男人天堂日韩,中文字幕18页,天天伊人网,成人性生交大片免费视频

教案高中數(shù)學

時間:2023-02-01 16:19:44 數(shù)學教案 我要投稿

教案高中數(shù)學模板

  作為一名老師,時常會需要準備好教案,教案有助于學生理解并掌握系統(tǒng)的知識。怎樣寫教案才更能起到其作用呢?以下是小編精心整理的教案高中數(shù)學模板,希望能夠幫助到大家。

教案高中數(shù)學模板

教案高中數(shù)學模板1

  一、什么是教學案例

  教學案例是真實而又典型且含有問題的事件。簡單地說,一個教學案例就是一個包含有疑難問題的實際情境的描述,是一個教學實踐過程中的故事,描述的是教學過程中“意料之外,情理之中的事”。

  這可以從以下幾個層次來理解:

  教學案例是事件:教學案例是對教學過程中的一個實際情境的描述。它講述的是一個故事,敘述的是這個教學故事的產(chǎn)生、發(fā)展的歷程,它是對教學現(xiàn)象的動態(tài)性的把握。

  教學案例是含有問題的事件:事件只是案例的基本素材,并不是所有的教學事件都可以成為案例。能夠成為案例的事件,必須包含有問題或疑難情境在內(nèi),并且也可能包含有解決問題的方法在內(nèi)。正因為這一點,案例才成為一種獨特的研究成果的表現(xiàn)形式。

  案例是真實而又典型的事件:案例必須是有典型意義的,它必須能給讀者帶來一定的啟示和體會。案例與故事之間的根本區(qū)別是:故事是可以杜撰的,而案例是不能杜撰和抄襲的,它所反映的是真是發(fā)生的事件,是教學事件的真實再現(xiàn)。是對“當前”課堂中真實發(fā)生的實踐情景的描述。它不能用“搖擺椅子上杜撰的事實來替代”,也不能從抽象的、概括化的理論中演繹的事實來替代。

  二、如何進行教學案例研究

  教學案例是教師教學行為真實、典型的記錄,也是教師教學理念和教學思想的真實體現(xiàn)。因此它是教育教學研究的寶貴資源,也是教師之間交流的重要媒介。進行教學案例的研究是教師不斷反思、改進自己教學的一種方法,能促使教師更為深刻地認識到自己工作中的重點和難點。這個過程就是教師自我教育和成長的過程。

  那么如何進行教學案例研究呢?一般情況下,案例研究的程序基本有以下兩個環(huán)節(jié):案例研究的準備及實施、案例研究報告的撰寫與反思。

  (一)案例研究的準備與實施

  1.研究主題的選擇

  案例研究都要有研究的重點和主題,這個主題常與教學改革的核心理念、常見的疑難問題和困惑事件相關(guān),一般來說可以從教學的各個方面確定研究的主題,如從教師教學行為確定主題——教學材料的選擇、教學中的提問、教學媒體的使用、教學評價語言、課堂教學調(diào)控行為等;也可以從學生的學習方式確定主題——探究性學習、問題解決學習、合作學習、實踐性活動等。另外從學科特點、教學內(nèi)容等都可以確定研究的主題。

  研究者要了解當前教學的大背景,教改的大方向,要熟悉相關(guān)的《課程標準》和有針對性地作一些理論準備。還要通過有關(guān)的調(diào)查,搜集詳盡的材料(如閱讀教師的教學設(shè)計,進行訪談等),同時初步確定案例研究的方向、研究任務(wù),即初步確定案例的內(nèi)容是關(guān)于教學策略、學生行為或是教學技能的研究。

  一般來說,案例研究主題的確定往往需要思考下面一些問題:即研究的事件是否對于自我發(fā)現(xiàn)更有潛力?選擇的事件對學生是否有較大的情感影響(心靈是否受到震撼)?關(guān)鍵事件再現(xiàn)了前人(或自己)過去成功的行為嗎?事件呈現(xiàn)的是一個你不能確定怎樣解決的問題?事件需要你做出困難的選擇嗎?事件使得你必須以一種感覺不熟悉的方式或是仍在思考的方式回答嗎?事件暗示一個與道德或道義上相關(guān)的問題嗎?研究的主題如果反映以上的一些內(nèi)容,那么這樣的案例研究在自我學習、內(nèi)省和深層次理解方面就可能更加富有成效。

  高中數(shù)學教學案例研究的主題內(nèi)容主要集中在三方面:(1)學科特點的體現(xiàn):如數(shù)學思想方法的教學、數(shù)學思維品質(zhì)的培養(yǎng)、本質(zhì)屬性的抽象、數(shù)學結(jié)論的推廣等;(2)學生數(shù)學學習規(guī)律的探究:如數(shù)學學習習慣、解決問題的思維方式、獨立思考與合作學習等;(3)教師專業(yè)知識的提升:如數(shù)學板書與電子屏幕的展示對學生思維的影響、數(shù)學語言的訓練對人們思維的影響、數(shù)學知識模式化教學的優(yōu)劣等。

  2.案例研究的基本方法

  (1)課堂觀察。觀察方法是指研究者按照一定的目的和計劃,在課堂教學活動的自然狀態(tài)下,用自己的感官和輔助工具對研究對象進行觀察研究的一種方法。它可以是教師自己對教學對象——學生,在課堂活動中的片斷進行觀察,也可以由其他教師來實施觀察,這兩種觀察的目的都是為了掌握課堂教學中的第一手資料。課堂觀察方法不限于用肉眼觀察、耳聽手記,還可利用各種工具如照相、錄音、攝像等作為輔助觀察的手段,以提高觀察的效果。對觀察的資料,可以逐字逐句整理成課堂教學實錄、教學程序表、提問技巧水平檢核表、提問行為類型頻次表、課堂教學時間分配表等,以便以后繼續(xù)分析案例提供翔實的原始材料。

  (2)訪談與調(diào)查。對一些課堂教學不能觀察到的師生內(nèi)心活動,如教師教學的目的、教學程序的意圖、教學手段的運用以及教學達標的成效等一些需要進一步了解的問題,可以通過與執(zhí)教教師的交談以及和學生的座談,以豐富和充實課堂教學觀察的材料;對學生在課堂教學活動中回答問題的心理狀態(tài)、解題思路等問題,也可以在課后做一些問卷調(diào)查;對學生達標的成度、效度,也可以作一些測試調(diào)查。從這些訪談、調(diào)查的材料中,再分析課堂教學的現(xiàn)象,不難發(fā)現(xiàn)造成各種課堂現(xiàn)象與教師教學行為之間的因果關(guān)系,然后再具體尋找在哪個教學環(huán)節(jié)中出現(xiàn)問題,從中提煉出解決問題的對策。

