男人天堂日韩,中文字幕18页,天天伊人网,成人性生交大片免费视频

數(shù)學(xué)函數(shù)的教案

時間:2024-11-19 13:29:55 登綺 數(shù)學(xué)教案 我要投稿

數(shù)學(xué)函數(shù)的教案(精選16篇)

  在教學(xué)工作者開展教學(xué)活動前,就有可能用到教案,借助教案可以更好地組織教學(xué)活動。那要怎么寫好教案呢?下面是小編為大家收集的數(shù)學(xué)函數(shù)的教案,歡迎大家分享。

數(shù)學(xué)函數(shù)的教案(精選16篇)

  數(shù)學(xué)函數(shù)的教案 1

  教學(xué)設(shè)計(jì)思路

  由對現(xiàn)實(shí)問題的討論抽象出反比例函數(shù)的概念,通過對問題的解決進(jìn)一步明確:

  1.反比例函數(shù)的意義;

  2.反比例函數(shù)的`概念;

  3.反比例函數(shù)的一般形式。

  教學(xué)目標(biāo)

  知識與技能

  1.從現(xiàn)實(shí)情境和已有的知識、經(jīng)驗(yàn)出發(fā),討論兩個變量之間的相依關(guān)系,加深對函數(shù)概念的理解。

  2.經(jīng)歷抽象反比例函數(shù)概念的過程,領(lǐng)會反比例函數(shù)的意義,表述反比例函數(shù)的概念。

  過程與方法

  1.經(jīng)歷對兩個變量之間相依關(guān)系的討論,培養(yǎng)辯證唯物主義觀點(diǎn)。

  2.經(jīng)歷抽象反比例函數(shù)概念的過程,發(fā)展抽象思維能力,提高數(shù)學(xué)化意識。

  情感態(tài)度與價值觀

  1.認(rèn)識到數(shù)學(xué)知識是有聯(lián)系的,逐步感受數(shù)學(xué)內(nèi)容的系統(tǒng)性;

  2.通過分組討論,培養(yǎng)合作交流意識和探索精神。

  教學(xué)重點(diǎn)和難點(diǎn)

  理解和領(lǐng)會反比例函數(shù)的概念。

  教學(xué)難點(diǎn)

  領(lǐng)悟反比例函數(shù)的概念。

  教學(xué)方法

  啟發(fā)引導(dǎo)、分組討論

  課時安排

  1課時

  教學(xué)媒體

  課件

  教學(xué)過程設(shè)計(jì)

  復(fù)習(xí)引入

  1.什么叫一次函數(shù)?一次函數(shù)的一般形式是怎樣的?什么叫正比例函數(shù)?它與算術(shù)中的正比例有怎樣的關(guān)系?

  2.在上一學(xué)段,我們研究了現(xiàn)實(shí)生活中成反比例的兩個量

  數(shù)學(xué)函數(shù)的教案 2

  一、說課內(nèi)容:

  蘇教版九年級數(shù)學(xué)下冊第六章第一節(jié)的二次函數(shù)的概念及相關(guān)習(xí)題

  二、教材分析:

  1、教材的地位和作用

  這節(jié)課是在學(xué)生已經(jīng)學(xué)習(xí)了一次函數(shù)、正比例函數(shù)、反比例函數(shù)的基礎(chǔ)上,來學(xué)習(xí)二次函數(shù)的概念。二次函數(shù)是初中階段研究的最后一個具體的函數(shù),也是最重要的,在歷年來的中考題中占有較大比例。同時,二次函數(shù)和以前學(xué)過的一元二次方程、一元二次不等式有著密切的聯(lián)系。進(jìn)一步學(xué)習(xí)二次函數(shù)將為它們的解法提供新的方法和途徑,并使學(xué)生更為深刻的理解“數(shù)形結(jié)合”的重要思想。而本節(jié)課的二次函數(shù)的概念是學(xué)習(xí)二次函數(shù)的基礎(chǔ),是為后來學(xué)習(xí)二次函數(shù)的圖象做鋪墊。所以這節(jié)課在整個教材中具有承上啟下的重要作用。

  2、教學(xué)目標(biāo)和要求:

  (1)知識與技能:使學(xué)生理解二次函數(shù)的概念,掌握根據(jù)實(shí)際問題列出二次函數(shù)關(guān)系式的方法,并了解如何根據(jù)實(shí)際問題確定自變量的取值范圍。

  (2)過程與方法:復(fù)習(xí)舊知,通過實(shí)際問題的引入,經(jīng)歷二次函數(shù)概念的探索過程,提高學(xué)生解決問題的能力。

  (3)情感、態(tài)度與價值觀:通過觀察、操作、交流歸納等數(shù)學(xué)活動加深對二次函數(shù)概念的理解,發(fā)展學(xué)生的數(shù)學(xué)思維,增強(qiáng)學(xué)好數(shù)學(xué)的愿望與信心。

  3、教學(xué)重點(diǎn):對二次函數(shù)概念的理解。

  4、教學(xué)難點(diǎn):由實(shí)際問題確定函數(shù)解析式和確定自變量的取值范圍。

  三、教法學(xué)法設(shè)計(jì):

  1、從創(chuàng)設(shè)情境入手,通過知識再現(xiàn),孕伏教學(xué)過程

  2、從學(xué)生活動出發(fā),通過以舊引新,順勢教學(xué)過程

  3、利用探索、研究手段,通過思維深入,領(lǐng)悟教學(xué)過程

  四、教學(xué)過程:

  (一)復(fù)習(xí)提問

  1.什么叫函數(shù)?我們之前學(xué)過了那些函數(shù)?

  (一次函數(shù),正比例函數(shù),反比例函數(shù))

  2.它們的形式是怎樣的?

  (y=kx+b,k≠0;y=kx ,k≠0;y= , k≠0)

  3.一次函數(shù)(y=kx+b)的自變量是什么?函數(shù)是什么?常量是什么?為什么要有k≠0的條件? k值對函數(shù)性質(zhì)有什么影響?

  【設(shè)計(jì)意圖】復(fù)習(xí)這些問題是為了幫助學(xué)生弄清自變量、函數(shù)、常量等概念,加深對函數(shù)定義的理解.強(qiáng)調(diào)k≠0的條件,以備與二次函數(shù)中的a進(jìn)行比較.

  (二)引入新課

  函數(shù)是研究兩個變量在某變化過程中的相互關(guān)系,我們已學(xué)過正比例函數(shù),反比例函數(shù)和一次函數(shù)。看下面三個例子中兩個變量之間存在怎樣的關(guān)系。(電腦演示)

  例1、(1)圓的半徑是r(cm)時,面積s (cm)與半徑之間的關(guān)系是什么?

  解:s=πr(r>0)

  例2、用周長為20m的籬笆圍成矩形場地,場地面積y(m)與矩形一邊長x(m)之間的關(guān)系是什么?

  解: y=x(20/2-x)=x(10-x)=-x+10x (0

  例3、設(shè)人民幣一年定期儲蓄的年利率是x,一年到期后,銀行將本金和利息自動按一年定期儲蓄轉(zhuǎn)存。如果存款額是100元,那么請問兩年后的本息和y(元)與x之間的關(guān)系是什么(不考慮利息稅)?

  解: y=100(1+x)

  =100(x+2x+1)

  = 100x+200x+100(0

  教師提問:以上三個例子所列出的函數(shù)與一次函數(shù)有何相同點(diǎn)與不同點(diǎn)?

  【設(shè)計(jì)意圖】通過具體事例,讓學(xué)生列出關(guān)系式,啟發(fā)學(xué)生觀察,思考,歸納出二次函數(shù)與一次函數(shù)的聯(lián)系: (1)函數(shù)解析式均為整式(這表明這種函數(shù)與一次函數(shù)有共同的特征)。(2)自變量的最高次數(shù)是2(這與一次函數(shù)不同)。

  (三)講解新課

  以上函數(shù)不同于我們所學(xué)過的一次函數(shù),正比例函數(shù),反比例函數(shù),我們就把這種函數(shù)稱為二次函數(shù)。

  二次函數(shù)的定義:形如y=ax2+bx+c (a≠0,a, b, c為常數(shù)) 的函數(shù)叫做二次函數(shù)。

  鞏固對二次函數(shù)概念的理解:

  1、強(qiáng)調(diào)“形如”,即由形來定義函數(shù)名稱。二次函數(shù)即y 是關(guān)于x的二次多項(xiàng)式(關(guān)于的x代數(shù)式一定要是整式)。

  2、在 y=ax2+bx+c 中自變量是x ,它的取值范圍是一切實(shí)數(shù)。但在實(shí)際問題中,自變量的取值范圍是使實(shí)際問題有意義的值。(如例1中要求r>0)

  3、為什么二次函數(shù)定義中要求a≠0 ?

  (若a=0,ax2+bx+c就不是關(guān)于x的二次多項(xiàng)式了)

  4、在例3中,二次函數(shù)y=100x2+200x+100中, a=100, b=200, c=100.

  5、b和c是否可以為零?

  由例1可知,b和c均可為零.

  若b=0,則y=ax2+c;

  若c=0,則y=ax2+bx;

  若b=c=0,則y=ax2.

  注明:以上三種形式都是二次函數(shù)的.特殊形式,而y=ax2+bx+c是二次函數(shù)的一般形式.

  【設(shè)計(jì)意圖】這里強(qiáng)調(diào)對二次函數(shù)概念的理解,有助于學(xué)生更好地理解,掌握其特征,為接下來的判斷二次函數(shù)做好鋪墊。

  判斷:下列函數(shù)中哪些是二次函數(shù)?哪些不是二次函數(shù)?若是二次函數(shù),指出a、b、c.

  (1)y=3(x-1)+1 (2)

  (3)s=3-2t (4)y=(x+3)- x

  (5) s=10πr (6) y=2+2x

  (8)y=x4+2x2+1(可指出y是關(guān)于x2的二次函數(shù))

  【設(shè)計(jì)意圖】理論學(xué)習(xí)完二次函數(shù)的概念后,讓學(xué)生在實(shí)踐中感悟什么樣的函數(shù)是二次函數(shù),將理論知識應(yīng)用到實(shí)踐操作中。

  (四)鞏固練習(xí)

  1.已知一個直角三角形的兩條直角邊長的和是10cm。

  (1)當(dāng)它的一條直角邊的長為4.5cm時,求這個直角三角形的面積;

  (2)設(shè)這個直角三角形的面積為Scm2,其中一條直角邊為xcm,求S關(guān)

  于x的函數(shù)關(guān)系式。

  【設(shè)計(jì)意圖】此題由具體數(shù)據(jù)逐步過渡到用字母表示關(guān)系式,讓學(xué)生經(jīng)歷由具體到抽象的過程,從而降低學(xué)生學(xué)習(xí)的難度。

  2.已知正方體的棱長為xcm,它的表面積為Scm2,體積為Vcm3。

  (1)分別寫出S與x,V與x之間的函數(shù)關(guān)系式子;

  (2)這兩個函數(shù)中,那個是x的二次函數(shù)?

