男人天堂日韩,中文字幕18页,天天伊人网,成人性生交大片免费视频

高一數(shù)學(xué)教學(xué)計劃

時間:2022-12-23 18:51:40 數(shù)學(xué)教學(xué)計劃 我要投稿

【熱】高一數(shù)學(xué)教學(xué)計劃

  時間過得可真快,從來都不等人,我們又將接觸新的知識,學(xué)習(xí)新的技能,積累新的經(jīng)驗,此時此刻我們需要開始做一個計劃。那么你真正懂得怎么制定計劃嗎?以下是小編整理的高一數(shù)學(xué)教學(xué)計劃,希望對大家有所幫助。

【熱】高一數(shù)學(xué)教學(xué)計劃

高一數(shù)學(xué)教學(xué)計劃1

  教學(xué)目標(biāo):

  知識與技能通過具體實例了解冪函數(shù)的圖象和性質(zhì),并能進行簡單的應(yīng)用.

  過程與方法能夠類比研究一般函數(shù)、指數(shù)函數(shù)、對數(shù)函數(shù)的過程與方法,來研究冪函數(shù)的圖象和性質(zhì).

  情感、態(tài)度、價值觀體會冪函數(shù)的變化規(guī)律及蘊含其中的對稱性.

  教學(xué)重點:

  重點從五個具體冪函數(shù)中認識冪函數(shù)的一些性質(zhì).

  難點畫五個具體冪函數(shù)的圖象并由圖象概括其性質(zhì),體會圖象的變化規(guī)律.

  教學(xué)程序與環(huán)節(jié)設(shè)計:

  材料一:冪函數(shù)定義及其圖象.

  一般地,形如 的函數(shù)稱為冪函數(shù),其中 為常數(shù).

  冪函數(shù)的定義來自于實踐,它同指數(shù)函數(shù)、對數(shù)函數(shù)一樣,也是基本初等函數(shù),同樣也是一種形式定義的函數(shù),引導(dǎo)學(xué)生注意辨析.

  下面我們舉例學(xué)習(xí)這類函數(shù)的一些性質(zhì).

  作出下列函數(shù)的圖象:利用所學(xué)知識和方法嘗試作出五個具體冪函數(shù)的圖象,觀察所圖象,體會冪函數(shù)的變化規(guī)律.

  定義域

  值域

  奇偶性

  單調(diào)性

  定點

  師:引導(dǎo)學(xué)生應(yīng)用畫函數(shù)的性質(zhì)畫圖象,如:定義域、奇偶性.

  師生共同分析,強調(diào)畫圖象易犯的錯誤.

  材料二:冪函數(shù)性質(zhì)歸納.

  (1)所有的冪函數(shù)在(0,+)都有定義,并且圖象都過點(1,1);

  (2) 時,冪函數(shù)的圖象通過原點,并且在區(qū)間 上是增函數(shù).特別地,當(dāng) 時,冪函數(shù)的圖象下凸;當(dāng) 時,冪函數(shù)的圖象上凸;

  (3) 時,冪函數(shù)的圖象在區(qū)間 上是減函數(shù).在第一象限內(nèi),當(dāng) 從右邊趨向原點時,圖象在 軸右方無限地逼近 軸正半軸,當(dāng) 趨于 時,圖象在 軸上方無限地逼近 軸正半軸.

  例1、求下列函數(shù)的定義域;

  例2、比較下列兩個代數(shù)值的大小:

  [例3]討論函數(shù) 的定義域、奇偶性,作出它的圖象,并根據(jù)圖象說明函數(shù)的單調(diào)性.

  練習(xí)

  1.利用冪函數(shù)的性質(zhì),比較下列各題中兩個冪的值的大。

  2.作出函數(shù) 的圖象,根據(jù)圖象討論這個函數(shù)有哪些性質(zhì),并給出證明.

  3.作出函數(shù) 和函數(shù) 的圖象,求這兩個函數(shù)的定義域和單調(diào)區(qū)間.

  4.用圖象法解方程:

  1.如圖所示,曲線是冪函數(shù) 在第一象限內(nèi)的圖象,已知 分別取 四個值,則相應(yīng)圖象依次為:.