  (3)文獻分析。文獻分析是通過查閱文獻資料,從過去和現(xiàn)在的有關(guān)研究成果中受到啟發(fā),從中找到課堂教學現(xiàn)象的理論依據(jù),從而增強案例分析的說服力。當然,對廣大第一線教師而言,這里所運用的文獻分析方法,并不是為了論證新教育理論,也不是去歸納教育的宏觀現(xiàn)象,而是通過有關(guān)教育理論文獻的查閱,去進一步解讀課堂教學的活動,挖掘案例中的教育思想。如在數(shù)學教學中,我們常常通過學生的動手操作來獲得有關(guān)的數(shù)學概念、法則與公式,那么,為什么要這樣做呢?就可以帶著問題,查閱、分析有關(guān)文獻資料,從學習中提高研究者自身的理論水平。

  (二)案例研究報告的撰寫

  1.常見的案例報告格式

  撰寫教學案例,結(jié)構(gòu)可以靈活多樣,并非要千篇一律、一個模式,而是可以有不同的表現(xiàn)形式,如“案例背景——案例描述——案例分析”、“案例過程——案例反思”、“課例——問題——分析”、“主題與背景——情景描述——問題討論——詮釋與研究”等。當前,國內(nèi)外課堂教學案例編寫的格式有多種多樣。但不管何種編寫格式,它們都有兩個共同的特點:一是對案例的客觀描述;二是對案例中所述問題、關(guān)鍵教學事件等的分析。

  下面介紹兩種常用的案例編寫的格式:

  (1)“描述+分析”式

  此格式的特點是將整個案例分為兩大部分,前半部分主要為描述課堂教學活動的情景,后半部分主要針對情景中的一個問題進行理論分析并獲得結(jié)論。案例的描述一般是把課堂教學活動中的某一片斷像講故事一樣原原本本地、具體生動地描繪出來。描述的形式可以是一串問答式的課堂對話,也可以概括式地敘述,主要是提供一個或一連串課堂教學疑難的問題,并把教育理論、教育思想隱藏在描述之中。案例的分析部分是針對描述的情景發(fā)表個人或多人的感受,同時加以理論的分析與說明。分析方法可以是對描述中提出的一個問題,從幾個方面加以分析:也可以是對描述中的幾個問題,集中從一個方面加以分析。分析的目的是要從描述的情景中提煉問題的本質(zhì),講述理論的解釋,明確正確的方法,最終獲得對關(guān)鍵教學事件的正確把握。

  (2)“背景+描述+問題+詮釋”式

  此格式是一種要求比較高的編寫格式,而且,它在實際教學中的作用也更大。通常它將整個案例分為四個部分:

  A.主題與背景

  主題是關(guān)鍵教學事件中所反映的案例主要觀點,也是整篇案例的核心思想。背景主要敘述案例發(fā)生的地點、時間、人物的一些基本情況。當然,這部分的內(nèi)容不宜很長,只需提綱挈領(lǐng)敘述清楚即可。

  B.情景描述

  與“描述+分析”式中的描述相同,主要突出主題所反映的課堂教學活動。

  C.問題討論

  這是根據(jù)主題要求與情景描述,進行的分析、歸納、總結(jié)與提煉,包括學科知識的要點、教學法和情景特點以及案例的說明與注意事項。這部分內(nèi)容主要是為案例教學服務(wù)的,目的是提高教師的認識水平與學生主動學習的能力。不同的教學觀念,不同的教學手段,所提出的問題也不同。對案例中所提出的主題以及情景描述中提出的問題闡述自己的見解。

  D.詮釋與研究

  這部分主要是用教育理論對案例情景作多角度的解讀。它包括對課堂教學行為的技術(shù)資料、課堂教學實錄以及教學活動背后的故事等作理論上的分析。例如,在課堂教學中,我們?吹竭@樣的現(xiàn)象,課堂教學的效果高于預(yù)期的目標,反之教師期望的目標學生沒有達到或有所偏離,教學內(nèi)容呈現(xiàn)的先后與學生理解的程度、教學方法運用與學生內(nèi)在動機的激發(fā)等環(huán)節(jié)存在著矛盾,這些事件的背后,必然隱含著豐富的教育思想。所以,通過詮釋,挖掘這些事件背后的內(nèi)在思想,揭示其教育規(guī)律就顯得十分的必要。

  2.案例報告撰寫的關(guān)鍵

  (1)掌握四個原則。要寫好教學案例,除了平時多積累素材,學習他人的案例作品以提高寫作技巧外,還應(yīng)把握以下四點:

  A.主題性原則:要有捕捉關(guān)鍵教學事件的意識,以此確定案例研究的主題。為此要注意了解新的課程改革的動向、把握適合時代要求的數(shù)學教育方式、明確學生數(shù)學學習的難點和重點,尋找數(shù)學教師專業(yè)發(fā)展的途徑與規(guī)律。報告圍繞主題進行情景描述和獲得解決問題的策略。這種描述不是簡單的教學活動實錄,要反映事件發(fā)生的過程,重點描述反映關(guān)鍵教學事件的變化和戲劇化的情境,猶如記敘文寫作,突出主題,詳寫重點,雕刻高潮。

  案例鮮明的主題通常關(guān)系到教學的核心理念、常見問題、處理方法等等,可以說,主題就是案例的靈魂。而主題的最佳表現(xiàn)形式就是文題直接體現(xiàn)主題。因此,設(shè)計主題就要有新意、有時代感,通俗地說就是與眾不同,要有獨特見解、獨家發(fā)現(xiàn)。來源于實踐的教學案例并非都有同等價值,關(guān)鍵要看撰寫者對實踐的發(fā)展與理論的升華程度,包括對題目的推敲。如有的教學案例重點描述了有戲劇性的情節(jié),用了“細節(jié)決定成敗”的題目,給人耳目一新,一下子揪住了讀者的心。再如,一些有創(chuàng)意的題目《“導之有方”方能“導之有效”》、《跳出數(shù)學教數(shù)學》、《在數(shù)學的疑難處悟成長》、《捕捉資源因勢利導》等等,讓人一看題目就有閱讀的欲望。實踐證明,在寫作案例時,選擇有感悟、有新意的內(nèi)容,在明確主題,恰當擬題后再動筆,才能寫出高質(zhì)量的案例。

  B.理論性原則:解決問題的策略中應(yīng)當蘊含一定的教育基本原理和教育思想。實際是將自己對教育理念以及教育基本原理的理解滲透于描述的字里行間,比如學生做了什么,參與程度,投入程度如何,教師如何引導點撥,師生心理、行為變化情況等,無不體現(xiàn)教師的教學思想和教育基本原理。

  C.敘事性原則:案例報告的`書寫方式是敘事式,它不同于論述式。敘事方式必須以課堂教學生動的事實為主要情節(jié),可以夾敘夾議,也可以選擇情景片段,可以是一節(jié)課中的情景,也可以是圍繞一個主題的幾節(jié)課的情景片段。

  D.學科性原則:數(shù)學案例報告一定要體現(xiàn)學科的特征,要有較深刻的理性思考,要反映數(shù)學的基本思想與方法,要符合課程標準,滿足教材內(nèi)容的呈現(xiàn)方法,積極培養(yǎng)良好的思維習慣。就是撰寫者的教育思想和教育理念在教學實踐中具體體現(xiàn)。