  【設(shè)計(jì)意圖】簡單的實(shí)際問題,學(xué)生會很容易列出函數(shù)關(guān)系式,也很容易分辨出哪個是二次函數(shù)。通過簡單題目的練習(xí),讓學(xué)生體驗(yàn)到成功的歡愉,激發(fā)他們學(xué)習(xí)數(shù)學(xué)的興趣,建立學(xué)好數(shù)學(xué)的信心。

  3.設(shè)圓柱的高為h(cm)是常量,底面半徑為rcm,底面周長為Ccm,圓柱的體積為Vcm3

  (1)分別寫出C關(guān)于r;V關(guān)于r的函數(shù)關(guān)系式;

  (2)兩個函數(shù)中,都是二次函數(shù)嗎?

  【設(shè)計(jì)意圖】此題要求學(xué)生熟記圓柱體積和底面周長公式,在這兒相當(dāng)于做了一次復(fù)習(xí),并與今天所學(xué)知識聯(lián)系起來。

  4. 籬笆墻長30m,靠墻圍成一個矩形花壇,寫出花壇面積y(m2)與長x之間的函數(shù)關(guān)系式,并指出自變量的取值范圍.

  【設(shè)計(jì)意圖】此題較前面幾題稍微復(fù)雜些,旨在讓學(xué)生能夠開動腦筋,積極思考,讓學(xué)生能夠“跳一跳,夠得到”。

  (五)拓展延伸

  1. 已知二次函數(shù)y=ax2+bx+c,當(dāng) x=0時,y=0;x=1時,y=2;x= -1時,y=1.求a、b、c,并寫出函數(shù)解析式.

  【設(shè)計(jì)意圖】在此稍微滲透簡單的用待定系數(shù)法求二次函數(shù)解析式的問題,為下節(jié)課的教學(xué)做個鋪墊。

  2.確定下列函數(shù)中k的值

  (1)如果函數(shù)y= xk^2-3k+2 +kx+1是二次函數(shù),則k的值一定是______

  (2)如果函數(shù)y=(k-3)xk^2-3k+2+kx+1是二次函數(shù),則k的值一定是______

  【設(shè)計(jì)意圖】此題著重復(fù)習(xí)二次函數(shù)的特征:自變量的最高次數(shù)為2次,且二次項(xiàng)系數(shù)不為0.

  (六) 小結(jié)思考:

  本節(jié)課你有哪些收獲?還有什么不清楚的地方?

  【設(shè)計(jì)意圖】讓學(xué)生來談本節(jié)課的收獲,培養(yǎng)學(xué)生自我檢查、自我小結(jié)的良好習(xí)慣,將知識進(jìn)行整理并系統(tǒng)化。而且由此可了解到學(xué)生還有哪些不清楚的地方,以便在今后的教學(xué)中補(bǔ)充。

  (七) 作業(yè)布置:

  必做題:

  1. 正方形的邊長為4,如果邊長增加x,則面積增加y,求y關(guān)于x 的函數(shù)關(guān)系式。這個函數(shù)是二次函數(shù)嗎?

  2. 在長20cm,寬15cm的矩形木板的四角上各鋸掉一個邊長為xcm的正方形,寫出余下木板的面積y(cm2)與正方形邊長x(cm)之間的函數(shù)關(guān)系,并注明自變量的取值范圍。

  選做題:

  1.已知函數(shù) 是二次函數(shù),求m的值。

  2.試在平面直角坐標(biāo)系畫出二次函數(shù)y=x2和y=-x2圖象

  【設(shè)計(jì)意圖】作業(yè)中分為必做題與選做題,實(shí)施分層教學(xué),體現(xiàn)新課標(biāo)人人學(xué)有價值的數(shù)學(xué),不同的人得到不同的發(fā)展。另外補(bǔ)充第4題,旨在激發(fā)學(xué)生繼續(xù)學(xué)習(xí)二次函數(shù)圖象的興趣。

  五、教學(xué)設(shè)計(jì)思考

  以實(shí)現(xiàn)教學(xué)目標(biāo)為前提

  以現(xiàn)代教育理論為依據(jù)

  以現(xiàn)代信息技術(shù)為手段

  貫穿一個原則——以學(xué)生為主體的原則

  突出一個特色——充分鼓勵表揚(yáng)的特色

  滲透一個意識——應(yīng)用數(shù)學(xué)的意識

  數(shù)學(xué)函數(shù)的教案 3

  一、內(nèi)容與解析

  (一)內(nèi)容:函數(shù)單調(diào)性的應(yīng)用

 。ǘ┙馕觯罕竟(jié)課要學(xué)的內(nèi)容指的是會判定函數(shù)在某個區(qū)間上的單調(diào)性、會確定函數(shù)的單調(diào)區(qū)間、能證明函數(shù)的單調(diào)性,其關(guān)鍵是利用形式化的定義處理有關(guān)的單調(diào)性問題,理解它關(guān)鍵就是要學(xué)會轉(zhuǎn)換式子 。學(xué)生已經(jīng)掌握了函數(shù)單調(diào)性的定義、代數(shù)式的變換、函數(shù)的概念等知識,本節(jié)課的內(nèi)容就是在此基礎(chǔ)上的應(yīng)用。教學(xué)的重點(diǎn)是應(yīng)用定義證明函數(shù)在某個區(qū)間上的單調(diào)性,解決重點(diǎn)的關(guān)鍵是嚴(yán)格按過程進(jìn)行證明。

  二、教學(xué)目標(biāo)及解析

  (一)教學(xué)目標(biāo):

  掌握用定義證明函數(shù)單調(diào)性的.步驟,會求函數(shù)的單調(diào)區(qū)間,提高應(yīng)用知識解決問題的能力。

 。ǘ┙馕觯

  會證明就是指會利用三步曲證明函數(shù)的單調(diào)性;會求函數(shù)的單調(diào)區(qū)間就是指會利用函數(shù)的圖象寫出單調(diào)增區(qū)間或減區(qū)間;應(yīng)用知識解決問題就是指能利用函數(shù)單調(diào)性的意義去求參變量的取值情況或轉(zhuǎn)化成熟悉的問題。

  三、問題診斷分析

  在本節(jié)課的教學(xué)中,學(xué)生可能遇到的問題是如何才能準(zhǔn)確確定 的符號,產(chǎn)生這一問題的原因是學(xué)生對代數(shù)式的恒等變換不熟練。要解決這一問題,就是要根據(jù)學(xué)生的實(shí)際情況進(jìn)行知識補(bǔ)習(xí),特別是因式分解、二次根式中的分母有理化的補(bǔ)習(xí)。

  四、教學(xué)支持條件分析

  在本節(jié)課()的教學(xué)中,準(zhǔn)備使用(),因?yàn)槭褂茫ǎ欣冢ǎ?/p>

  數(shù)學(xué)函數(shù)的教案 4

  一、教材分析

  本節(jié)課選自《普通高中課程標(biāo)準(zhǔn)數(shù)學(xué)教科書-必修1》(人教A版)《1.2.1 函數(shù)的概念》共3課時,本節(jié)課是第1課時。

  托馬斯說:“函數(shù)概念是近代數(shù)學(xué)思想之花”。 生活中的許多現(xiàn)象如物體運(yùn)動,氣溫升降,投資理財?shù)榷伎梢杂煤瘮?shù)的模型來刻畫,是我們更好地了解自己、認(rèn)識世界和預(yù)測未來的重要工具。

  函數(shù)是數(shù)學(xué)的重要的基礎(chǔ)概念之一,是高等數(shù)學(xué)重多學(xué)科的基礎(chǔ)概念和重要的研究對象。同時函數(shù)也是物理學(xué)等其他學(xué)科的重要基礎(chǔ)知識和研究工具,教學(xué)內(nèi)容中蘊(yùn)涵著極其豐富的辯證思想。函數(shù)的的重要性正如恩格斯所說:“數(shù)學(xué)中的轉(zhuǎn)折點(diǎn)是笛卡爾的變數(shù),有了變數(shù),運(yùn)動就進(jìn)入了數(shù)學(xué);有了變數(shù),辯證法就進(jìn)入了數(shù)學(xué)”。

  二、學(xué)生學(xué)習(xí)情況分析

  函數(shù)是中學(xué)數(shù)學(xué)的主體內(nèi)容,學(xué)生在中學(xué)階段對函數(shù)的認(rèn)識分三個階段:(一)初中從運(yùn)動變化的角度來刻畫函數(shù),初步認(rèn)識正比例、反比例、一次和二次函數(shù);(二)高中用集合與對應(yīng)的觀點(diǎn)來刻畫函數(shù),研究函數(shù)的性質(zhì),學(xué)習(xí)典型的對、指、冪和三解函數(shù);(三)高中用導(dǎo)數(shù)工具研究函數(shù)的單調(diào)性和最值。

  1.有利條件

  現(xiàn)代教育心理學(xué)的研究認(rèn)為,有效的概念教學(xué)是建立在學(xué)生已有知識結(jié)構(gòu)的基礎(chǔ)上的,因此教師在設(shè)計(jì)教學(xué)的過程中必須注意在學(xué)生已有知識結(jié)構(gòu)中尋找新概念的固著點(diǎn),引導(dǎo)學(xué)生通過同化或順應(yīng),掌握新概念,進(jìn)而完善知識結(jié)構(gòu)。

  初中用運(yùn)動變化的觀點(diǎn)對函數(shù)進(jìn)行定義的,它反映了歷史上人們對它的一種認(rèn)識,而且這個定義較為直觀,易于接受,因此按照由淺入深、力求符合學(xué)生認(rèn)知規(guī)律的`內(nèi)容編排原則,函數(shù)概念在初中介紹到這個程度是合適的。也為我們用集合與對應(yīng)的觀點(diǎn)研究函數(shù)打下了一定的基礎(chǔ)。

  2.不利條件

  用集合與對應(yīng)的觀點(diǎn)來定義函數(shù),形式和內(nèi)容上都是比較抽象的,這對學(xué)生的理解能力是一個挑戰(zhàn),是本節(jié)課教學(xué)的一個不利條件。

  三、教學(xué)目標(biāo)分析

  課標(biāo)要求:通過豐富實(shí)例,進(jìn)一步體會函數(shù)是描述變量之間的依賴關(guān)系的重要數(shù)學(xué)模型,在此基礎(chǔ)上學(xué)習(xí)用集合與對應(yīng)的語言來刻畫函數(shù),體會對應(yīng)關(guān)系在刻畫函數(shù)概念中的作用;了解構(gòu)成函數(shù)的要素,會求一些簡單函數(shù)的定義域和值域.

