的概念和函數(shù)的近代定義及函數(shù)符號的理解與運用上。
二、教材的處理:
將映射的定義及類比手法的運用作為本課突破難點的關(guān)鍵。 函數(shù)的定義,是以集合、映射的觀點給出,這與初中教材變量值與對應(yīng)觀點給出不一樣了,從而給本身就很抽象的函數(shù)概念的理解帶來更大的困難。為解決這難點,主要是從實際出發(fā)調(diào)動學(xué)生的學(xué)習(xí)熱情與參與意識,運用引導(dǎo)對比的手法,啟發(fā)引導(dǎo)學(xué)生進行有目的的反復(fù)比較幾個概念的異同,使真正對函數(shù)的概念有很準(zhǔn)確的認識。
三、教學(xué)方法和學(xué)法
教學(xué)方法:講授為主,自主預(yù)習(xí)為輔。
依據(jù)是:因為以新的觀點認識函數(shù)概念及函數(shù)符號與運用時,更重要的是必須給學(xué)生講清楚概念及注意事項,并通過師生的共同討論來幫助學(xué)生深刻理解,這樣才能使函數(shù)的概念及符號的運用在學(xué)生的思想和知識結(jié)構(gòu)中打上深刻的烙印,為能學(xué)好后面的知識打下堅實的基礎(chǔ)。
學(xué)法:四、教學(xué)程序
一、課程導(dǎo)入
通過舉以下一個通俗的例子引出通過某個對應(yīng)法則可以將兩個非空集合聯(lián)系在一起。
例1:把高一(12)班和高一(11)全體同學(xué)分別看成是兩個集合,問,通過“找好朋友”這個對應(yīng)法則是否能將這兩個集合的某些元素聯(lián)系在一起?
二. 新課講授:
(1) 接著再通過幻燈片給出六組學(xué)生熟悉的數(shù)集的對應(yīng)關(guān)系引導(dǎo)學(xué)生歸納它們的共同性質(zhì)(一對一,多對一),進而給出映射的概念,表示符號f:a→b,及原像和像的定義。強調(diào)指出非空集合a到非空集合b的映射包括三部分即非空集合a、b和a到b的對應(yīng)法則 f。進一步引導(dǎo)判斷一個從a到b的對應(yīng)是否為映射的關(guān)鍵是看a中的任意一個元素通過對應(yīng)法則f在b中是否有唯一確定的元素與之對應(yīng)。
(2)鞏固練習(xí)課本52頁第八題。
此練習(xí)能讓更深刻的認識到映射可以“一對多,多對一”但不能是“一對多”。
例1. 給出學(xué)生初中學(xué)過的函數(shù)的傳統(tǒng)定義和幾個簡單的一次、二次函數(shù),通過畫圖表示這些函數(shù)的對應(yīng)關(guān)系,引導(dǎo)發(fā)現(xiàn)它們是特殊的映射進而給出函數(shù)的近代定義(設(shè)a、b是兩個非空集合,如果按照某種對應(yīng)法則f,使得a中的任何一個元素在集合b中都有唯一的元素與之對應(yīng)則這樣的對應(yīng)叫做集合a到集合b的映射,它包括非空集合a和b以及從a到b的對應(yīng)法則f),并說明把函f:a→b記為y=f(x),其中自變量x的取值范圍a叫做函數(shù)的定義域,與x的值相對應(yīng)的y(或f(x))值叫做函數(shù)值,函數(shù)值的集合{ f(x):x∈a}叫做函數(shù)的.值域。
并把函數(shù)的近代定義與映射定義比較使認識到函數(shù)與映射的區(qū)別與聯(lián)系。(函數(shù)是非空數(shù)集到非空數(shù)集的映射)。
再以讓判斷的方式給出以下關(guān)于函數(shù)近代定義的注意事項:2. 函數(shù)是非空數(shù)集到非空數(shù)集的映射。
3. f表示對應(yīng)關(guān)系,在不同的函數(shù)中f的具體含義不一樣。
4. f(x)是一個符號,不表示f與x的乘積,而表示x經(jīng)過f作用后的結(jié)果。
5. 集合a中的數(shù)的任意性,集合b中數(shù)的唯一性。
66. “f:a→b”表示一個函數(shù)有三要素:法則f(是核心),定義域a(要優(yōu)先),值域c(上函數(shù)值的集合且c∈b)。
三.講解例題
例1.問y=1(x∈a)是不是函數(shù)?