  (2)用好四種表述。教學案例的表述方法很多,可以歸納為以下四種方法:

  A.故事式陳述法:就是教學全程或某一精彩教學片段實錄,包括教師和學生的一言一行。陳述時,根據(jù)操作程序作一點“簡評”,最后作“總評”。

  B.以案說理:對教學過程進行陳述時,舍去與文題不相關(guān)或不重要的部分,并強化與主題相關(guān)的重要情節(jié),尤其是引發(fā)高潮的關(guān)鍵行為,然后有較長篇幅的理性思考。

  C.圖表展示法:用圖表進行統(tǒng)計的形式體現(xiàn)撰寫者的教育思想,給人以一目了然的感覺,幫助讀者迅速了解撰寫者的寫作意圖,是常用的一種案例撰寫方法。比如,描述學生的參與人數(shù),投入程度,解決問題的質(zhì)量等多個問題,都可以在一張或數(shù)張圖表上用百分比或個(次)數(shù)進行統(tǒng)計。在每一張圖表后,應(yīng)有一段“分析”或“結(jié)論”,將撰寫者的教學理念進行理性闡述,亦可在圖表展示后,總的提出自己對案例的分析和建議。

  D.分析討論法:在撰寫時,應(yīng)汲取分析討論中最精彩的部分做深入、細致的全面記錄,最后撰寫者還必須對討論情況做一分析,或提出一些值得今后進一步思考的問題。

  3.優(yōu)秀案例的特征

  (1)時代性:一個好的案例描述的是現(xiàn)實生活場景——案例的敘述要把事件置于一個時空框架之中,應(yīng)該以關(guān)注今天所面臨的疑難問題為著眼點,至少應(yīng)該是近年發(fā)生的事情,展示的整個事實材料應(yīng)該與整個時代及教學背景相照應(yīng),這樣的案例讀者更愿意接觸。一個好的案例可以使讀者有身臨其境的感覺,并對案例所涉及的人產(chǎn)生移情作用。

  (2)真實性:一個好的案例應(yīng)該包括從案例所反映的對象那里引述的材料——案例寫作必須持一種客觀的態(tài)度,因此可引述一些口頭的或書面的、正式的或非正式的材料,如對話、筆記、信函等,以增強案例的真實感和可讀性。重要的事實性材料應(yīng)注明資料來源。

  (3)適用性:一個好的案例需要針對面臨的疑難問題提出解決辦法——案例不能只是提出問題,它必須提出解決問題的主要思路、具體措施,并包含著解決問題的詳細過程,這應(yīng)該是案例寫作的重點。如果一個問題可以提出多種解決辦法的話,那么最為適宜的方案,就應(yīng)該是與特定的背景材料相關(guān)最密切的那一個。如果有包治百病、普遍適用的解決問題的辦法,那么案例這種形式就不必要存在了。

  (4)反思性:一個好的案例需要有對已經(jīng)做出的解決問題的決策的評價——評價是為了給新的決策提供參考點?稍诎咐拈_頭或結(jié)尾寫下案例作者對自己解決問題策略的評論,以點明案例的基本論點及其價值。

  三、案例研究過程中需注意的問題

  1.選材面過窄。從內(nèi)容上看,多數(shù)案例是關(guān)于課堂教學甚至局限于一節(jié)課的研究,往往不能說明問題,或者在一節(jié)課中,也只會從簡單的對話分析問題,做不到全方位、多角度。這說明教師對教學情境的豐富性、復雜性和聯(lián)系性認識不夠。

  2.缺乏典型性。有的案例對教學實踐沒有挖掘與反思,隨意摘取一些教學片段泛泛而談、人云亦云,沒有實用價值。不能夠通過對某一事件現(xiàn)象的分析、處理、詮釋,達到舉一反三的效果,這樣的案例對他人沒什么借鑒作用。

  3.主題不明確。主要體現(xiàn)為:

  (1)主題渙散。有的案例象記流水帳,沒有根據(jù)需要進行恰當?shù)娜∩幔床怀鲎髡咭从、探討什么問題,缺乏指導性、創(chuàng)新性和參考性。

  (2)定題過于隨意。有的案例直接用案例研究依據(jù)的文題為題目,如《“三角函數(shù)”教學案例》、《“拋物線”教學案例》等,題目不鮮明、不形象,影響讀者的選讀和案例的傳播。

  4.結(jié)構(gòu)不合理。案例作為一種文體,有它自己的寫作結(jié)構(gòu),只有優(yōu)化案例的結(jié)構(gòu),才能增強案例的可讀性和指導性。如寫成一般的教學設(shè)計,一般包括“備課思路、教學目標、教學重點、教學方法、課前準備、教學內(nèi)容、教學過程”等內(nèi)容;寫成教學實錄,把一堂課從頭到尾詳盡地記錄下來,再寫上作者的看法;重記錄輕分析,過程描述多,評析少等等。沒有創(chuàng)新,平淡無趣,看不出案例研究和反映的問題。

  5.描述與分析脫節(jié)。有的案例描述與分析矛盾,讓人不知所云;有時反映的是一種觀點,分析闡明的是另一種觀點,雖然不矛盾,但聯(lián)系不緊密;有的分析中熱衷于抄錄教育理論的一些條條,脫離案例描述的事件而空談理論,顯得空泛無物。

教案高中數(shù)學模板2

  教學目標

  (1)使學生正確理解組合的意義,正確區(qū)分排列、組合問題;

  (2)使學生掌握組合數(shù)的計算公式;

  (3)通過學習組合知識,讓學生掌握類比的學習方法,并提高學生分析問題和解決問題的能力;

  教學重點難點

  重點是組合的定義、組合數(shù)及組合數(shù)的公式;

  難點是解組合的應(yīng)用題.

  教學過程設(shè)計

  (-)導入新課

  (教師活動)提出下列思考問題,打出字幕.

  [字幕]一條鐵路線上有6個火車站,(1)需準備多少種不同的普通客車票?(2)有多少種不同票價的普通客車票?上面問題中,哪一問是排列問題?哪一問是組合問題?

  (學生活動)討論并回答.

  答案提示:(1)排列;(2)組合.

  [評述]問題(1)是從6個火車站中任選兩個,并按一定的順序排列,要求出排法的種數(shù),屬于排列問題;(2)是從6個火車站中任選兩個并成一組,兩站無順序關(guān)系,要求出不同的組數(shù),屬于組合問題.這節(jié)課著重研究組合問題.

  設(shè)計意圖:組合與排列所研究的問題幾乎是平行的上面設(shè)計的問題目的是從排列知識中發(fā)現(xiàn)并提出新的問題.

  (二)新課講授

  [提出問題 創(chuàng)設(shè)情境]

  (教師活動)指導學生帶著問題閱讀課文.

  [字幕]1.排列的定義是什么?

  2.舉例說明一個組合是什么?

  3.一個組合與一個排列有何區(qū)別?

  (學生活動)閱讀回答.

  (教師活動)對照課文,逐一評析.

  設(shè)計意圖:激活學生的思維,使其將所學的知識遷移過渡,并盡快適應(yīng)新的環(huán)境.