  1.知識與能力目標(biāo):

 、拍軓募吓c對應(yīng)的角度理解函數(shù)的概念,更要理解函數(shù)的本質(zhì)屬性;

  ⑵理解函數(shù)的三要素的含義及其相互關(guān)系;

  ⑶會求簡單函數(shù)的定義域和值域

  2.過程與方法目標(biāo):

 、磐ㄟ^豐富實(shí)例,使學(xué)生建立起函數(shù)概念的背景,體會函數(shù)是描述變量之間依賴關(guān)系的數(shù)學(xué)模型;

 、圃诤瘮(shù)實(shí)例中,通過對關(guān)鍵詞的強(qiáng)調(diào)和引導(dǎo)使學(xué)發(fā)現(xiàn)它們的共同特征,在此基礎(chǔ)上再用集合與對應(yīng)的語言來刻畫函數(shù),體會對應(yīng)關(guān)系在刻畫函數(shù)概念中的作用.

  3.情感、態(tài)度與價值觀目標(biāo):

  感受生活中的數(shù)學(xué),感悟事物之間聯(lián)系與變化的辯證唯物主義觀點(diǎn)。

  四、教學(xué)重點(diǎn)、難點(diǎn)分析

  1.教學(xué)重點(diǎn):對函數(shù)概念的理解,用集合與對應(yīng)的語言來刻畫函數(shù);

  重點(diǎn)依據(jù):初中是從變量的角度來定義函數(shù),高中是用集合與對應(yīng)的語言來刻畫函數(shù)。二者反映的本質(zhì)是一致的,即“函數(shù)是一種對應(yīng)關(guān)系”。 但是,初中定義并未完全揭示出函數(shù)概念的本質(zhì),對y?1這樣的函數(shù)用運(yùn)動變化的觀點(diǎn)也很難解釋。在以函數(shù)為重要內(nèi)容的高中階段,課本應(yīng)將函數(shù)定義為兩個數(shù)集之間的一種對應(yīng)關(guān)系,按照這種觀點(diǎn),使我們對函數(shù)概念有了更深一層的認(rèn)識,也很容易說明y?1這函數(shù)表達(dá)式。因此,分析兩種函數(shù)概念的關(guān)系,讓學(xué)生融會貫通地理解函數(shù)的概念應(yīng)為本節(jié)課的重點(diǎn)。

  突出重點(diǎn):重點(diǎn)的突出依賴于對函數(shù)概念本質(zhì)屬性的把握,使學(xué)生通過表面的語言描述抓住概念的精髓。

  2.教學(xué)難點(diǎn):第一:從實(shí)際問題中提煉出抽象的概念;第二:符號“y=f(x)”的含義的理解.

  難點(diǎn)依據(jù):數(shù)學(xué)語言的抽象概括難度較大,對符號y=f(x)的理解會受到以前知識的負(fù)遷移。

  突破難點(diǎn):難點(diǎn)的突破要依托豐富的實(shí)例,從集合與對應(yīng)的角度恰當(dāng)?shù)匾龑?dǎo),而對抽象符號的理解則要結(jié)合函數(shù)的三要素和小例子進(jìn)行說明。

  五、教法與學(xué)法分析

  1.教法分析

  本節(jié)課我主要采用教師導(dǎo)學(xué)法、知識遷移法和知識對比法,從學(xué)生熟悉的豐富實(shí)例出發(fā),關(guān)注學(xué)生的原有的知識基礎(chǔ),注重概念的形成過程,從初中的函數(shù)概念自然過度到函數(shù)的近代定我。

  2.學(xué)法分析

  在教學(xué)過程中我注意在教學(xué)中引導(dǎo)學(xué)生用模型法分析函數(shù)問題、通過自主學(xué)習(xí)法總結(jié)“區(qū)間”的知識。

  數(shù)學(xué)函數(shù)的教案 5

  第一教時

  教材:

  角的概念的推廣

  目的:

  要求學(xué)生掌握用“旋轉(zhuǎn)”定義角的概念,并進(jìn)而理解“正角”“負(fù)角”“象限角”“終邊相同的角”的含義。

  過程:

  一、提出課題:“三角函數(shù)”

  回憶初中學(xué)過的“銳角三角函數(shù)”——它是利用直角三角形中兩邊的比值來定義的。相對于現(xiàn)在,我們研究的三角函數(shù)是“任意角的三角函數(shù)”,它對我們今后的學(xué)習(xí)和研究都起著十分重要的作用,并且在各門學(xué)科技術(shù)中都有廣泛應(yīng)用。

  二、角的概念的`推廣

  1.回憶:初中是任何定義角的?(從一個點(diǎn)出發(fā)引出的兩條射線構(gòu)成的幾何圖形)這種概念的優(yōu)點(diǎn)是形象、直觀、容易理解,但它的弊端在于“狹隘”

  2.講解:“旋轉(zhuǎn)”形成角(P4)

  突出“旋轉(zhuǎn)” 注意:“頂點(diǎn)”“始邊”“終邊”

  “始邊”往往合于軸正半軸

  3.“正角”與“負(fù)角”——這是由旋轉(zhuǎn)的方向所決定的。

  記法:角 或 可以簡記成

  4.由于用“旋轉(zhuǎn)”定義角之后,角的范圍大大地擴(kuò)大了。

  1° 角有正負(fù)之分 如:a=210° b=-150° g=-660°

  2° 角可以任意大

  實(shí)例:體操動作:旋轉(zhuǎn)2周(360°×2=720°) 3周(360°×3=1080°)

  3° 還有零角 一條射線,沒有旋轉(zhuǎn)

  三、關(guān)于“象限角”

  為了研究方便,我們往往在平面直角坐標(biāo)系中來討論角

  角的頂點(diǎn)合于坐標(biāo)原點(diǎn),角的始邊合于 軸的正半軸,這樣一來,角的終邊落在第幾象限,我們就說這個角是第幾象限的角(角的終邊落在坐標(biāo)軸上,則此角不屬于任何一個象限)

  例如:30° 390° -330°是第Ⅰ象限角 300° -60°是第Ⅳ象限角

  585° 1180°是第Ⅲ象限角 -20xx°是第Ⅱ象限角等

  四、關(guān)于終邊相同的角

  1.觀察:390°,-330°角,它們的終邊都與30°角的終邊相同

  2.終邊相同的角都可以表示成一個0°到360°的角與 個周角的和

  390°=30°+360°

  -330°=30°-360° 30°=30°+0×360°

  1470°=30°+4×360°

  -1770°=30°-5×360°

  3.所有與a終邊相同的角連同a在內(nèi)可以構(gòu)成一個集合

  即:任何一個與角a終邊相同的角,都可以表示成角a與整數(shù)個周角的和

  4.例一 (P5 略)

  五、小結(jié): 1° 角的概念的推廣

  用“旋轉(zhuǎn)”定義角 角的范圍的擴(kuò)大

  2°“象限角”與“終邊相同的角”

  六、作業(yè): P7 練習(xí)1、2、3、4

  習(xí)題1.4 1

  數(shù)學(xué)函數(shù)的教案 6

  教學(xué)目標(biāo):

  (1)能夠根據(jù)實(shí)際問題,熟練地列出二次函數(shù)關(guān)系式,并求出函數(shù)的自變量的取值范圍。

  (2)注重學(xué)生參與,聯(lián)系實(shí)際,豐富學(xué)生的感性認(rèn)識,培養(yǎng)學(xué)生的良好的學(xué)習(xí)習(xí)慣

  重點(diǎn)難點(diǎn):

  能夠根據(jù)實(shí)際問題,熟練地列出二次函數(shù)關(guān)系式,并求出函數(shù)的自變量的取值范圍。

  教學(xué)過程:

  一、試一試

  1.設(shè)矩形花圃的垂直于墻的一邊AB的長為xm,先取x的一些值,算出矩形的另一邊BC的長,進(jìn)而得出矩形的面積ym2.試將計(jì)算結(jié)果填寫在下表的空格中,

  AB長x(m)123456789

  BC長(m) 12

  面積y(m2) 48

  2.x的值是否可以任意取?有限定范圍嗎?

  3.我們發(fā)現(xiàn),當(dāng)AB的長(x)確定后,矩形的面積(y)也隨之確定, y是x的函數(shù),試寫出這個函數(shù)的關(guān)系式,

  對于1.,可讓學(xué)生根據(jù)表中給出的AB的長,填出相應(yīng)的BC的長和面積,然后引導(dǎo)學(xué)生觀察表格中數(shù)據(jù)的變化情況,提出問題:

  (1)從所填表格中,你能發(fā)現(xiàn)什么?

  (2)對前面提出的問題的解答能作出什么猜想?讓學(xué)生思考、交流、發(fā)表意見,達(dá)成共識:當(dāng)AB的長為5cm,BC的長為10m時,圍成的矩形面積最大;最大面積為50m2。

  對于2,可讓學(xué)生分組討論、交流,然后各組派代表發(fā)表意見。形成共識,x的值不可以任意取,有限定范圍,其范圍是0

  對于3,教師可提出問題,(1)當(dāng)AB=xm時,BC長等于多少m?(2)面積y等于多少?并指出y=x(20-2x)(0

  二、提出問題

  某商店將每件進(jìn)價為8元的某種商品按每件10元出售,一天可銷出約100件.該店想通過降低售價、增加銷售量的辦法來提高利潤,經(jīng)過市場調(diào)查,發(fā)現(xiàn)這種商品單價每降低0.1元,其銷售量可增加10件。將這種商品的售價降低多少時,能使銷售利潤最大?

  在這個問題中,可提出如下問題供學(xué)生思考并回答:

  1.商品的利潤與售價、進(jìn)價以及銷售量之間有什么關(guān)系?

  [利潤=(售價-進(jìn)價)×銷售量]

  2.如果不降低售價,該商品每件利潤是多少元?一天總的利潤是多少元?