解:y=1可以化為y=0*x+1
畫圖可以知道從x的取值范圍到y(tǒng)的取值范圍的對應(yīng)是“多對一”是從非空數(shù)集到非空數(shù)集的映射,所以它是函數(shù)。
[注]:引導(dǎo)從集合,映射的觀點認識函數(shù)的定義。
四.課時小結(jié):
1. 映射的定義。
2. 函數(shù)的近代定義。
3. 函數(shù)的三要素及符號的正確理解和應(yīng)用。
4. 函數(shù)近代定義的五大注意點。
五.課后作業(yè)及板書設(shè)計
書本p51 習(xí)題2.1的1、2寫在書上3、4、5上交。
預(yù)習(xí)函數(shù)三要素的定義域,并能求簡單函數(shù)的定義域。
函數(shù)(一)
一、映射:
2.函數(shù)近代定義: 例題練習(xí)
二、函數(shù)的定義 [注]1—5
1.函數(shù)傳統(tǒng)定義
三、作業(yè):
高一數(shù)學(xué)教案14
教學(xué)目標(biāo)
。1)正確理解充分條件、必要條件和充要條件的概念;
。2)能正確判斷是充分條件、必要條件還是充要條件;
。3)培養(yǎng)學(xué)生的邏輯思維能力及歸納總結(jié)能力;
。4)在充要條件的教學(xué)中,培養(yǎng)等價轉(zhuǎn)化思想.
教學(xué)建議
。ㄒ唬┙滩姆治
1.知識結(jié)構(gòu)
首先給出推斷符號“”,并引出的意義,在此基礎(chǔ)上講述了充要條件的初步知識.
2.重點難點分析
本節(jié)的重點與難點是關(guān)于充要條件的判斷.
。1)充分但不必要條件、必要但不充分條件、充要條件、既不充分也不必要條件是重要的數(shù)學(xué)概念,主要用來區(qū)分命題的條件和結(jié)論之間的因果關(guān)系.
。2)在判斷條件和結(jié)論之間的因果關(guān)系中應(yīng)該:
①首先分清條件是什么,結(jié)論是什么;
、谌缓髧L試用條件推結(jié)論,再嘗試用結(jié)論推條件.推理方法可以是直接證法、間接證法(即反證法),也可以舉反例說明其不成立;
、圩詈笤僦赋鰲l件是結(jié)論的什么條件.
。3)在討論條件和條件的關(guān)系時,要注意:
、偃,但,則是的充分但不必要條件;
、谌簦,則是的必要但不充分條件;
、廴,且,則是的充要條件;
、苋簦,則是的充要條件;
、萑,且,則是的既不充分也不必要條件.
。4)若條件以集合的形式出現(xiàn),結(jié)論以集合的形式出現(xiàn),則借助集合知識,有助于充要條件的理解和判斷.
、偃,則是的充分條件;
顯然,要使元素,只需就夠了.類似地還有:
、谌,則是的必要條件;
、廴,則是的充要條件;
④若,且,則是的既不必要也不充分條件.
。5)要證明命題的條件是充要條件,就既要證明原命題成立,又要證明它的逆命題成立.證明原命題即證明條件的充分性,證明逆命題即證明條件的必要性.由于原命題逆否命題,逆命題否命題,當(dāng)我們證明某一命題有困難時,可以證明該命題的逆否命題成立,從而得出原命題成立.