  【歸納概括 建立新知】

  (教師活動)承接上述問題的回答,展示下面知識.

  [字幕]模型:從 個不同元素中取出 個元素并成一組,叫做從 個不同元素中取出 個元素的一個組合.如前面思考題:6個火車站中甲站→乙站和乙站→甲站是票價相同的車票,是從6個元素中取出2個元素的一個組合.

  組合數(shù):從 個不同元素中取出 個元素的所有組合的個數(shù),稱之,用符號 表示,如從6個元素中取出2個元素的組合數(shù)為 .

  [評述]區(qū)分一個排列與一個組合的關(guān)鍵是:該問題是否與順序有關(guān),當取出元素后,若改變一下順序,就得到一種新的取法,則是排列問題;若改變順序,仍得原來的取法,就是組合問題.

  (學生活動)傾聽、思索、記錄.

  (教師活動)提出思考問題.

  [投影] 與 的關(guān)系如何?

  (師生活動)共同探討.求從 個不同元素中取出 個元素的排列數(shù) ,可分為以下兩步:

  第1步,先求出從這 個不同元素中取出 個元素的組合數(shù)為 ;

  第2步,求每一個組合中 個元素的全排列數(shù)為 .根據(jù)分步計數(shù)原理,得到

  [字幕]公式1:

  公式2:

  (學生活動)驗算 ,即一條鐵路上6個火車站有15種不同的票價的普通客車票.

  設(shè)計意圖:本著以認識概念為起點,以問題為主線,以培養(yǎng)能力為核心的宗旨,逐步展示知識的形成過程,使學生思維層層被激活、逐漸深入到問題當中去.

  【例題示范 探求方法】

  (教師活動)打出字幕,給出示范,指導訓練.

  [字幕]例1 列舉從4個元素 中任取2個元素的.所有組合.

  例2 計算:(1) ;(2) .

  (學生活動)板演、示范.

  (教師活動)講評并指出用兩種方法計算例2的第2小題.

  [字幕]例3 已知 ,求 的所有值.

  (學生活動)思考分析.

  解 首先,根據(jù)組合的定義,有

  ①

  其次,由原不等式轉(zhuǎn)化為

  即

  解得 ②

  綜合①、②,得 ,即

  [點評]這是組合數(shù)公式的應(yīng)用,關(guān)鍵是公式的選擇.

  設(shè)計意圖:例題教學循序漸進,讓學生鞏固知識,強化公式的應(yīng)用,從而培養(yǎng)學生的綜合分析能力.

  【反饋練習 學會應(yīng)用】

  (教師活動)給出練習,學生解答,教師點評.

  [課堂練習]課本P99練習第2,5,6題.

  [補充練習]

  [字幕]1.計算:

  2.已知 ,求 .

  (學生活動)板演、解答.

  設(shè)計意圖:課堂教學體現(xiàn)以學生為本,讓全體學生參與訓練,深刻揭示排列數(shù)公式的結(jié)構(gòu)、特征及應(yīng)用.

  (三)小結(jié)

  (師生活動)共同小結(jié).

  本節(jié)主要內(nèi)容有

  1.組合概念.

  2.組合數(shù)計算的兩個公式.

  (四)布置作業(yè)

  1.課本作業(yè):習題10 3第1(1)、(4),3題.

  2.思考題:某學習小組有8個同學,從男生中選2人,女生中選1人參加數(shù)學、物理、化學三種學科競賽,要求每科均有1人參加,共有180種不同的選法,那么該小組中,男、女同學各有多少人?

  3.研究性題:

  在 的 邊上除頂點 外有 5個點,在 邊上有 4個點,由這些點(包括 )能組成多少個四邊形?能組成多少個三角形?

  (五)課后點評

  在學習了排列知識的基礎(chǔ)上,本節(jié)課引進了組合概念,并推導出組合數(shù)公式,同時調(diào)控進行訓練,從而培養(yǎng)學生分析問題、解決問題的能力.

教案高中數(shù)學模板3

  小學階段已經(jīng)學習過分數(shù),學生頭腦中已形成了分數(shù)的相關(guān)知識,知道分數(shù)的分子,分母都是具體的數(shù)。因此在學習過程中。學生可能會用學習分數(shù)的思維定勢來認知和理解分式。但是,他們之間到底有著怎樣的聯(lián)系與不同,以及分式到底蘊含著怎樣一種數(shù)學思想,和它能夠解決哪些實際問題,通過探究,將會找到答案。

  一、活動目的:

  分式在社會生活的各個方面都有著廣泛的應(yīng)用,它表示現(xiàn)實情境中數(shù)量關(guān)系,是解決實際問題的常見的一種模型。通過對分式表示現(xiàn)實情境中數(shù)量關(guān)系的過程,讓學生在參與探究、質(zhì)疑、交流、合作等活動中,體會分式的模型思想,進一步發(fā)展符號感;并能用分式表示實際問題中的數(shù)量關(guān)系。從而達到開發(fā)學生思維,啟迪學生的智慧的目的。這在本質(zhì)上也體現(xiàn)了弗萊登塔爾的“數(shù)學是一項人類活動”的理念。

  二、研究課題

  1、分式的概念;

  2、分式與分數(shù)的不同之處;

  3、對整式、分式的正確區(qū)別:分式的分子和分母都是整式,分子可以含有字母,也可以不含有字母,而分母中必須含有字母,這是分式與整式的根本區(qū)別。

  三、活動安排

  在教研組的統(tǒng)一計劃下,以年級為單位開展活動。

  四、活動過程:

  1、準備階段:

  (1)動員學生:激發(fā)學生的研究課題興趣,鼓勵學生積極參加討論與交流。

 。2)確定課題:教師依據(jù)學生的興趣和實際,幫助學生在其所提供的.課題中確定一實際可行的課題。

 。3)方法指導:研究與學習的方法與整式相類似。分式是分數(shù)的代數(shù)化,學生可以通過類比,歸納的方法來掌握這部分知識,培養(yǎng)探究、自主學習能力。

 。4)建立研究小組:把興趣較濃的學生召集成立研究小組,以便行之有效地開展研究活動。

  2、實施過程:

  根據(jù)上述學情及教學目標,本節(jié)課的教學過程按照“形成概念-理解概念-應(yīng)用概念-歸納小結(jié)”的順序設(shè)定為4個主要階段.

  (一)創(chuàng)設(shè)情境,形成概念

  創(chuàng)設(shè)情境:為深入挖掘教材章節(jié)引例中行船問題的數(shù)學內(nèi)涵,創(chuàng)設(shè)能充分激發(fā)學生學習興趣、體現(xiàn)數(shù)學文化的情境,我想到由唐詩“千里江陵一日還”和初二語文課文《三峽》中的有關(guān)描述引入新課.師生共同從詩文內(nèi)容中挖掘出一個數(shù)學問題:“千里江陵”能否“一日還”?以此為情境,我提出一組關(guān)于船速、水速、距離和時間等數(shù)量關(guān)系的具體問題.隨著問題的逐漸深入,學生先后列出的5個代數(shù)式,從分數(shù)到分式、從特殊到一般,體現(xiàn)了數(shù)學是描述數(shù)量關(guān)系、揭示客觀規(guī)律的工具.形成概念:這組代數(shù)式的排列順序還體現(xiàn)了從整式到分式的過渡.我向?qū)W生指出:類比和歸納是探索新概念的重要方法,并提問:以上代數(shù)式中哪些是整式?哪些不是整式?不是整式的那些代數(shù)式有沒有共同特征?從而引導學生觀察和歸納分式的特點,形成分式概念.