  [10-8=2(元),(10-8)×100=200(元)]

  3.若每件商品降價x元,則每件商品的利潤是多少元?一天可銷售約多少件商品?

  [(10-8-x);(100+100x)]

  4.x的值是否可以任意取?如果不能任意取,請求出它的.范圍,

  [x的值不能任意取,其范圍是0≤x≤2]

  5.若設(shè)該商品每天的利潤為y元,求y與x的函數(shù)關(guān)系式。

  [y=(10-8-x) (100+100x)(0≤x≤2)]

  將函數(shù)關(guān)系式y(tǒng)=x(20-2x)(0

  y=-2x2+20x (0

  將函數(shù)關(guān)系式y(tǒng)=(10-8-x)(100+100x)(0≤x≤2)化為:

  y=-100x2+100x+20D (0≤x≤2)……………………(2)

  三、觀察;概括

  1.教師引導(dǎo)學(xué)生觀察函數(shù)關(guān)系式(1)和(2),提出以下問題讓學(xué)生思考回答;

  (1)函數(shù)關(guān)系式(1)和(2)的自變量各有幾個?

  (各有1個)

  (2)多項(xiàng)式-2x2+20和-100x2+100x+200分別是幾次多項(xiàng)式?

  (分別是二次多項(xiàng)式)

  (3)函數(shù)關(guān)系式(1)和(2)有什么共同特點(diǎn)?

  (都是用自變量的二次多項(xiàng)式來表示的)

  (4)本章導(dǎo)圖中的問題以及P1頁的問題2有什么共同特點(diǎn)?

  讓學(xué)生討論、交流,發(fā)表意見,歸結(jié)為:自變量x為何值時,函數(shù)y取得最大值。

  2.二次函數(shù)定義:形如y=ax2+bx+c (a、b、、c是常數(shù),a≠0)的函數(shù)叫做x的二次函數(shù),a叫做二次函數(shù)的系數(shù),b叫做一次項(xiàng)的系數(shù),c叫作常數(shù)項(xiàng).

  四、課堂練習(xí)

  1.(口答)下列函數(shù)中,哪些是二次函數(shù)?

  (1)y=5x+1 (2)y=4x2-1

  (3)y=2x3-3x2 (4)y=5x4-3x+1

  2.P3練習(xí)第1,2題。

  五、小結(jié)

  1.請敘述二次函數(shù)的定義

  2,許多實(shí)際問題可以轉(zhuǎn)化為二次函數(shù)來解決,請你聯(lián)系生活實(shí)際,編一道二次函數(shù)應(yīng)用題,并寫出函數(shù)關(guān)系式。

  六、作業(yè):略

  數(shù)學(xué)函數(shù)的教案 7

  【學(xué)習(xí)目標(biāo)】

  1、進(jìn)一步體會數(shù)形結(jié)合的思想,提高分析問題解決問題的能力;

  2、能借助正余弦函數(shù)的誘導(dǎo)公式推導(dǎo)出正切函數(shù)的誘導(dǎo)公式;

  3、掌握誘導(dǎo)公式在求值和化簡中的應(yīng)用.

  【學(xué)習(xí)重點(diǎn)】

  正切函數(shù)的誘導(dǎo)公式及應(yīng)用

  【學(xué)習(xí)難點(diǎn)】

  正切函數(shù)誘導(dǎo)公式的`推導(dǎo)

  【學(xué)習(xí)過程】

  一、預(yù)習(xí)自學(xué)

  1.觀察課本38頁圖1-46,當(dāng)- 414 < 414 < 414 時,角 414 與角2 414 的正切函數(shù)值有什么關(guān)系?

  我們可以歸納出以下公式:

  tan(2 414 )= tan(- 414 )= tan(2 414 )=

  tan( 414 = tan( 414 =

  2.我們可以利用誘導(dǎo)公式,將任意角的三角函數(shù)問題轉(zhuǎn)化為銳角三角函數(shù)的問題,參考下面的框圖,想想每次變換應(yīng)該運(yùn)用哪些公式。

  414

  給上述箭頭上填上相應(yīng)的文字

  二、合作探究

  探究1 試運(yùn)用 414 , 414 的正、余弦函數(shù)的誘導(dǎo)公式推證公式tan( 414 和tan 414 .

  探究2 若tan 414 ,借助三角函數(shù)定義求角 414 的正弦函數(shù)值和余弦函數(shù)值.

  探究3 求 414 的值.

  三、達(dá)標(biāo)檢測

  1下列各式成立的是( )

  A tan( 414 = -tan 414 B tan( 414 = tan 414

  C tan(- 414 )= -tan 414 D tan(2 414 )= tan 414

  2求下列三角函數(shù)數(shù)值

  (1)tan(- 414 (2) tan240 414 414 (3)tan(-1574 414 )

  3化簡求值

  tan675 414 + tan765 414 + tan(-300 414 ) + tan(-690 414 ) + tan1080 414

  四、課后延伸

  求值: 414

  數(shù)學(xué)函數(shù)的教案 8

  教學(xué)目標(biāo)

  1.知識與技能

  領(lǐng)會一次函數(shù)的概念,會從實(shí)際問題中建立一次函數(shù)的模型

  2.過程與方法

  經(jīng)歷探索一次函數(shù)的過程,感受一次函數(shù)的解析式的特征

  3.情感、態(tài)度與價值觀

  培養(yǎng)數(shù)形結(jié)合的數(shù)學(xué),體會一次函數(shù)在實(shí)際生活中的應(yīng)用價值

  重、難點(diǎn)與關(guān)鍵

  1.重點(diǎn):一次函數(shù)的概念.

  2.難點(diǎn):從實(shí)際生活中建立一次函數(shù)的模型.

  3.關(guān)鍵:把握好實(shí)際問題中的兩個變量之間的相等關(guān)系,建立模型

  教學(xué)方法

  采用“情境──探究”的方法,讓學(xué)生在實(shí)際問題中感悟一次函數(shù)的概念

  教學(xué)過程

  一、創(chuàng)設(shè)情境,揭示課題

  問題思索1:某登山隊(duì)大本營所在地的氣溫為5℃,海拔每升高1km,氣溫下降6℃,登山隊(duì)員由大本營向上登高xkm時,他們所在位置的氣溫是y℃,試用解析式表示y與x的關(guān)系.

  思路點(diǎn)撥y隨x變化的規(guī)律是,從大本營向上當(dāng)海拔加xkm時,氣溫從5℃減少6x℃,因此y與x的函數(shù)關(guān)系為y=5-6x(或y=-6x+5),當(dāng)?shù)巧疥?duì)員由大本營向上登高0.5km時,他們所在位置的氣溫就是x=0.5時函數(shù)y=-6x+5的值,即y=2(℃).

  學(xué)生活動合作探究,尋找解題途徑,踴躍發(fā)言,發(fā)表各自看法.

  問題思索2:下列問題中變量間的對應(yīng)關(guān)系可用怎樣的函數(shù)表示?這些函數(shù)有什么共同點(diǎn)?

 。1)有人發(fā)現(xiàn),在20~30℃時蟋蟀每分鳴叫次數(shù)C與溫度t(單位:℃)有關(guān),即C的值約是t的7倍與35的差;(C=7t-35)

 。2)一種計(jì)算成年人標(biāo)準(zhǔn)體重G(單位:千克)的方法是,以厘米為單位量出身高值h減常數(shù)105,所得差是G的值;(G=h-105)

 。3)某城市市內(nèi)電話的月收費(fèi)額y(單位:元)包括:月租費(fèi)22元,撥打電話x分的'計(jì)時費(fèi)按0.01元/分收;(y=0.01x+22)

 。4)把一個長10cm,寬5cm的長方形的長減少x,寬不變,長方形的面積y(單位:cm2)隨x的值而變化.(y=-5x+50)

  教師活動提出問題,引導(dǎo)學(xué)生思考.

  學(xué)生活動獨(dú)立思考,列出函數(shù)關(guān)系式,并進(jìn)行比較,得到這一類型函數(shù)的共同特征:這些函數(shù)的形式都是自變量x的k(常數(shù))倍與一個常數(shù)的和

  形成概念一般地,形如y=kx+b(k,b是常數(shù),k≠0)的函數(shù),叫做一次函數(shù),當(dāng)b=0時,y=kx+b即y=kx,所以說正比例函數(shù)是一種特殊的一次函數(shù)

  二、隨堂練習(xí),鞏固深化

  課本P11.4第練習(xí)1,2,3題.

  三、課堂,發(fā)展?jié)撃?/strong>

  1.y=kx+b(k,b是常數(shù),k≠0)是一次函數(shù).

  2.一次函數(shù)包含了正比例函數(shù),即正比例函數(shù)是一次函數(shù)在b=0時的特例

  四、布置作業(yè),專題突破

  選用課時作業(yè)設(shè)計(jì)

  板書設(shè)計(jì)

  14.2.2一次函數(shù)(1)

  1、一次函數(shù)的概念例:

  2、一次函數(shù)與正比例函數(shù)的關(guān)系練習(xí):

  數(shù)學(xué)函數(shù)的教案 9

  一、教材分析及處理

  函數(shù)是高中數(shù)學(xué)的重要內(nèi)容之一,函數(shù)的基礎(chǔ)知識在數(shù)學(xué)和其他許多學(xué)科中有著廣泛的應(yīng)用;函數(shù)與代數(shù)式、方程、不等式等內(nèi)容聯(lián)系非常密切;函數(shù)是近一步學(xué)習(xí)數(shù)學(xué)的重要基礎(chǔ)知識;函數(shù)的概念是運(yùn)動變化和對立統(tǒng)一等觀點(diǎn)在數(shù)學(xué)中的具體體現(xiàn);函數(shù)概念及其反映出的數(shù)學(xué)思想方法已廣泛滲透到數(shù)學(xué)的各個領(lǐng)域,《函數(shù)》教學(xué)設(shè)計(jì)。

  對函數(shù)概念本質(zhì)的理解,首先應(yīng)通過與初中定義的比較、與其他知識的聯(lián)系以及不斷地應(yīng)用等,初步理解用集合與對應(yīng)語言刻畫的函數(shù)概念.其次在后續(xù)的學(xué)習(xí)中通過基本初等函數(shù),引導(dǎo)學(xué)生以具體函數(shù)為依托、反復(fù)地、螺旋式上升地理解函數(shù)的本質(zhì)。