。ǘ┙谭ńㄗh
1.學(xué)習(xí)充分條件、必要條件和充要條件知識,要注意與前面有關(guān)邏輯初步知識內(nèi)容相聯(lián)系.充要條件中的,與四種命題中的,要求是一樣的.它們可以是簡單命題,也可以是不能判斷真假的語句,也可以是含有邏輯聯(lián)結(jié)詞或“若則”形式的復(fù)合命題.
2.由于這節(jié)課概念性、理論性較強,一般的教學(xué)使學(xué)生感到枯燥乏味,為此,激發(fā)學(xué)生的學(xué)習(xí)興趣是關(guān)鍵.教學(xué)中始終要注意以學(xué)生為主,讓學(xué)生在自我思考、相互交流中去結(jié)概念“下定義”,去體會概念的本質(zhì)屬性.
3.由于“充要條件”與命題的真假、命題的條件與結(jié)論的相互關(guān)系緊密相關(guān),為此,教學(xué)時可以從判斷命題的真假入手,來分析命題的條件對于結(jié)論來說,是否充分,從而引入“充分條件”的概念,進而引入“必要條件”的概念.
4.教材中對“充分條件”、“必要條件”的定義沒有作過多的解釋說明,為了讓學(xué)生能理解定義的合理性,在教學(xué)過程中,教師可以從一些熟悉的命題的條件與結(jié)論之間的關(guān)系來認識“充分條件”的概念,從互為逆否命題的等價性來引出“必要條件”的概念.
教學(xué)設(shè)計示例
充要條件
教學(xué)目標(biāo):
。1)正確理解充分條件、必要條件和充要條件的概念;
。2)能正確判斷是充分條件、必要條件還是充要條件;
。3)培養(yǎng)學(xué)生的邏輯思維能力及歸納總結(jié)能力;
。4)在充要條件的教學(xué)中,培養(yǎng)等價轉(zhuǎn)化思想.
教學(xué)重點難點:
關(guān)于充要條件的判斷
教學(xué)用具:
幻燈機或?qū)嵨锿队皟x
教學(xué)過程設(shè)計
1.復(fù)習(xí)引入
練習(xí):判斷下列命題是真命題還是假命題(用幻燈投影):
。1)若,則;
。2)若,則;
。3)全等三角形的面積相等;
。4)對角線互相垂直的四邊形是菱形;
。5)若,則;
。6)若方程有兩個不等的實數(shù)解,則.
。▽W(xué)生口答,教師板書.)
。1)、(3)、(6)是真命題,(2)、(4)、(5)是假命題.
置疑:對于命題“若,則”,有時是真命題,有時是假命題.如何判斷其真假的?
答:看能不能推出,如果能推出,則原命題是真命題,否則就是假命題.
對于命題“若,則”,如果由經(jīng)過推理能推出,也就是說,如果成立,那么一定成立.換句話說,只要有條件就能充分地保證結(jié)論的成立,這時我們稱條件是成立的充分條件,記作.
2.講授新課
。ò鍟浞謼l件的定義.)
一般地,如果已知,那么我們就說是成立的充分條件.
提問:請用充分條件來敘述上述(1)、(3)、(6)的條件與結(jié)論之間的關(guān)系.
。▽W(xué)生口答)
(1)“,”是“”成立的充分條件;
。2)“三角形全等”是“三角形面積相等”成立的充分條件;
。3)“方程的有兩個不等的實數(shù)解”是“”成立的充分條件.
從另一個角度看,如果成立,那么其逆否命題也成立,即如果沒有,也就沒有,亦即是成立的必須要有的條件,也就是必要條件.
。ò鍟匾獥l件的定義.)
提出問題:用“充分條件”和“必要條件”來敘述上述6個命題.
。▽W(xué)生口答).