  2.在同一坐標(biāo)系內(nèi),作出下列函數(shù)的圖象,你能發(fā)現(xiàn)什么規(guī)律?

高一數(shù)學(xué)教學(xué)計劃2

  一、教材依據(jù)

  本節(jié)課是北師大版數(shù)學(xué)(必修2)第二章《解析幾何初步》第一節(jié)《1.2直線的方程》第一部分《直線方程的點斜式》內(nèi)容。

  二、教材分析

  直線方程的點斜式給出了根據(jù)已知一個點和斜率求直線方程的方法和途徑。在求直線的方程中,直線方程的點斜式是基本的,直線方程的斜截式

  、兩點式都是由點斜式推出的。從初中代數(shù)中的一次函數(shù)引入,自然過渡到本節(jié)課想要解決的問題求直線方程問題。在引入,過程中要讓學(xué)生弄清

  直線與方程的一一對應(yīng)關(guān)系,理解研究直線可以從研究方程和方程的特征入手。

  在推導(dǎo)直線方程的點斜式時,根據(jù)直線這一結(jié)論,先猜想確定一條直線的條件,再根據(jù)猜想得到的條件求出直線方程。

  三、教學(xué)目標(biāo)

  知識與技能:

  (1)理解直線方程的點斜式、斜截式的形式特點和適用范圍;

  (2)能正確利用直線的點斜式、斜截式公式求直線方程。

 。3)體會直線的斜截式方程與一次函數(shù)的關(guān)系。

  過程與方法:在已知直角坐標(biāo)系內(nèi)確定一條直線的幾何要素直線上的一點和直線的傾斜角的基礎(chǔ)上,通過師生探討,得出直線的點斜式方程;學(xué)生

  通過對比理解截距與距離的區(qū)別。

  情態(tài)與價值觀:通過讓學(xué)生體會直線的斜截式方程與一次函數(shù)的關(guān)系,進一步培養(yǎng)學(xué)生數(shù)形結(jié)合的思想,滲透數(shù)學(xué)中普遍存在相互聯(lián)系、相互轉(zhuǎn)化

  等觀點,使學(xué)生能用聯(lián)系的觀點看問題。

  四、教學(xué)重點

  重點:直線的點斜式方程和斜截式方程。

  五、教學(xué)難點

  難點:直線的點斜式方程和斜截式方程的應(yīng)用。

  要點:運用數(shù)形結(jié)合的思想方法,幫助學(xué)生分析描述幾何圖形。

  六、教學(xué)準(zhǔn)備

  1.教學(xué)方法的選擇:啟發(fā)、引導(dǎo)、討論.

  創(chuàng)設(shè)問題情境,采用啟發(fā)誘導(dǎo)式的教學(xué)模式引導(dǎo)學(xué)生探索討論,學(xué)生主動參與提出問題、探索問題和解決問題的過程,突出以學(xué)生為主體的探究性

  學(xué)習(xí)活動。

  2.通過讓學(xué)生觀察、討論、辨析、畫圖,親身實踐,調(diào)動多感官去體驗數(shù)學(xué)建模的思想;學(xué)生要學(xué)會用數(shù)形結(jié)合的方法建立起代數(shù)問題與幾何問題

  間的密切聯(lián)系。為使學(xué)生積極參與課堂學(xué)習(xí),我主要指導(dǎo)了以下的學(xué)習(xí)方法:

 、.讓學(xué)生自己發(fā)現(xiàn)問題,自己通過觀察圖像歸納總結(jié),自己評析解題對錯,從而提高學(xué)生的參與意識和數(shù)學(xué)表達能力。

 、.分組討論。

高一數(shù)學(xué)教學(xué)計劃3

  一、上學(xué)期教學(xué)回顧

  高一共四個教學(xué)班,共計160余人。楊文國帶高一(一)班,高一(二)班;張忠杰帶高一(三)班和高一(四)班。其中各班期末八校聯(lián)考的成績分別為:50.6分,32.8分,27.2分,34.5分,總平36.9分。學(xué)期中途因張忠杰離開學(xué)校導(dǎo)致頻繁更換老師,(三)班、(四)班的成績因而受到影響。期末由王山任(三)班、(四)班的數(shù)學(xué)老師。