 。ǘ┘由罾斫,提升認識

  【填表探究】分式中字母的取值范圍問題(或者說分式何時有意義的問題)體現(xiàn)了對分式概念的深入理解,是本節(jié)課的教學重點和難點.我仍按照從特殊到一般的原則,給出三個具體分式,并請學生填寫一張求它們的值的表格,借表格滲透一種研究新事物的方法步驟.首先,從具體入手——當分式中的字母取定具體的數(shù)值時,分式即表示一個具體的數(shù);然后,發(fā)現(xiàn)問題——當字母取某些特殊值時,有可能出現(xiàn)分母等于零的情況;最后,分析、解決問題——類比分數(shù)有意義的條件總結(jié)出,分式要有意義,分母不能為零.

  三)綜合運用,拓展探究

  通過3個拓展探究問題,檢驗學生應(yīng)用新知解決問題的能力,也希望進一步提升他們的思維層次.練習1引導學生靈活處理方程和不等式組成的條件組:先解方程,再將方程的解逐一代入不等式檢驗.練習2引導學生將視野由等量關(guān)系拓展至不等關(guān)系,類比分數(shù)的值為負數(shù)的條件得到這個分式的值為負數(shù)的條件.練習3選取生活中的追及問題情境,引導學生進一步關(guān)注問題的實際背景.嚴格地講,解此題應(yīng)該首先明確字母取值范圍、再列代數(shù)式,但這超出了初二學生的思維層次.我的處理方式是,先讓學生列式,再從分式要有意義的角度提醒學生關(guān)注字母的取值范圍,最后引導提升到字母取值應(yīng)使實際問題有意義的認識高度.

  3、總結(jié)階段:

 。1)學生自己總結(jié)。形成分式的概念。

 。2)交流、展示成果。全班學生可以班會的形式進行交流、展示成果,共享活動成果。

  (3)指導教師對活動進行評定、總結(jié),并總結(jié)整個活動情況,撰寫總結(jié)論文。

  五、實施的基本要求

  1.全員參與。要強調(diào)全體學生的積極主動參與,充分發(fā)揮學生在研究性學習全過程中的自主性,特別要注意激發(fā)和保護學生的探究興趣和熱情。

  2.任務(wù)驅(qū)動。給出任務(wù)并提出有明確的要求,以引導研究性學習活動的展開。

  3.多種形式。要從學生、學校和區(qū)域的實際出發(fā),選擇和確定具體的實施辦法,注意適合學生的差異。

教案高中數(shù)學模板4

  教學目標

  1.了解映射的概念,象與原象的概念,和一一映射的概念.

 。1)明確映射是特殊的對應(yīng)即由集合 ,集合 和對應(yīng)法則f三者構(gòu)成的一個整體,知道映射的特殊之處在于必須是多對一和一對一的對應(yīng);

  (2)能準確使用數(shù)學符號表示映射, 把握映射與一一映射的區(qū)別;

 。3)會求給定映射的指定元素的象與原象,了解求象與原象的方法.

  2.在概念形成過程中,培養(yǎng)學生的觀察,比較和歸納的能力.

  3.通過映射概念的學習,逐步提高學生對知識的探究能力.

  教學建議

  教材分析

 。1)知識結(jié)構(gòu)

  映射是一種特殊的對應(yīng),一一映射又是一種特殊的映射,而且函數(shù)也是特殊的映射,它們之間的關(guān)系可以通過下圖表示出來,如圖:

  由此我們可從集合的包含關(guān)系中幫助我們把握相關(guān)概念間的區(qū)別與聯(lián)系.

  (2)重點,難點分析

  本節(jié)的教學重點和難點是映射和一一映射概念的形成與認識.

 、儆成涞母拍钍潜容^抽象的概念,它是在初中所學對應(yīng)的基礎(chǔ)上發(fā)展而來.教學中應(yīng)特別強調(diào)對應(yīng)集合 B中的唯一這點要求的理解;

  映射是學生在初中所學的對應(yīng)的基礎(chǔ)上學習的,對應(yīng)本身就是由三部分構(gòu)成的整體,包括集 合A和集合B及對應(yīng)法則f,由于法則的不同,對應(yīng)可分為一對一,多對一,一對多和多對多. 其中只有一對一和多對一的能構(gòu)成映射,由此可以看到映射必是“對B中之唯一”,而只要是對應(yīng)就必須保證讓A中之任一與B中元素相對應(yīng),所以滿足一對一和多對一的對應(yīng)就能體現(xiàn)出“任一對唯一”.

 、诙灰挥成溆衷谟成涞幕A(chǔ)上增加新的要求,決定了它在學習中是比較困難的.

  教法建議

  (1)在映射概念引入時,可先從學生熟悉的對應(yīng)入手, 選擇一些具體的生活例子,然后再舉一些數(shù)學例子,分為一對多、多對一、多對一、一對一四種情況,讓學生認真觀察,比較,再引導學生發(fā)現(xiàn)其中一對一和多對一的對應(yīng)是映射,逐步歸納概括出映射的基本特征,讓學生的認識從感性認識到理性認識.

  (2)在剛開始學習映射時,為了能讓學生看清映射的構(gòu)成,可以選擇用圖形表示映射,在集合的選擇上可選擇能用列舉法表示的有限集,法則盡量用語言描述,這樣的表示方法讓學生可以比較直觀的認識映射,而后再選擇用抽象的數(shù)學符號表示映射,比如:

 。3)對于學生層次較高的學?梢栽诮o出定義后讓學生根據(jù)自己的理解舉出映射的例子,教師也給出一些映射的例子,讓學生從中發(fā)現(xiàn)映射的特點,并用自己的語言描述出來,最后教師加以概括,再從中引出一一映射概念;對于學生層次較低的學校,則可以由教師給出一些例子讓學生觀察,教師引導學生發(fā)現(xiàn)映射的特點,一起概括.最后再讓學生舉例,并逐步增加要求向一一映射靠攏,引出一一映射概念.

 。4)關(guān)于求象和原象的問題,應(yīng)在計算的過程中總結(jié)方法,特別是求原象的方法是解方程或方程組,還可以通過方程組解的不同情況(有唯一解,無解或有無數(shù)解)加深對映射的認識.

 。5)在教學方法上可以采用啟發(fā),討論的形式,讓學生在實例中去觀察,比較,啟發(fā)學生尋找共性,共同討論映射的特點,共同舉例,計算,最后進行小結(jié),教師要起到點撥和深化的作用.