(1)因為,所以是的充分條件,是的必要條件;
(2)因為,所以是的必要條件,是的充分條件;
。3)因為“兩三角形全等”“兩三角形面積相等”,所以“兩三角形全等”是“兩三角形面積相等”的充分條件,“兩三角形面積相等”是“兩三角形全等”的必要條件;
。4)因為“四邊形的對角線互相垂直”“四邊形是菱形”,所以“四邊形的對角線互相垂直”是“四邊形是菱形”的必要條件,“四邊形是菱形”是“四邊形的對角線互相垂直”的充分條件;
。5)因為,所以是的必要條件,是的充分條件;
。6)因為“方程的有兩個不等的實根”“”,而且“方程的有兩個不等的實根”“”,所以“方程的有兩個不等的實根”是“”充分條件,而且是必要條件.
總結(jié):如果是的充分條件,又是的必要條件,則稱是的充分必要條件,簡稱充要條件,記作.
。ò鍟湟獥l件的定義.)
3.鞏固新課
例1(用投影儀投影.)
(學(xué)生活動,教師引導(dǎo)學(xué)生作出下面回答.)
①因為有理數(shù)一定是實數(shù),但實數(shù)不一定是有理數(shù),所以是的充分非必要條件,是的必要非充分條件;
②一定能推出,而不一定推出,所以是的充分非必要條件,是的必要非充分條件;
、邸⑹瞧鏀(shù),那么一定是偶數(shù);是偶數(shù),、不一定都是奇數(shù)(可能都為偶數(shù)),所以是的充分非必要條件,是的必要非充分條件;
、鼙硎净,所以是成立的必要非充分條件;
、萦山患亩x可知且是成立的充要條件;
、抻芍遥允浅闪⒌某浞址潜匾獥l件;
⑦由知或,所以是,成立的必要非充分條件;
⑧易知“是4的倍數(shù)”是“是6的倍數(shù)”成立的既非充分又非必要條件;
(通過對上述問題的交流、思辯,在爭論中得到了正確答案,并加深了對充分條件、必要條件的認識.)
例2已知是的充要條件,是的必要條件同時又是的充分條件,試與的關(guān)系.(投影)
解:由已知得,
所以是的充分條件,或是的必要條件.
4.小結(jié)回授
今天我們學(xué)習(xí)了充分條件、必要條件和充要條件的概念,并學(xué)會了判斷條件A是B的什么條件,這為我們今后解決數(shù)學(xué)問題打下了等價轉(zhuǎn)化的基礎(chǔ).
課內(nèi)練習(xí):課本(人教版,試驗修訂本,第一冊(上))第35頁練習(xí)l、2;第36頁練習(xí)l、2.
。ㄍㄟ^練習(xí),檢查學(xué)生掌握情況,有針對性的進行講評.)
5.課外作業(yè):教材第36頁 習(xí)題1.8 1、2、3.
高一數(shù)學(xué)教案15
一、教學(xué)目標(biāo)
1.知識與技能:
(1)通過實物操作,增強學(xué)生的直觀感知。
(2)能根據(jù)幾何結(jié)構(gòu)特征對空間物體進行分類。
(3)會用語言概述棱柱、棱錐、圓柱、圓錐、棱臺、圓臺、球的結(jié)構(gòu)特征。
(4)會表示有關(guān)于幾何體以及柱、錐、臺的分類。
2.過程與方法:
(1)讓學(xué)生通過直觀感受空間物體,從實物中概括出柱、錐、臺、球的幾何結(jié)構(gòu)特征。
(2)讓學(xué)生觀察、討論、歸納、概括所學(xué)的知識。
3.情感態(tài)度與價值觀:
(1)使學(xué)生感受空間幾何體存在于現(xiàn)實生活周圍,增強學(xué)生學(xué)習(xí)的積極性,同時提高學(xué)生的觀察能力。
(2)培養(yǎng)學(xué)生的空間想象能力和抽象括能力。
二、教學(xué)重點:
讓學(xué)生感受大量空間實物及模型、概括出柱、錐、臺、球的結(jié)構(gòu)特征。
難點:柱、錐、臺、球的結(jié)構(gòu)特征的概括。
三、教學(xué)用具
(1)學(xué)法:觀察、思考、交流、討論、概括。
(2)實物模型、投影儀。
四、教學(xué)過程
(一)創(chuàng)設(shè)情景,揭示課題
1、由六根火柴最多可搭成幾個三角形?(空間:4個)
2在我們周圍中有不少有特色的建筑物,你能舉出一些例子嗎?這些建筑的幾何結(jié)構(gòu)特征如何?