  上學(xué)期工作在學(xué)生學(xué)習(xí)的落實環(huán)節(jié)上做得不太扎實,這將是本學(xué)期重點改進的地方。

  二、本學(xué)期的措施及打算

  1.一周學(xué)習(xí)早知道。明確目標(biāo)更能確定努力的方向。為了讓學(xué)生學(xué)習(xí)更有目的性,有效性和積極性,每周第一節(jié)課給出一周的教學(xué)進度,學(xué)習(xí)目標(biāo)和過關(guān)要求。不僅老師要做到對所教內(nèi)容清楚明了,也要讓學(xué)生對所學(xué)內(nèi)容做到每周學(xué)習(xí)目標(biāo)清晰化。

  2.落實每周測試過關(guān)制。周測內(nèi)容與一周學(xué)習(xí)目標(biāo)及一周的講授內(nèi)容緊密相連。未盡力而又沒有過關(guān)的學(xué)生將按事先說明的措施給予處罰。以便讓學(xué)生重視課堂學(xué)習(xí),重視平時作業(yè),重視一周的學(xué)習(xí)過程。做到讓學(xué)生每周學(xué)習(xí)過程精細化。 3.根據(jù)學(xué)生學(xué)力狀況進行分層次的培優(yōu)補差。

  三、教學(xué)進度安排

  周次,學(xué)習(xí)內(nèi)容

  目標(biāo)要求

  1. 必修4 第一章三角函數(shù):第1至3節(jié)

  周期,角的推廣及表示,弧度制及互化

  2. 軍訓(xùn)

  3. 第4節(jié):正弦函數(shù)

  單位圓,正弦函數(shù)定義,象限符號,誘導(dǎo)公式,五點法畫圖像,圖像及性質(zhì)。

  4. 第5節(jié):余弦函數(shù),第6節(jié):正切函數(shù)

  余弦函數(shù)正切函數(shù)定義,象限符號,誘導(dǎo)公式,圖像及性質(zhì)

  5. 第7節(jié):xAsiny的圖像,第8節(jié):同角的基本關(guān)系。

  圖像變換規(guī)律,同角三角函數(shù)的基本關(guān)系及其運用。章節(jié)復(fù)習(xí),章節(jié)過關(guān)測試。

  6. 第二章:平面向量:第1節(jié)至第2節(jié)

  向量,有向線段,向量的長及相等、平行、共線、單位向量等概念,向量的加減法運算

  7. 第3節(jié)至第5節(jié)

  數(shù)乘向量,基本定理,向量運算的鞏固訓(xùn)練,平面向量的坐標(biāo)表示及運算。數(shù)量積的應(yīng)用。

  8. 第5節(jié)至第7節(jié)

  數(shù)量積的應(yīng)用及坐標(biāo)表示,向量應(yīng)用舉例。習(xí)題課,章節(jié)復(fù)習(xí),章節(jié)過關(guān)測試。

  9. 第三章:三角恒等變換:第1節(jié)至第2節(jié)

  兩角和差的公式得推導(dǎo),記憶及靈活運用,二倍角公式得來源及運用。期中復(fù)習(xí)。

  10. 期中考試

  期中復(fù)習(xí),期中考試。

  11. 第三章 第3節(jié):三角函數(shù)的簡單應(yīng)用

  試卷講評改錯,簡單應(yīng)用,三角恒等變換的綜合習(xí)題課,練習(xí),章節(jié)復(fù)習(xí),必修4基本測試。

  12. 五一長假

  13. 必修3 第一章:統(tǒng)計。第1節(jié)至第5節(jié)

  統(tǒng)計的程序,統(tǒng)計圖,統(tǒng)計方案設(shè)計,普查與抽樣,抽樣方法,分層抽樣與系統(tǒng)抽樣,花統(tǒng)計圖表及讀統(tǒng)計圖表,數(shù)字特征:平均數(shù),中位數(shù),眾數(shù),級差,方差的意義及計算分析,

  14. 第6節(jié)至第9節(jié)

  樣本對總本的估計及相應(yīng)的數(shù)字特征的計算分析,統(tǒng)計實踐活動,變量的相關(guān)性及例題分析,最小二乘估計。章節(jié)復(fù)習(xí),章節(jié)過關(guān)測試。