  教學(xué)重點(diǎn)是函數(shù)的概念,難點(diǎn)是對函數(shù)概念的本質(zhì)的理解。

  學(xué)生現(xiàn)狀

  學(xué)生在第一章的時候已經(jīng)學(xué)習(xí)了集合的概念,同時在初中時已學(xué)過一次函數(shù)、反比例函數(shù)和二次函數(shù),那么如何用集合知識來理解函數(shù)概念,結(jié)合原有的知識背景,活動經(jīng)驗(yàn)和理解走入今天的課堂,如何有效地激活學(xué)生的學(xué)習(xí)興趣,讓學(xué)生積極參與到學(xué)習(xí)活動中,達(dá)到理解知識、掌握方法、提高能力的目的,使學(xué)生獲得有益有效的學(xué)習(xí)體驗(yàn)和情感體驗(yàn),是在教學(xué)設(shè)計(jì)中應(yīng)思考的。

  二、教學(xué)三維目標(biāo)分析

  1、知識與技能(重點(diǎn)和難點(diǎn))

  (1)、通過實(shí)例讓學(xué)生能夠進(jìn)一步體會到函數(shù)是描述變量之間的依賴關(guān)系的重要數(shù)學(xué)模型。并且在此基礎(chǔ)上學(xué)習(xí)應(yīng)用集合與對應(yīng)的語言來刻畫函數(shù),體會對應(yīng)關(guān)系在刻畫函數(shù)概念中的作用。不但讓學(xué)生能完成本節(jié)知識的學(xué)習(xí),還能較好的復(fù)習(xí)前面內(nèi)容,前后銜接。

  (2)、了解構(gòu)成函數(shù)的三要素,缺一不可,會求簡單函數(shù)的定義域、值域、判斷兩個函數(shù)是否相等等。

  (3)、掌握定義域的表示法,如區(qū)間形式等。

  (4)、了解映射的概念。

  2、過程與方法

  函數(shù)的概念及其相關(guān)知識點(diǎn)較為抽象,難以理解,學(xué)習(xí)中應(yīng)注意以下問題:

  (1)、首先通過多媒體給出實(shí)例,在讓學(xué)生以小組的形式開展討論,運(yùn)用猜想、觀察、分析、歸納、類比、概括等方法,探索發(fā)現(xiàn)知識,找出不同點(diǎn)與相同點(diǎn),實(shí)現(xiàn)學(xué)生在教學(xué)中的主體地位,培養(yǎng)學(xué)生的創(chuàng)新意識。

  (2)、面向全體學(xué)生,根據(jù)課本大綱要求授課。

  (3)、加強(qiáng)學(xué)法指導(dǎo),既要讓學(xué)生學(xué)會本節(jié)知識點(diǎn),也要讓學(xué)生會自我主動學(xué)習(xí)。

  3、情感態(tài)度與價值觀

  (1)、通過多媒體給出實(shí)例,學(xué)生小組討論,給出自己的結(jié)論和觀點(diǎn),加上老師的輔助講解,培養(yǎng)學(xué)生的實(shí)踐能力和和大膽創(chuàng)新意識,教案《《函數(shù)》教學(xué)設(shè)計(jì)》。

  (2)、讓學(xué)生自己討論給出結(jié)論,培養(yǎng)學(xué)生的自我動手能力和小組團(tuán)結(jié)能力。

  三、教學(xué)器材

  多媒體ppt課件

  四、教學(xué)過程

  教學(xué)內(nèi)容教師活動學(xué)生活動設(shè)計(jì)意圖

  《函數(shù)》課題的引入(用時一分鐘)配著簡單的音樂,從簡單的例子引入函數(shù)應(yīng)用的廣泛,將同學(xué)們的視線引入函數(shù)的學(xué)習(xí)上聽著悠揚(yáng)的音樂,讓同學(xué)們的視線全注意在老師所講的內(nèi)容上從貼近學(xué)生生活入手,符合學(xué)生的認(rèn)知特點(diǎn)。讓學(xué)生在領(lǐng)略大自然的美妙與和諧中進(jìn)入函數(shù)的世界,體現(xiàn)了新課標(biāo)的理念:從知識走向生活

  知識回顧:初中所學(xué)習(xí)的函數(shù)知識(用時兩分鐘)回顧初中函數(shù)定義及其性質(zhì),簡單回顧一次函數(shù)、二次函數(shù)、正比例函數(shù)、反比例函數(shù)的性質(zhì)、定義及簡單作圖認(rèn)真聽老師回顧初中知識,發(fā)現(xiàn)異同在初中知識的基礎(chǔ)上引導(dǎo)學(xué)生向更深的內(nèi)容探索、求知。即復(fù)習(xí)了所學(xué)內(nèi)容又做了即將所學(xué)內(nèi)容的鋪墊

  思考與討論:通過給出的問題,引出本節(jié)課的主要內(nèi)容(用時四分鐘)給出兩個簡單的問題讓同學(xué)們思考,講述初中內(nèi)容無法給出正確答案,需要從新的高度來認(rèn)識函數(shù)結(jié)合老師所回顧的知識,結(jié)合自己所掌握的知識,思考老師給出的問題,小組形式作討論,從簡單問題入手,循序漸進(jìn),引出本節(jié)主要知識,回顧前一節(jié)的集合感念,應(yīng)用到本節(jié)知識,前后聯(lián)系、銜接

  新知識的講解:從概念開始講解本節(jié)知識(用時三分鐘)詳細(xì)講解函數(shù)的知識,包括定義域,值域等,回到開始提問部分作答做筆記,專心聽講講解函數(shù)概念,由知識講解回到問題身上,解決問題

  對提問的回答(用時五分鐘)引導(dǎo)學(xué)生自己解決開始所提的兩個問題,然后同個互動給出最后答案通過與老師共同討論回答開始問題,總結(jié)更好的掌握函數(shù)概念,通過問題來更好的掌握知識

  函數(shù)區(qū)間(用時五分鐘)引入函數(shù)定義域的表示方法簡潔明了的方法表示函數(shù)的定義域或值域,在集合表示方法的基礎(chǔ)上引入另一種方法

  注意點(diǎn)(用時三分鐘)做個簡單的的回顧新內(nèi)容,把難點(diǎn)重點(diǎn)提出來,讓同學(xué)們記住通過問題回答,概念解答,把重難點(diǎn)給出,提醒學(xué)生注意內(nèi)容和知識點(diǎn)

  習(xí)題(用時十分鐘)給出習(xí)題,分析題意在稿紙上簡單作答,回答問題通過習(xí)題練習(xí)明確重難點(diǎn),把不懂的地方記住,課后學(xué)生在做進(jìn)一步的聯(lián)系

  映射(用時兩分鐘)從概念方面講解映射的意義,象與原象在新知識的基礎(chǔ)上了解更多知識,映射的學(xué)習(xí)給以后的知識內(nèi)容做更好的`鋪墊

  小結(jié)(用時五分鐘)簡單講述本節(jié)的知識點(diǎn),重難點(diǎn)做筆記前后知識的連貫,總結(jié),使學(xué)生更明白知識點(diǎn)

  五、教學(xué)評價

  為了使學(xué)生了解函數(shù)概念產(chǎn)生的背景,豐富函數(shù)的感性認(rèn)識,獲得認(rèn)識客觀世界的體驗(yàn),本課采用"突出主題,循序漸進(jìn),反復(fù)應(yīng)用"的方式,在不同的場合考察問題的不同側(cè)面,由淺入深。本課在教學(xué)時采用問題探究式的教學(xué)方法進(jìn)行教學(xué),逐層深入,這樣使學(xué)生對函數(shù)概念的理解也逐層深入,從而準(zhǔn)確理解函數(shù)的概念。函數(shù)引入中的三種對應(yīng),與初中時學(xué)習(xí)函數(shù)內(nèi)容相聯(lián)系,這樣起到了承上啟下的作用。這三種對應(yīng)既是函數(shù)知識的生長點(diǎn),又突出了函數(shù)的本質(zhì),為從數(shù)學(xué)內(nèi)部研究函數(shù)打下了基礎(chǔ)。

  在培養(yǎng)學(xué)生的能力上,本課也進(jìn)行了整體設(shè)計(jì),通過探究、思考,培養(yǎng)了學(xué)生的實(shí)踐能力、觀察能力、判斷能力;通過揭示對象之間的內(nèi)在聯(lián)系,培養(yǎng)了學(xué)生的辨證思維能力;通過實(shí)際問題的解決,培養(yǎng)了學(xué)生的分析問題、解決問題和表達(dá)交流能力;通過案例探究,培養(yǎng)了學(xué)生的創(chuàng)新意識與探究能力。

  雖然函數(shù)概念比較抽象,難以理解,但是通過這樣的教學(xué)設(shè)計(jì),學(xué)生基本上能很好地理解了函數(shù)概念的本質(zhì),達(dá)到了課程標(biāo)準(zhǔn)的要求,體現(xiàn)了課改的教學(xué)理念。

  數(shù)學(xué)函數(shù)的教案 10

  一、教學(xué)目標(biāo)

  讓學(xué)生理解函數(shù)的概念,能判斷兩個變量間的關(guān)系是否為函數(shù)關(guān)系。

  通過實(shí)例分析,培養(yǎng)學(xué)生觀察、分析和歸納的能力。

  激發(fā)學(xué)生對函數(shù)學(xué)習(xí)的興趣,體會數(shù)學(xué)與生活的緊密聯(lián)系。

  二、教學(xué)重難點(diǎn)

  重點(diǎn)

  函數(shù)概念的`理解,包括定義域、值域和對應(yīng)關(guān)系。

  難點(diǎn)

  對函數(shù)概念中 “對于集合 A 中的任意一個數(shù) x,在集合 B 中都有唯一確定的數(shù) y 和它對應(yīng)” 這一條件的理解。

  三、教學(xué)方法

  講授法、討論法、實(shí)例分析法。

  四、教學(xué)過程

  引入新課

  通過展示一些生活中常見的變化關(guān)系,如氣溫隨時間的變化、行程問題中路程與時間的關(guān)系等,引出變量的概念,進(jìn)而引出函數(shù)。

  講解新課

  以 y = 2x 為例,分析對于 x 的每一個取值,y 都有唯一確定的值與之對應(yīng)。給出函數(shù)的定義:設(shè) A、B 是非空的數(shù)集,如果按照某種確定的對應(yīng)關(guān)系 f,使對于集合 A 中的任意一個數(shù) x,在集合 B 中都有唯一確定的數(shù) y 和它對應(yīng),那么就稱 f:A→B 為從集合 A 到集合 B 的一個函數(shù)。講解定義域、值域的概念。

  課堂練習(xí)