3、展示具有柱、錐、臺、球結(jié)構(gòu)特征的空間物體。
問題:請根據(jù)某種標(biāo)準(zhǔn)對以上空間物體進行分類。
(二)、研探新知
空間幾何體:多面體(面、棱、頂點):棱柱、棱錐、棱臺;
旋轉(zhuǎn)體(軸):圓柱、圓錐、圓臺、球。
1、棱柱的結(jié)構(gòu)特征:
(1)觀察棱柱的幾何物體以及投影出棱柱的圖片,
思考:它們各自的特點是什么?共同特點是什么?
(學(xué)生討論)
(2)棱柱的主要結(jié)構(gòu)特征(棱柱的概念):
、儆袃蓚面互相平行;
、谄溆喔髅娑际瞧叫兴倪呅;
、勖肯噜弮缮纤倪呅蔚墓策吇ハ嗥叫小
(3)棱柱的表示法及分類:
(4)相關(guān)概念:底面(底)、側(cè)面、側(cè)棱、頂點。
2、棱錐、棱臺的結(jié)構(gòu)特征:
(1)實物模型演示,投影圖片;
(2)以類似的方法,根據(jù)出棱錐、棱臺的結(jié)構(gòu)特征,并得出相關(guān)的概念、分類以及表示。
棱錐:有一個面是多邊形,其余各面都是有一個公共頂點的三角形。
棱臺:且一個平行于棱錐底面的平面去截棱錐,底面與截面之間的部分。
3、圓柱的結(jié)構(gòu)特征:
(1)實物模型演示,投影圖片——如何得到圓柱?
(2)根據(jù)圓柱的概念、相關(guān)概念及圓柱的表示。
4、圓錐、圓臺、球的結(jié)構(gòu)特征:
(1)實物模型演示,投影圖片
——如何得到圓錐、圓臺、球?
(2)以類似的方法,根據(jù)圓錐、圓臺、球的結(jié)構(gòu)特征,以及相關(guān)概念和表示。
5、柱體、錐體、臺體的概念及關(guān)系:
探究:棱柱、棱錐、棱臺都是多面體,它們在結(jié)構(gòu)上有哪些相同點和不同點?三者的關(guān)系如何?當(dāng)?shù)酌姘l(fā)生變化時,它們能否互相轉(zhuǎn)化?
圓柱、圓錐、圓臺呢?
6、簡單組合體的結(jié)構(gòu)特征:
(1)簡單組合體的構(gòu)成:由簡單幾何體拼接或截去或挖去一部分而成。
(2)實物模型演示,投影圖片——說出組成這些物體的幾何結(jié)構(gòu)特征。
(3)列舉身邊物體,說出它們是由哪些基本幾何體組成的。
(三)排難解惑,發(fā)展思維
1、有兩個面互相平行,其余后面都是平行四邊形的幾何體是不是棱柱?(反例說明)
2、棱柱的何兩個平面都可以作為棱柱的底面嗎?
3、圓柱可以由矩形旋轉(zhuǎn)得到,圓錐可以由直角三角形旋轉(zhuǎn)得到,圓臺可以由什么圖形旋轉(zhuǎn)得到?如何旋轉(zhuǎn)?
【高一數(shù)學(xué)教案】相關(guān)文章:
高一數(shù)學(xué)教案06-20
高一數(shù)學(xué)教案07-20
高一必修四數(shù)學(xué)教案04-13
高一必修五數(shù)學(xué)教案04-10
人教版高一數(shù)學(xué)教案07-30
上海高一數(shù)學(xué)教案07-30
高一數(shù)學(xué)教案15篇07-19
最新高一數(shù)學(xué)教案09-27