  教學設(shè)計方案

  2.1映射

  教學目標(1)了解映射的`概念,象與原象及一一映射的概念.

  (2)在概念形成過程中,培養(yǎng)學生的觀察,分析對比,歸納的能力.

  (3)通過映射概念的學習,逐步提高學生的探究能力.

  教學重點難點::映射概念的形成與認識.

  教學用具:實物投影儀

  教學方法:啟發(fā)討論式

  教學過程:

  一、引入

  在初中,我們已經(jīng)初步探討了函數(shù)的定義并研究了幾類簡單的常見函數(shù).在高中,將利用前面集合有關(guān)知識,利用映射的觀點給出函數(shù)的定義.那么映射是什么呢?這就是我們今天要詳細的概念.

  二、新課

  在前一章集合的初步知識中,我們學習了元素與集合及集合與集合之間的關(guān)系,而映射是重點研究兩個集合的元素與元素之間的對應(yīng)關(guān)系.這要先從我們熟悉的對應(yīng)說起(用投影儀打出一些對應(yīng)關(guān)系,共6個)

  我們今天要研究的是一類特殊的對應(yīng),特殊在什么地方呢?

  提問1:在這些對應(yīng)中有哪些是讓A中元素就對應(yīng)B中唯一一個元素?

  讓學生仔細觀察后由學生回答,對有爭議的,或漏選,多選的可詳細說明理由進行討論.最后得出(1),(2),(5),(6)是符合條件的(用投影儀將這幾個集中在一起)

  提問2:能用自己的語言描述一下這幾個對應(yīng)的共性嗎?

  經(jīng)過師生共同推敲,將映射的定義引出.(主體內(nèi)容由學生完成,教師做必要的補充)

教案高中數(shù)學模板5

  [學習目標]

  (1)會用坐標法及距離公式證明cα+β;

  (2)會用替代法、誘導公式、同角三角函數(shù)關(guān)系式,由cα+β推導cα—β、sα±β、tα±β,切實理解上述公式間的關(guān)系與相互轉(zhuǎn)化;

  (3)掌握公式cα±β、sα±β、tα±β,并利用簡單的三角變換,解決求值、化簡三角式、證明三角恒等式等問題。

  [學習重點]

  兩角和與差的正弦、余弦、正切公式

  [學習難點]

  余弦和角公式的推導

  [知識結(jié)構(gòu)]

  1、兩角和的余弦公式是三角函數(shù)一章和、差、倍公式系列的基礎(chǔ)。其公式的證明是用坐標法,利用三角函數(shù)定義及平面內(nèi)兩點間的距離公式,把兩角和α+β的余弦,化為單角α、β的三角函數(shù)(證明過程見課本)

  2、通過下面各組數(shù)的值的'比較:①cos(30°—90°)與cos30°—cos90°②sin(30°+60°)和sin30°+sin60°。我們應(yīng)該得出如下結(jié)論:一般情況下,cos(α±β)≠cosα±cosβ,sin(α±β)≠sinα±sinβ。但不排除一些特例,如sin(0+α)=sin0+sinα=sinα。

  3、當α、β中有一個是的整數(shù)倍時,應(yīng)首選誘導公式進行變形。注意兩角和與差的三角函數(shù)是誘導公式等的基礎(chǔ),而誘導公式是兩角和與差的三角函數(shù)的特例。

  4、關(guān)于公式的正用、逆用及變用

教案高中數(shù)學模板6

  教學目標:

  (1)了解坐標法和解析幾何的意義,了解解析幾何的基本問題.

  (2)進一步理解曲線的方程和方程的曲線.

  (3)初步掌握求曲線方程的方法.

  (4)通過本節(jié)內(nèi)容的教學,培養(yǎng)學生分析問題和轉(zhuǎn)化的能力.

  教學重點、難點:求曲線的方程.

  教學用具:計算機.

  教學方法:啟發(fā)引導法,討論法.

  教學過程:

  【引入】

  1.提問:什么是曲線的方程和方程的曲線.

  學生思考并回答.教師強調(diào).

  2.坐標法和解析幾何的意義、基本問題.

  對于一個幾何問題,在建立坐標系的基礎(chǔ)上,用坐標表示點;用方程表示曲線,通過研究方程的性質(zhì)間接地來研究曲線的性質(zhì),這一研究幾何問題的方法稱為坐標法,這門科學稱為解析幾何.解析幾何的兩大基本問題就是:

  (1)根據(jù)已知條件,求出表示平面曲線的方程.

  (2)通過方程,研究平面曲線的性質(zhì).

  事實上,在前邊所學的直線方程的理論中也有這樣兩個基本問題.而且要先研究如何求出曲線方程,再研究如何用方程研究曲線.本節(jié)課就初步研究曲線方程的求法.

  【問題】

  如何根據(jù)已知條件,求出曲線的方程.

  【實例分析】

  例1:設(shè)、兩點的坐標是、(3,7),求線段的垂直平分線的方程.

  首先由學生分析:根據(jù)直線方程的知識,運用點斜式即可解決.

  解法一:易求線段的中點坐標為(1,3),

  由斜率關(guān)系可求得l的斜率為

  于是有

  即l的方程為

 、

  分析、引導:上述問題是我們早就學過的,用點斜式就可解決.可是,你們是否想過①恰好就是所求的嗎?或者說①就是直線的方程?根據(jù)是什么,有證明嗎?

  (通過教師引導,是學生意識到這是以前沒有解決的問題,應(yīng)該證明,證明的依據(jù)就是定義中的兩條).

  證明:(1)曲線上的點的坐標都是這個方程的解.

  設(shè)是線段的垂直平分線上任意一點,則

  即

  將上式兩邊平方,整理得

  這說明點的坐標是方程的解.

  (2)以這個方程的解為坐標的點都是曲線上的點.

  設(shè)點的坐標是方程①的任意一解,則

  到、的距離分別為

  所以,即點在直線上.

  綜合(1)、(2),①是所求直線的方程.

  至此,證明完畢.回顧上述內(nèi)容我們會發(fā)現(xiàn)一個有趣的現(xiàn)象:在證明(1)曲線上的點的坐標都是這個方程的解中,設(shè)是線段的垂直平分線上任意一點,最后得到式子,如果去掉腳標,這不就是所求方程嗎?可見,這個證明過程就表明一種求解過程,下面試試看:

  解法二:設(shè)是線段的垂直平分線上任意一點,也就是點屬于集合

  由兩點間的距離公式,點所適合的條件可表示為

  將上式兩邊平方,整理得

  果然成功,當然也不要忘了證明,即驗證兩條是否都滿足.顯然,求解過程就說明第一條是正確的(從這一點看,解法二也比解法一優(yōu)越一些);至于第二條上邊已證.

  這樣我們就有兩種求解方程的方法,而且解法二不借助直線方程的理論,又非常自然,還體現(xiàn)了曲線方程定義中點集與對應(yīng)的思想.因此是個好方法.

  讓我們用這個方法試解如下問題:

  例2:點與兩條互相垂直的直線的距離的積是常數(shù)求點的'軌跡方程.