  給出一些簡單的關(guān)系式,如 y = x + 1,判斷是否為函數(shù),并指出定義域和值域。讓學(xué)生分組討論,然后每組派代表回答。

  課堂小結(jié)

  總結(jié)函數(shù)的概念、定義域、值域,強(qiáng)調(diào)函數(shù)概念中的關(guān)鍵要點(diǎn),如任意性和唯一性。

  布置作業(yè)

  讓學(xué)生思考生活中還有哪些函數(shù)關(guān)系的例子,并書面描述兩個函數(shù),包括其定義域、值域和對應(yīng)關(guān)系。

  數(shù)學(xué)函數(shù)的教案 11

  一、教學(xué)目標(biāo)

  使學(xué)生進(jìn)一步深化對函數(shù)概念的理解,能準(zhǔn)確判斷函數(shù)關(guān)系。

  通過不同形式的例題和練習(xí),提高學(xué)生運(yùn)用函數(shù)概念解決問題的能力。

  培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)臄?shù)學(xué)思維和邏輯推理能力。

  二、教學(xué)重難點(diǎn)

  重點(diǎn)

  深入理解函數(shù)概念,掌握函數(shù)的判斷方法。

  難點(diǎn)

  理解復(fù)雜情境下函數(shù)關(guān)系的判斷,尤其是涉及多個變量和隱含條件的情況。

  三、教學(xué)方法

  問題驅(qū)動法、小組合作探究法。

  四、教學(xué)過程

  復(fù)習(xí)導(dǎo)入

  回顧上節(jié)課函數(shù)的概念、定義域和值域,通過提問幾個學(xué)生來檢查掌握情況,然后展示一個簡單的函數(shù)判斷問題作為熱身。

  深入講解

  列舉一些更復(fù)雜的.例子,如在一個三角形中,已知兩邊及其夾角,求三角形面積與夾角的關(guān)系是否為函數(shù)關(guān)系。引導(dǎo)學(xué)生分析變量和對應(yīng)關(guān)系,強(qiáng)調(diào)要明確自變量的取值范圍,這里夾角的取值范圍是 (0,π)。同時講解在判斷函數(shù)關(guān)系時要注意挖掘隱含條件。

  小組探究

  給出一組問題,讓學(xué)生分組討論。例如,某商店銷售商品,售價根據(jù)購買數(shù)量有不同的折扣,分析購買數(shù)量和總價之間是否為函數(shù)關(guān)系。小組討論后,每組要給出詳細(xì)的分析過程和結(jié)論。

  課堂總結(jié)

  總結(jié)在復(fù)雜情況下判斷函數(shù)關(guān)系的方法和要點(diǎn),如確定變量、分析對應(yīng)關(guān)系、注意取值范圍和隱含條件等。

  課后拓展

  布置拓展作業(yè),如分析某城市人口增長模型中人口數(shù)量與時間是否為函數(shù)關(guān)系,要求學(xué)生查閱相關(guān)資料,深入思考函數(shù)在實(shí)際模型中的應(yīng)用。

  數(shù)學(xué)函數(shù)的教案 12

  一、素質(zhì)教育目標(biāo)

 。ㄒ唬┲R教學(xué)點(diǎn):

  1.使學(xué)生了解一元二次方程及整式方程的意義;

  2.掌握一元二次方程的一般形式,正確識別二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)及常數(shù)項(xiàng).

 。ǘ┠芰τ(xùn)練點(diǎn):

  1.通過一元二次方程的引入,培養(yǎng)學(xué)生分析問題和解決問題的能力;

  2.通過一元二次方程概念的學(xué)習(xí),培養(yǎng)學(xué)生對概念理解的完整性和深刻性.

  (三)德育滲透點(diǎn):由知識來源于實(shí)際,樹立轉(zhuǎn)化的思想,由設(shè)未知數(shù)列方程向?qū)W生滲透方程的思想方法,由此培養(yǎng)學(xué)生用數(shù)學(xué)的意識.

  二、教學(xué)重點(diǎn)、難點(diǎn)

  1.教學(xué)重點(diǎn):一元二次方程的意義及一般形式.

  2.教學(xué)難點(diǎn):正確識別一般式中的“項(xiàng)”及“系數(shù)”.

  三、教學(xué)步驟

 。ㄒ唬┟鞔_目標(biāo)

  1.用電腦演示下面的操作:一塊長方形的薄鋼片,在薄鋼片的四個角上截去四個相同的小正方形,然后把四邊折起來,就成為一個無蓋的長方體盒子,演示完畢,讓學(xué)生拿出事先準(zhǔn)備好的長方形紙片和剪刀,實(shí)際操作一下剛才演示的過程.學(xué)生的實(shí)際操作,為解決下面的問題奠定基礎(chǔ),同時培養(yǎng)學(xué)生手、腦、眼并用的能力.

  2.現(xiàn)有一塊長80cm,寬60cm的薄鋼片,在每個角上截去四個相同的小正方形,然后做成底面積為1500cm 2 的無蓋的長方體盒子,那么應(yīng)該怎樣求出截去的小正方形的邊長?

  教師啟發(fā)學(xué)生設(shè)未知數(shù)、列方程,經(jīng)整理得到方程x 2 -70x+825=0,此方程不會解,說明所學(xué)知識不夠用,需要學(xué)習(xí)新的知識,學(xué)了本章的知識,就可以解這個方程,從而解決上述問題.

  板書:“第十二章一元二次方程”.教師恰當(dāng)?shù)恼Z言,激發(fā)學(xué)生的求知欲和學(xué)習(xí)興趣.

  (二)整體感知

  通過章前引例和節(jié)前引例,使學(xué)生真正認(rèn)識到知識來源于實(shí)際,并且又為實(shí)際服務(wù),學(xué)習(xí)了一元二次方程的知識,可以解決許多實(shí)際問題,真正體會學(xué)習(xí)數(shù)學(xué)的意義;產(chǎn)生用數(shù)學(xué)的意識,調(diào)動學(xué)生積極主動參與數(shù)學(xué)活動中.同時讓學(xué)生感到一元二次方程的解法在本章中處于非常重要的地位.

 。ㄈ┲攸c(diǎn)、難點(diǎn)的學(xué)習(xí)及目標(biāo)完成過程

  1.復(fù)習(xí)提問

  (1)什么叫做方程?曾學(xué)過哪些方程?

  (2)什么叫做一元一次方程?“元”和“次”的含義?

 。3)什么叫做分式方程?

  問題的提出及解決,為深刻理解一元二次方程的概念做好鋪墊.

  2.引例:剪一塊面積為150cm 2 的長方形鐵片使它的長比寬多5cm,這塊鐵片應(yīng)怎樣剪?

  引導(dǎo),啟發(fā)學(xué)生設(shè)未知數(shù)列方程,并整理得方程x 2 +5x-150=0,此方程和章前引例所得到的方程x 2 +70x+825=0加以觀察、比較,得到整式方程和一元二次方程的概念.

  整式方程:方程的兩邊都是關(guān)于未知數(shù)的整式,這樣的方程稱為整式方程.

  一元二次方程:只含有一個未知數(shù),且未知數(shù)的最高次數(shù)是2,這樣的整式方程叫做一元二次方程.

  一元二次方程的概念是在整式方程的前提下定義的.一元二次方程中的“一元”指的是“只含有一個未知數(shù)”,“二次”指的是“未知數(shù)的最高次數(shù)是2”.“元”和“次”的概念搞清楚則給定義一元三次方程等打下基礎(chǔ).一元二次方程的定義是指方程進(jìn)行合并同類項(xiàng)整理后而言的.這實(shí)際上是給出要判定方程是一元二次方程的步驟:首先要進(jìn)行合并同類項(xiàng)整理,再按定義進(jìn)行判斷.

  3.練習(xí):指出下列方程,哪些是一元二次方程?

  (1)x(5x-2)=x(x+1)+4x 2 ;

 。2)7x 2 +6=2x(3x+1);

 。3)

  (4)6x 2 =x;

  (5)2x 2 =5y;

 。6)-x 2 =0

  4.任何一個一元二次方程都可以化為一個固定的形式,這個形式就是一元二次方程的一般形式.

  一元二次方程的一般形式:ax 2 +bx+c=0(a≠0).a(chǎn)x 2 稱二次項(xiàng),bx稱一次項(xiàng),c稱常數(shù)項(xiàng),a稱二次項(xiàng)系數(shù),b稱一次項(xiàng)系數(shù).

  一般式中的“a≠0”為什么?如果a=0,則ax 2 +bx+c=0就不是一元二次方程,由此加深對一元二次方程的概念的理解.

  5.例1? 把方程3x(x-1)=2(x+1)+8化成一般形式,并寫出二次項(xiàng)系數(shù),一次項(xiàng)系數(shù)及常數(shù)項(xiàng)?

  教師邊提問邊引導(dǎo),板書并規(guī)范步驟,深刻理解一元二次方程及一元二次方程的一般形式.

  6.練習(xí)1:教材P.5中1,2.要求多數(shù)學(xué)生在練習(xí)本上筆答,部分學(xué)生板書,師生評價.題目答案不唯一,最好二次項(xiàng)系數(shù)化為正數(shù).

  練習(xí)2:下列關(guān)于x的方程是否是一元二次方程?為什么?若是一元二次方程,請分別指出其二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)、常數(shù)項(xiàng).

  8mx-2m-1=0;(4)(b 2 +1)x 2 -bx+b=2;(5)2tx(x-5)=7-4tx.

  教師提問及恰當(dāng)?shù)腵引導(dǎo),對學(xué)生回答給出評價,通過此組練習(xí),加強(qiáng)對概念的理解和深化.

 。ㄋ模┛偨Y(jié)、擴(kuò)展

  引導(dǎo)學(xué)生從下面三方面進(jìn)行小結(jié).從方法上學(xué)到了什么方法?從知識內(nèi)容上學(xué)到了什么內(nèi)容?分清楚概念的區(qū)別和聯(lián)系?

  1.將實(shí)際問題用設(shè)未知數(shù)列方程轉(zhuǎn)化為數(shù)學(xué)問題,體會知識來源于實(shí)際以及轉(zhuǎn)化為方程的思想方法.

  2.整式方程概念、一元二次方程的概念以及它的一般形式,二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)及常數(shù)項(xiàng).歸納所學(xué)過的整式方程.

  3.一元二次方程的意義與一般形式ax 2 +bx+c=0(a≠0)的區(qū)別和聯(lián)系.強(qiáng)調(diào)“a≠0”這個條件有長遠(yuǎn)的重要意義.

  四、布置作業(yè)

  1.教材P.6 練習(xí)2.

  2.思考題:

  1)能不能說“關(guān)于x的整式方程中,含有x 2 項(xiàng)的方程叫做一元二次方程?”

  2)試說出一元三次方程,一元四次方程的定義及一般形式(學(xué)有余力的學(xué)生思考).

  五、板書設(shè)計(jì)

  第十二章? 一元二次方程

  12.1用公式解一元二次方程

  1.整式方程:

  4.例1:

  2.一元二次方程:

  3.一元二次方程的一般形式:

  5.練習(xí):

  六、課后習(xí)題參考答案

  教材P.6A2.

  教材P.6B1、2.

  1.(1)二次項(xiàng)系數(shù):ab? 一次項(xiàng)系數(shù):c? 常數(shù)項(xiàng):d.

 。2)二次項(xiàng)系數(shù): m-n? 一次項(xiàng)系數(shù):0? 常數(shù)項(xiàng):m+n.

  2.一般形式:(m+n)x 2 +(m-n)x+p-q=0(m+n≠0)二次項(xiàng)系數(shù):m+n,一次項(xiàng)系數(shù):m-n,常數(shù)項(xiàng):p-q.

  思考題

 。1)不能.如x 3 +2x 2 -4x=5.

  (2)一元三次方程:只含有一個未知數(shù),且未知數(shù)的最高次數(shù)是3,這樣的整式方程叫做一元三次方程.一般形式:ax 3 +bx 2 +cx+d=0(a≠0).

  一元四次方程:只含有一個未知數(shù),且未知數(shù)的最高次數(shù)是4,這樣的整式方程叫做一元四次方程.一般形式:ax 4 +bx 3 +cx 2 +dx+e=0(a≠0).

  數(shù)學(xué)函數(shù)的教案 13

  教學(xué)目標(biāo)

  1、通過對冪函數(shù)概念的學(xué)習(xí)以及對冪函數(shù)圖像和性質(zhì)的歸納與概括,讓學(xué)生體驗(yàn)數(shù)學(xué)概念的形成過程,培養(yǎng)學(xué)生的抽象概括能力。

  2、使學(xué)生理解并掌握冪函數(shù)的圖像與性質(zhì),并能初步運(yùn)用所學(xué)知識解決有關(guān)問題,培養(yǎng)學(xué)生的靈活思維能力。

  教學(xué)難點(diǎn)

  冪函數(shù)圖像和性質(zhì)的發(fā)現(xiàn)過程

  教學(xué)重點(diǎn)

  冪函數(shù)的性質(zhì)及運(yùn)用

  教學(xué)過程

  一、教學(xué)導(dǎo)入

  數(shù)學(xué)和日常生活是密不可分的,觀察下列問題中的函數(shù)個有什么共同特征?

  (1)如果李斯在超市買了每支1元的水筆n(支),那么他應(yīng)支付p=n元。這里p是n的函數(shù)。

 。2)如果正方形的邊長a,那么正方形的面積為S=a2,這里S是a的函數(shù)。

 。3)如果立方體的邊長a,那么立方體的體積為V=a3,這里V是a的函數(shù)。

 。4)如果正方形的面積為S,那么這個正方形的邊長為a=S,這里a是S的函數(shù)。

 。5)如果壯壯t(s)內(nèi)騎車行進(jìn)了1(km),那么他騎車的平均速度為v=t—1(),這里v是t的函數(shù)。

  由學(xué)生討論,總結(jié),即可得出:p=n,S=a2,V=a3,a=S,v=t—1都是自變量的若干次冪的`形式。

  這節(jié)課,我們將來共同學(xué)習(xí)另一種函數(shù)——冪函數(shù)(老師板書課題)

  二、講授新課

  1、定義:一般地,函數(shù)y=xa叫做冪函數(shù),其中x是自變量,a是實(shí)常數(shù)。

  判斷一個函數(shù)是否是冪函數(shù)?注意:①是否為冪的形式;②自變量是冪的底數(shù),指數(shù)可以是任意實(shí)數(shù)。

  例1、(1)y=xa與y=ax一樣嗎?

 。2)在函數(shù)y=x+2,y=1,y=x2+x,y=2x2+3,y=中,哪幾個函數(shù)是冪函數(shù)?

 。3)已知冪函數(shù)y=f(x)的圖像過點(diǎn)(2,),試求出這個函數(shù)的解析式。

  2、對于冪函數(shù)y=xa,討論當(dāng)a=1,2,3,—1時的函數(shù)性質(zhì)

  表格如下:

  y=xy=x2y=x3y=xy=x—1

  定義域

  值域

  奇偶性

  單調(diào)性

  定點(diǎn)

  下面先請五位同學(xué)分別在黑板上畫出每個函數(shù)的圖像,其他同學(xué)可以在同一坐標(biāo)系內(nèi)作五個冪函數(shù)的圖像。(要給學(xué)生留出充分時間去研究函數(shù)性質(zhì))

  通過觀察圖像與表格

 。1)函數(shù)y=x,y=x2,y=x3,y=x和y=x—1的圖像都通過(1,1);

 。2)函數(shù)y=x,y=x3,y=x—1是奇函數(shù),函數(shù)y=x2是偶函數(shù);

 。3)在第一象限內(nèi),函數(shù)y=x,y=x2,y=x3和y=x是增函數(shù),函數(shù)y=x—1是減函數(shù);

  (4)在第一象限內(nèi),函數(shù)y=x—1的圖像向上與y軸無限接近,向右與x軸無限接近。

  例2、求下列函數(shù)的定義域,并判斷函數(shù)的奇偶性

 。1)f(x)=—2x5(2)g(x)=x4+2

  (3)f(x)=—x+x(4)g(x)=5x+x

  3、拓展題

  證明冪函數(shù)f(x)=x3在R上是增函數(shù)

  三、課外作業(yè)

  P49習(xí)題2—5A組1、2

  教學(xué)后記

  本節(jié)課主要從五個具體冪函數(shù)中認(rèn)識冪函數(shù)的一些性質(zhì),畫五個冪函數(shù)的圖像并由圖像概括其性質(zhì)是教學(xué)中可能遇到的困難,所以要注意引導(dǎo)學(xué)生親自動手畫圖像、分組討論等形式,讓學(xué)生自己去探究,把主動權(quán)交給學(xué)生。

  數(shù)學(xué)函數(shù)的教案 14

  一、教學(xué)目標(biāo)

  知識與技能目標(biāo)

  理解函數(shù)的概念,能判斷兩個變量間的關(guān)系是否為函數(shù)關(guān)系。

  能識別函數(shù)的定義域和值域。

  過程與方法目標(biāo)

  通過實(shí)例分析,培養(yǎng)學(xué)生觀察、歸納、抽象的能力。

  經(jīng)歷從具體到抽象的過程,提高學(xué)生對數(shù)學(xué)概念的理解能力。

  情感態(tài)度與價值觀目標(biāo)

  讓學(xué)生體會函數(shù)概念的形成過程,感受數(shù)學(xué)與生活的緊密聯(lián)系。

  激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度。

  二、教學(xué)重難點(diǎn)

  教學(xué)重點(diǎn)

  函數(shù)概念的理解,包括定義域、值域和對應(yīng)關(guān)系。

  運(yùn)用函數(shù)概念判斷函數(shù)關(guān)系。

  教學(xué)難點(diǎn)

  對函數(shù)概念中 “對于集合 A 中的任意一個數(shù) x,在集合 B 中都有唯一確定的數(shù) y 和它對應(yīng)” 這一抽象表述的理解。

  三、教學(xué)方法

  講授法、討論法、實(shí)例分析法。

  四、教學(xué)過程

  導(dǎo)入(5 分鐘)

  展示一些生活中常見的變化關(guān)系,如氣溫隨時間的變化、汽車行駛路程隨時間的變化等。提問學(xué)生這些變化有什么共同特點(diǎn),引導(dǎo)學(xué)生關(guān)注兩個變量之間的關(guān)系,從而引出函數(shù)的話題。

  新課講授(30 分鐘)

  函數(shù)概念講解

  給出幾個具體的實(shí)例,如:y = 2x(x∈R),郵局中郵資與郵件重量的關(guān)系等。分析每個實(shí)例中兩個變量的取值范圍以及它們之間的對應(yīng)關(guān)系。

  歸納出函數(shù)的概念:設(shè) A、B 是非空的數(shù)集,如果按照某種確定的對應(yīng)關(guān)系 f,使對于集合 A 中的任意一個數(shù) x,在集合 B 中都有唯一確定的數(shù) y 和它對應(yīng),那么就稱 f:A→B 為從集合 A 到集合 B 的`一個函數(shù),記作 y = f (x),x∈A。其中,x 叫做自變量,x 的取值范圍 A 叫做函數(shù)的定義域;與 x 的值相對應(yīng)的 y 值叫做函數(shù)值,函數(shù)值的集合 {f (x)|x∈A} 叫做函數(shù)的值域。

  定義域和值域的確定

  通過實(shí)例進(jìn)一步分析定義域和值域的確定方法。如對于函數(shù) y = 1/x,要讓學(xué)生明白 x≠0,所以定義域是 {x|x≠0},值域是 {y|y≠0}。

  函數(shù)關(guān)系的判斷

  給出一些關(guān)系式,如 y = x,讓學(xué)生討論是否為函數(shù)。引導(dǎo)學(xué)生根據(jù)函數(shù)概念判斷,這里對于 x>0,y 有兩個值與之對應(yīng),不滿足函數(shù)定義,所以不是函數(shù)。

  課堂練習(xí)(20 分鐘)

  讓學(xué)生完成課本上的一些練習(xí)題,判斷給定的關(guān)系是否為函數(shù),并求出函數(shù)的定義域和值域。教師巡視指導(dǎo),及時糾正學(xué)生的錯誤。

  課堂小結(jié)(5 分鐘)

  與學(xué)生一起回顧函數(shù)的概念、定義域、值域的含義,強(qiáng)調(diào)判斷函數(shù)關(guān)系的要點(diǎn)。

  作業(yè)布置

  課后習(xí)題若干,讓學(xué)生進(jìn)一步鞏固函數(shù)概念的理解和應(yīng)用。

  數(shù)學(xué)函數(shù)的教案 15

  一、教學(xué)目標(biāo)

  知識與技能目標(biāo)