  分析:這是一個純粹的幾何問題,連坐標系都沒有.所以首先要建立坐標系,顯然用已知中兩條互相垂直的直線作坐標軸,建立直角坐標系.然后仿照例1中的解法進行求解.

  求解過程略.

  【概括總結(jié)】通過學生討論,師生共同總結(jié):

  分析上面兩個例題的求解過程,我們總結(jié)一下求解曲線方程的大體步驟:

  首先應(yīng)有坐標系;其次設(shè)曲線上任意一點;然后寫出表示曲線的點集;再代入坐標;最后整理出方程,并證明或修正.說得更準確一點就是:

  (1)建立適當?shù)淖鴺讼,用有序(qū)崝?shù)對例如表示曲線上任意一點的坐標;

  (2)寫出適合條件的點的集合

  ;

  (3)用坐標表示條件,列出方程;

  (4)化方程為最簡形式;

  (5)證明以化簡后的方程的解為坐標的點都是曲線上的點.

  一般情況下,求解過程已表明曲線上的點的坐標都是方程的解;如果求解過程中的轉(zhuǎn)化都是等價的,那么逆推回去就說明以方程的解為坐標的點都是曲線上的點.所以,通常情況下證明可省略,不過特殊情況要說明.

  上述五個步驟可簡記為:建系設(shè)點;寫出集合;列方程;化簡;修正.

  下面再看一個問題:

  例3:已知一條曲線在軸的上方,它上面的每一點到點的距離減去它到軸的距離的差都是2,求這條曲線的方程.

  【動畫演示】用幾何畫板演示曲線生成的過程和形狀,在運動變化的過程中尋找關(guān)系.

  解:設(shè)點是曲線上任意一點,軸,垂足是(如圖2),那么點屬于集合

  由距離公式,點適合的條件可表示為

  ①

  將①式移項后再兩邊平方,得

  化簡得

  由題意,曲線在軸的上方,所以,雖然原點的坐標(0,0)是這個方程的解,但不屬于已知曲線,所以曲線的方程應(yīng)為,它是關(guān)于軸對稱的拋物線,但不包括拋物線的頂點,如圖2中所示.

  【練習鞏固】

  題目:在正三角形內(nèi)有一動點,已知到三個頂點的距離分別為、 、,且有,求點軌跡方程.

  分析、略解:首先應(yīng)建立坐標系,以正三角形一邊所在的直線為一個坐標軸,這條邊的垂直平分線為另一個軸,建立直角坐標系比較簡單,如圖3所示.設(shè)、的坐標為、,則的坐標為,的坐標為.

  根據(jù)條件,代入坐標可得

  化簡得

 、

  由于題目中要求點在三角形內(nèi),所以,在結(jié)合①式可進一步求出、的范圍,最后曲線方程可表示為

  【小結(jié)】師生共同總結(jié):

  (1)解析幾何研究研究問題的方法是什么?

  (2)如何求曲線的方程?

  (3)請對求解曲線方程的五個步驟進行評價.各步驟的作用,哪步重要,哪步應(yīng)注意什么?

  【作業(yè)】課本第72頁練習1,2,3;

教案高中數(shù)學模板7

  教學目標

  (1)正確理解排列的意義。能利用樹形圖寫出簡單問題的所有排列;

  (2)了解排列和排列數(shù)的意義,能根據(jù)具體的問題,寫出符合要求的排列;

 。3)掌握排列數(shù)公式,并能根據(jù)具體的問題,寫出符合要求的排列數(shù);

  (4)會分析與數(shù)字有關(guān)的排列問題,培養(yǎng)學生的抽象能力和邏輯思維能力;

 。5)通過對排列應(yīng)用問題的學習,讓學生通過對具體事例的觀察、歸納中找出規(guī)律,得出結(jié)論,以培養(yǎng)學生嚴謹?shù)膶W習態(tài)度。

  教學建議

  一、知識結(jié)構(gòu)

  二、重點難點分析

  本小節(jié)的重點是排列的定義、排列數(shù)及排列數(shù)的公式,并運用這個公式去解決有關(guān)排列數(shù)的應(yīng)用問題。難點是導出排列數(shù)的公式和解有關(guān)排列的應(yīng)用題。突破重點、難點的關(guān)鍵是對加法原理和乘法原理的掌握和運用,并將這兩個原理的基本思想方法貫穿在解決排列應(yīng)用問題當中。

  從n個不同元素中任取m(m≤n)個元素,按照一定的順序排成一列,稱為從n個不同元素中任取m個元素的一個排列。因此,兩個相同排列,當且僅當他們的元素完全相同,并且元素的排列順序也完全相同。排列數(shù)是指從n個不同元素中任取m(m≤n)個元素的所有不同排列的種數(shù),只要弄清相同排列、不同排列,才有可能計算相應(yīng)的排列數(shù)。排列與排列數(shù)是兩個概念,前者是具有m個元素的排列,后者是這種排列的不同種數(shù)。從集合的角度看,從n個元素的有限集中取出m個組成的有序集,相當于一個排列,而這種有序集的個數(shù),就是相應(yīng)的排列數(shù)。

  公式推導要注意緊扣乘法原理,借助框圖的直視解釋來講解。要重點分析好 的推導。

  排列的應(yīng)用題是本節(jié)教材的難點,通過本節(jié)例題的分析,應(yīng)注意培養(yǎng)學生解決應(yīng)用問題的能力。

  在分析應(yīng)用題的解法時,教材上先畫出框圖,然后分析逐次填入時的.種數(shù),這樣解釋比較直觀,教學上要充分利用,要求學生作題時也應(yīng)盡量采用。

  在教學排列應(yīng)用題時,開始應(yīng)要求學生寫解法要有簡要的文字說明,防止單純的只寫一個排列數(shù),這樣可以培養(yǎng)學生的分析問題的能力,在基本掌握之后,可以逐漸地不作這方面的要求。

  三、教法建議

 、僭谥v解排列數(shù)的概念時,要注意區(qū)分“排列數(shù)”與“一個排列”這兩個概念。一個排列是指“從n個不同元素中,任取出m個元素,按照一定的順序擺成一排”,它不是一個數(shù),而是具體的一件事;排列數(shù)是指“從n個不同元素中取出m個元素的所有排列的個數(shù)”,它是一個數(shù)。例如,從3個元素a,b,c中每次取出2個元素,按照一定的順序排成一排,有如下幾種:

  ab,ac,ba,bc,ca,cb,

  其中每一種都叫一個排列,共有6種,而數(shù)字6就是排列數(shù),符號 表示排列數(shù)。

 、谂帕械亩x中包含兩個基本內(nèi)容,一是“取出元素”,二是“按一定順序排列”。

  從定義知,只有當元素完全相同,并且元素排列的順序也完全相同時,才是同一個排列,元素完全不同,或元素部分相同或元素完全相同而順序不同的排列,都不是同一排列。叫不同排列。