  了解函數(shù)圖象的概念,知道函數(shù)圖象是函數(shù)關(guān)系的一種直觀表示形式。

  會用描點(diǎn)法畫出簡單函數(shù)的圖象,如一次函數(shù)、二次函數(shù)等。

  能通過函數(shù)圖象獲取函數(shù)的一些性質(zhì),如單調(diào)性、最值等。

  過程與方法目標(biāo)

  通過畫函數(shù)圖象的過程,培養(yǎng)學(xué)生動手操作和觀察分析能力。

  經(jīng)歷從函數(shù)圖象探究函數(shù)性質(zhì)的過程,提高學(xué)生的歸納總結(jié)能力。

  情感態(tài)度與價值觀目標(biāo)

  讓學(xué)生體會函數(shù)圖象在研究函數(shù)中的重要作用,感受數(shù)形結(jié)合的思想魅力。

  培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)睦L圖習(xí)慣和對數(shù)學(xué)美的欣賞能力。

  二、教學(xué)重難點(diǎn)

  教學(xué)重點(diǎn)

  函數(shù)圖象的概念和用描點(diǎn)法畫函數(shù)圖象的步驟。

  通過函數(shù)圖象分析函數(shù)的性質(zhì)。

  教學(xué)難點(diǎn)

  準(zhǔn)確理解函數(shù)圖象與函數(shù)關(guān)系的對應(yīng),以及如何從圖象中準(zhǔn)確獲取函數(shù)的性質(zhì)。

  三、教學(xué)方法

  講授法、演示法、探究法。

  四、教學(xué)過程

  導(dǎo)入(5 分鐘)

  在黑板上畫出簡單的坐標(biāo)平面,回顧平面直角坐標(biāo)系的相關(guān)知識,如坐標(biāo)軸、坐標(biāo)點(diǎn)等。然后提問學(xué)生:“我們之前學(xué)習(xí)了函數(shù)的概念,有沒有什么方法可以直觀地表示函數(shù)關(guān)系呢?” 引導(dǎo)學(xué)生思考,引出函數(shù)圖象的話題。

  新課講授(30 分鐘)

  函數(shù)圖象概念(5 分鐘)

  以一次函數(shù) y = x + 1 為例,通過列舉一些 x 的值,計(jì)算出對應(yīng)的. y 值,如當(dāng) x = 0 時,y = 1;當(dāng) x = 1 時,y = 2 等。將這些坐標(biāo)點(diǎn)(x,y)在坐標(biāo)平面上表示出來,然后用平滑的曲線(直線)將這些點(diǎn)連接起來,向?qū)W生展示這就是函數(shù) y = x + 1 的圖象。

  講解函數(shù)圖象的概念:把一個函數(shù)的自變量 x 與對應(yīng)的因變量 y 的值分別作為點(diǎn)的橫坐標(biāo)和縱坐標(biāo),在直角坐標(biāo)系內(nèi)描出它的對應(yīng)點(diǎn),所有這些點(diǎn)組成的圖形叫做該函數(shù)的圖象。

  描點(diǎn)法畫函數(shù)圖象(15 分鐘)

  以二次函數(shù) y = x 為例,講解描點(diǎn)法的步驟:

  列表:選取一些 x 的值,如 - 3、- 2、- 1、0、1、2、3,計(jì)算出對應(yīng)的 y 值,列成表格。

  描點(diǎn):根據(jù)表格中的坐標(biāo)點(diǎn),在直角坐標(biāo)系中準(zhǔn)確地描出這些點(diǎn)。

  連線:用平滑的曲線將這些點(diǎn)連接起來,注意曲線的趨勢和端點(diǎn)情況。教師在黑板上進(jìn)行演示,邊演示邊強(qiáng)調(diào)注意事項(xiàng),如坐標(biāo)點(diǎn)要描準(zhǔn)確,連線要平滑等。

  函數(shù)圖象性質(zhì)分析(10 分鐘)

  引導(dǎo)學(xué)生觀察二次函數(shù) y = x 的圖象,分析其性質(zhì):

  單調(diào)性:當(dāng) x<0 時,隨著 x 的增大,y 值減;當(dāng) x>0 時,隨著 x 的增大,y 值增大。

  最值:圖象有最低點(diǎn)(0,0),所以函數(shù)有最小值 0。通過圖象讓學(xué)生直觀地理解函數(shù)的這些性質(zhì)。

  課堂練習(xí)(20 分鐘)

  讓學(xué)生用描點(diǎn)法畫出一次函數(shù) y = - 2x + 3 的圖象,并分析其單調(diào)性和最值情況。教師巡視,指導(dǎo)學(xué)生正確繪圖和分析。

  給出一些函數(shù)圖象,讓學(xué)生判斷是哪種類型的函數(shù)圖象,并說出函數(shù)的一些性質(zhì),如定義域、值域、單調(diào)性等。

  課堂小結(jié)(5 分鐘)

  回顧函數(shù)圖象的概念、描點(diǎn)法的步驟以及如何通過圖象分析函數(shù)性質(zhì),強(qiáng)調(diào)數(shù)形結(jié)合思想在函數(shù)學(xué)習(xí)中的重要性。

  作業(yè)布置

  用描點(diǎn)法畫出二次函數(shù) y = - x + 2x - 1 的圖象,并寫一篇短文描述該圖象的特征和函數(shù)的性質(zhì)。

  數(shù)學(xué)函數(shù)的教案 16

  【教學(xué)目標(biāo):】

  1)通過對初中銳角三角函數(shù)定義的回憶,掌握任意角三角函數(shù)的定義法,并掌握用單位圓中的有向線段表示三角函數(shù)值。

  2)掌握已知角 終邊上一點(diǎn)坐標(biāo),求四個三角函數(shù)值。(即給角求值問題)

  【教學(xué)重點(diǎn):】

  任意角的三角函數(shù)的定義。

  【教學(xué)難點(diǎn):】

  任意角的三角函數(shù)的定義,正弦、余弦、正切這三種三角函數(shù)的幾何表示。

  【教學(xué)用具:】

  直尺、圓規(guī)、投影儀。

  【教學(xué)步驟:】

  1、設(shè)置情境

  角的范圍已經(jīng)推廣,那么對任一角 是否也能像銳角一樣定義其四種三角函數(shù)呢?本節(jié)課就來討論這一問題。

  2、探索研究

 。1)復(fù)習(xí)回憶銳角三角函數(shù)

  我們已經(jīng)學(xué)習(xí)過銳角三角函數(shù),知道它們都是以銳角 為自變量,以比值為函數(shù)值,定義了角 的正弦、余弦、正切、余切的三角函數(shù),本節(jié)課我們研究當(dāng)角 是一個任意角時,其三角函數(shù)的定義及其幾何表示。

 。2)任意角的三角函數(shù)定義

  同時提供顯示任意角的三角函數(shù)所在象限的課件

  提問:對于確定的角 ,這三個比值的大小和 點(diǎn)在角 的終邊上的位置是否有關(guān)呢?

  利用三角形相似的知識,可以得出對于角 ,這三個比值的大小與 點(diǎn)在角 的終邊上的位置無關(guān),只與角 的大小有關(guān)。

  請同學(xué)們觀察當(dāng) 時, 的終邊在 軸上,此時終邊上任一點(diǎn) 的橫坐標(biāo) 都等于0,所以 無意義,除此之外,對于確定的角 ,上面三個比值都是惟一確定的。把上面定義中三個比的前項(xiàng)、后項(xiàng)交換,那么得到另外三個定義。

 、鼙戎 叫做 的余切,記作 ,則 。

  ⑤比值 叫做 的正割,記作 ,則 。

 、薇戎 叫做 的余割,記作 ,則 。

  可以看出:當(dāng) 時, 的終邊在 軸上,這時 的縱坐標(biāo) 都等于0,所以 與 的值不存在,當(dāng) 時, 的值不存在,除此之外,對于確定的角 ,比值 , , 分別是一個確定的'實(shí)數(shù),所以我們把正弦、余弦,正切、余切,正割及余割都看成是以角為自變量,以比值為函數(shù)值的函數(shù),以上六種函數(shù)統(tǒng)稱三角函數(shù)。

 。3)三角函數(shù)是以實(shí)數(shù)為自變量的函數(shù)

  對于確定的角 ,如圖2所示, , , 分別對應(yīng)的比值各是一個確定的實(shí)數(shù),因此,正弦,余弦,正切分別可看成從一個角的集合到一個比值的集合的映射,它們都是以角為自變量,以比值為函數(shù)值的函數(shù),當(dāng)采用弧度制來度量角時,每一個確定的角有惟一確定的弧度數(shù),這是一個實(shí)數(shù),所以這幾種三角函數(shù)也都可以看成是以實(shí)數(shù)為自變量,以比值為函數(shù)值的函數(shù)。

  即:實(shí)數(shù)角(其弧度數(shù)等于這個實(shí)數(shù))三角函數(shù)值(實(shí)數(shù))

 。4)三角函數(shù)的一種幾何表示

  設(shè)任意角 的頂點(diǎn)在原點(diǎn) ,始邊與 軸的非負(fù)半軸重合,終邊與單位圓相交于點(diǎn) ,過 作 軸的垂線,垂足為 ;過點(diǎn) 作單位圓的切線,這條切線必然平行于軸,設(shè)它與角 的終邊(當(dāng) 為第一、四象限時)或其反向延長線(當(dāng) 為第二、三象限時)相交于 ,當(dāng)角 的終邊不在坐標(biāo)軸上時,我們把 , 都看成帶有方向的線段,這種帶方向的線段叫有向線段。由正弦、余弦、正切函數(shù)的定義有:

  這幾條與單位圓有關(guān)的有向線段 叫做角 的正弦線、余弦線、正切線。當(dāng)角 的終邊在 軸上時,正弦線、正切線分別變成一個點(diǎn);當(dāng)角 的終邊在 軸上時,余弦線變成一個點(diǎn),正切線不存在。

【數(shù)學(xué)函數(shù)的教案】相關(guān)文章:

初中數(shù)學(xué)函數(shù)教案01-03

函數(shù)的概念的數(shù)學(xué)教案02-07

《冪函數(shù)》數(shù)學(xué)教案09-28

變量與函數(shù)的數(shù)學(xué)教案05-15

函數(shù)的概念數(shù)學(xué)教案09-26

關(guān)于函數(shù)的數(shù)學(xué)優(yōu)質(zhì)教案09-21

高中數(shù)學(xué)函數(shù)教案06-18

函數(shù)的圖象數(shù)學(xué)教案09-29

數(shù)學(xué)函數(shù)的教案(通用12篇)02-02