  在定義中“一定順序”就是說與位置有關(guān),在實際問題中,要由具體問題的性質(zhì)和條件來決定,這一點要特別注意,這也是與后面學習的組合的根本區(qū)別。

  在排列的定義中 ,如果 有的書上叫選排列,如果 ,此時叫全排列。

  要特別注意,不加特殊說明,本章不研究重復排列問題。

 、坳P(guān)于排列數(shù)公式的推導的教學。公式推導要注意緊扣乘法原理,借助框圖的直視解釋來講解。課本上用的是不完全歸納法,先推導 , ,…,再推廣到 ,這樣由特殊到一般,由具體到抽象的講法,學生是不難理解的。

  導出公式 后要分析這個公式的構(gòu)成特點,以便幫助學生正確地記憶公式,防止學生在“n”、“m”比較復雜的時候把公式寫錯。這個公式的特點可見課本第229頁的一段話:“其中,公式右邊第一個因數(shù)是n,后面每個因數(shù)都比它前面一個因數(shù)少1,最后一個因數(shù)是 ,共m個因數(shù)相乘。”這實際是講三個特點:第一個因數(shù)是什么?最后一個因數(shù)是什么?一共有多少個連續(xù)的自然數(shù)相乘。

  公式 是在引出全排列數(shù)公式 后,將排列數(shù)公式變形后得到的公式。對這個公式指出兩點:(1)在一般情況下,要計算具體的排列數(shù)的值,常用前一個公式,而要對含有字母的排列數(shù)的式子進行變形或作有關(guān)的論證,要用到這個公式,教材中第230頁例2就是用這個公式證明的問題;(2)為使這個公式在 時也能成立,規(guī)定 ,如同 時 一樣,是一種規(guī)定,因此,不能按階乘數(shù)的原意作解釋。

  ④建議應(yīng)充分利用樹形圖對問題進行分析,這樣比較直觀,便于理解。

 、輰W生在開始做排列應(yīng)用題的作業(yè)時,應(yīng)要求他們寫出解法的簡要說明,而不能只列出算式、得出答數(shù),這樣有利于學生得更加扎實。隨著學生解題熟練程度的提高,可以逐步降低這種要求。

教案高中數(shù)學模板8

  一、教學目標

  知識與技能:

  理解任意角的概念(包括正角、負角、零角)與區(qū)間角的概念。

  過程與方法:

  會建立直角坐標系討論任意角,能判斷象限角,會書寫終邊相同角的集合;掌握區(qū)間角的集合的書寫。

  情感態(tài)度與價值觀:

  1、提高學生的推理能力;

  2、培養(yǎng)學生應(yīng)用意識。

  二、教學重點、難點:

  教學重點:

  任意角概念的理解;區(qū)間角的集合的書寫。

  教學難點:

  終邊相同角的集合的`表示;區(qū)間角的集合的書寫。

  三、教學過程

  (一)導入新課

  1、回顧角的定義

 、俳堑牡谝环N定義是有公共端點的兩條射線組成的圖形叫做角。

 、诮堑牡诙N定義是角可以看成平面內(nèi)一條射線繞著端點從一個位置旋轉(zhuǎn)到另一個位置所形成的圖形。

  (二)教學新課

  1、角的有關(guān)概念:

 、俳堑亩x:

  角可以看成平面內(nèi)一條射線繞著端點從一個位置旋轉(zhuǎn)到另一個位置所形成的圖形。

  ②角的名稱:

  注意:

 、旁诓灰鸹煜那闆r下,“角α ”或“∠α ”可以簡化成“α ”;

  ⑵零角的終邊與始邊重合,如果α是零角α =0°;

 、墙堑母拍罱(jīng)過推廣后,已包括正角、負角和零角。

  ⑤練習:請說出角α、β、γ各是多少度?

  2、象限角的概念:

  ①定義:若將角頂點與原點重合,角的始邊與x軸的非負半軸重合,那么角的終邊(端點除外)在第幾象限,我們就說這個角是第幾象限角。

  例1、如圖⑴⑵中的角分別屬于第幾象限角?

教案高中數(shù)學模板9

  一、教學內(nèi)容分析

  向量作為工具在數(shù)學、物理以及實際生活中都有著廣泛的應(yīng)用。

  本小節(jié)的重點是結(jié)合向量知識證明數(shù)學中直線的平行、垂直問題,以及不等式、三角公式的證明、物理學中的應(yīng)用。

  二、教學目標設(shè)計

  1、通過利用向量知識解決不等式、三角及物理問題,感悟向量作為一種工具有著廣泛的應(yīng)用,體會從不同角度去看待一些數(shù)學問題,使一些數(shù)學知識有機聯(lián)系,拓寬解決問題的思路。

  2、了解構(gòu)造法在解題中的運用。

  三、教學重點及難點

  重點:平面向量知識在各個領(lǐng)域中應(yīng)用。

  難點:向量的構(gòu)造。

  四、教學流程設(shè)計

  五、教學過程設(shè)計

  一、復習與回顧

  1、提問:下列哪些量是向量?

 。1)力 (2)功 (3)位移 (4)力矩

  2、上述四個量中,(1)(3)(4)是向量,而(2)不是,那它是什么?

  [說明]復習數(shù)量積的有關(guān)知識。

  二、學習新課

  例1(書中例5)

  向量作為一種工具,不僅在物理學科中有廣泛的應(yīng)用,同時它在數(shù)學學科中也有許多妙用!請看

  例2(書中例3)

  證法(一)原不等式等價于,由基本不等式知(1)式成立,故原不等式成立。

  證法(二)向量法

  [說明]本例關(guān)鍵引導學生觀察不等式結(jié)構(gòu)特點,構(gòu)造向量,并發(fā)現(xiàn)(等號成立的.充要條件是)

  例3(書中例4)

  [說明]本例的關(guān)鍵在于構(gòu)造單位圓,利用向量數(shù)量積的兩個公式得到證明。

  二、鞏固練習

  1、如圖,某人在靜水中游泳,速度為 km/h.

  (1)如果他徑直游向河對岸,水的流速為4 km/h,他實際沿什么方向前進?速度大小為多少?

  答案:沿北偏東方向前進,實際速度大小是8 km/h.

 。2) 他必須朝哪個方向游才能沿與水流垂直的方向前進?實際前進的速度大小為多少?

  答案:朝北偏西方向前進,實際速度大小為km/h.

  三、課堂小結(jié)

  1、向量在物理、數(shù)學中有著廣泛的應(yīng)用。

  2、要學會從不同的角度去看一個數(shù)學問題,是數(shù)學知識有機聯(lián)系。

  四、作業(yè)布置

  1、書面作業(yè):課本p73, 練習8.4 4

【教案高中數(shù)學】相關(guān)文章:

高中數(shù)學優(yōu)秀教案10-12

高中數(shù)學教案12-29

高中數(shù)學函數(shù)教案07-17

高中數(shù)學教案07-11

高中數(shù)學 數(shù)列教案01-03

高中數(shù)學試講教案09-28

高中數(shù)學教案07-20

高中數(shù)學備課教案模板11-26

高中數(shù)學教案模板11-18