  15. 第二章:算法初步:第1節(jié)至第3節(jié)

  基本思想,基本結(jié)構(gòu)及設(shè)計,排序問題。

  16. 第4節(jié):幾種基本語句

  條件語句,循環(huán)語句,復(fù)習(xí)三角函數(shù)的基本內(nèi)容,章節(jié)復(fù)習(xí),三角函數(shù)與算法初步過關(guān)測試。

  17. 第三章:概率:第1節(jié)至第2節(jié)

  頻率,概率,古典概率,概率計算公式。

  18. 第2節(jié)至第3節(jié)

  建概率模型,互斥事件,習(xí)題課節(jié)復(fù)習(xí),章節(jié)過關(guān)測試。

  19. 期末復(fù)習(xí)

  20. 期末復(fù)習(xí),期末考試

高一數(shù)學(xué)教學(xué)計劃4

  一 指導(dǎo)思想

  為了使學(xué)生在九年義務(wù)教育數(shù)學(xué)課程的基礎(chǔ)上,進一步提高作為未來公民所必要的數(shù)學(xué)素養(yǎng),以滿足個人發(fā)展與社會進步的需要。具體目標(biāo)如下:

  1.提高空間想像、抽象概括、推理論證、運算求解、數(shù)據(jù)處理等基本能力。

  2.提高數(shù)學(xué)地提出、分析和解決問題(包括簡單的實際問題)的能力,數(shù)學(xué)表達和交流的能力,發(fā)展獨立獲取數(shù)學(xué)知識的能力

  3.發(fā)展數(shù)學(xué)應(yīng)用意識和創(chuàng)新意識,力求對現(xiàn)實世界中蘊涵的一些數(shù)學(xué)模式進行思考和作出判斷。

  4.提高學(xué)習(xí)的興趣,樹立學(xué)好數(shù)學(xué)的信心,形成鍥而不舍的鉆研精神和科學(xué)態(tài)度。

  二 學(xué)情分析

  1. 基本情況:班共人,男生人,女生人;本班相對而言,數(shù)學(xué)尖子約人,中上等生約人,中等生約人,中下生約 人,后進生約人。

  2.我所執(zhí)教的215班均屬普高班,學(xué)生自覺性差,自我控制能力弱,因此在教學(xué)中需時時提醒學(xué)生,培養(yǎng)其自覺性。同時,由于初中課改的原因,高中教材與初中教材銜接力度不夠,需在新授時適機補充一些內(nèi)容。因此時間上可能仍然吃緊。同時,其底子薄弱,因此在教學(xué)時只能注重基礎(chǔ)再基礎(chǔ),爭取每一堂課落實一個知識點,掌握一個知識點。

  三 教材分析

  我們采用的教材是人教版必修教材,本冊教材共分兩章:第四章《三角函數(shù)》和第五章《平面向量》。三角函數(shù)的主要內(nèi)容有:任意角的三角函數(shù)概念、弧度制、同角三角函數(shù)間的關(guān)系、誘導(dǎo)公式、兩角和與差的三角函數(shù)、二倍角的三角函數(shù)以及三角函數(shù)的圖象和性質(zhì)、已知三角函數(shù)值求角等。難點是弧度制的概念、綜合運用本章公式進行簡單三角函數(shù)式的化簡及恒等式的證明周期函數(shù)的概念,函數(shù)y=Asin(x+)的圖象與正弦曲線的關(guān)系。平面向量主要內(nèi)容是向量及其運算和解斜三角形,向量的幾何表示和坐標(biāo)表示、向量的線性運算,平面向量的數(shù)量積,平面兩點間的距離公式,線段的定比分點和中點坐標(biāo)公式,平移公式,解斜三角形是本章的重點,而向量運算法則的理解和運用,已知兩邊和其中一邊的對角解斜三角形等是本章的難點。

  四 教法分析

  在教學(xué)過程中盡量做到以下幾個方面:

  1. 選取與內(nèi)容密切相關(guān)的,典型的,豐富的和學(xué)生熟悉的素材,用生動活潑的語言,創(chuàng)設(shè)能夠體現(xiàn)數(shù)學(xué)的概念和結(jié)論,數(shù)學(xué)的思想和方法,以及數(shù)學(xué)應(yīng)用的學(xué)習(xí)情境,使學(xué)生產(chǎn)生對數(shù)學(xué)的親切感,引發(fā)學(xué)生看個究竟的沖動,以達到培養(yǎng)其興趣的目的。

  2. 通過觀察,思考,探究等欄目,引發(fā)學(xué)生的思考和探索活動,切實改進學(xué)生的學(xué)習(xí)方式。

  3. 在教學(xué)中強調(diào)類比,推廣,特殊化,化歸等數(shù)學(xué)思想方法,盡可能養(yǎng)成其邏輯思維的習(xí)慣。

  五 教學(xué)及輔導(dǎo)措施

  1. 激發(fā)學(xué)生的學(xué)習(xí)興趣。由數(shù)學(xué)活動、故事、吸引人的課、合理的要求、師生談話等途徑樹立學(xué)生的學(xué)習(xí)信心,提高學(xué)習(xí)興趣,在主觀作用下上升和進步。

  2. 注意從實例出發(fā),從感性提高到理性;注意運用對比的方法,反復(fù)比較相近的概念;注意結(jié)合直觀圖形,說明抽象的知識;注意從已有的知識出發(fā),啟發(fā)學(xué)生思考。

  3. 加強培養(yǎng)學(xué)生的邏輯思維能力就解決實際問題的能力,以及培養(yǎng)提高學(xué)生的自學(xué)能力,養(yǎng)成善于分析問題的習(xí)慣,進行辨證唯物主義教育。

  4. 抓住公式的推導(dǎo)和內(nèi)在聯(lián)系;加強復(fù)習(xí)檢查工作;抓住典型例題的分析,講清解題的關(guān)鍵和基本方法,注重提高學(xué)生分析問題的能力。

  5. 自始至終貫徹教學(xué)四環(huán)節(jié),針對不同的教材內(nèi)容選擇不同教法。

  6. 重視數(shù)學(xué)應(yīng)用意識及應(yīng)用能力的培養(yǎng)。

  六 優(yōu)、差生名單及輔導(dǎo)措施

  1. 對于優(yōu)生:學(xué)生自愿成立興趣小組,興趣小組可以在老師的指導(dǎo)下由學(xué)生自己不定期的開展活動,圍繞數(shù)學(xué)競賽拓展他們的知識面,加深對所學(xué)知識的理解和應(yīng)用,在原有基礎(chǔ)上,穩(wěn)定班級在數(shù)學(xué)學(xué)習(xí)鐘的尖子學(xué)生,進一步培養(yǎng)他們自主學(xué)習(xí)的意識。

  2. 對于待發(fā)展生:對于成績較差的學(xué)生,針對他們的基礎(chǔ)差異和個性差異,耐心細致的進行個別輔導(dǎo),有問題隨時解決,并多予以鼓勵。在作業(yè)中體現(xiàn)分層。盡量做到因材施教。

  七 教學(xué)進度安排

周 次




課時




內(nèi) 容




重 點、難 點




第1周




5




任意角和弧度制(2)




任意角的三角函數(shù)(3)




了解任意角的概念和弧度制,能進行弧度與角度的互化。任意角三角函數(shù)的定義。




第2周




5




同角三角函數(shù)的基本關(guān)系式(3)




三角函數(shù)的誘導(dǎo)公式(2)




誘導(dǎo)公式的探究。運用誘導(dǎo)公式。




第3周




5




兩角和與差的正弦、余弦、正切 (5)




兩角和與差的公式及其應(yīng)用與求值、化簡




第4周




5




二倍角的正弦、余弦、正切 (3)




正、余弦函數(shù)的圖象(2)




三角函數(shù)的倍角公式、和差化積公式




正、余弦函數(shù)圖象的畫法




第5周




5




三角函數(shù)圖象與性質(zhì)(4)




三角函數(shù)的圖象及其性質(zhì)。函數(shù)思想。




第6周




5




函數(shù)y=sin(+)的圖象(2)、三角函數(shù)模型的簡單應(yīng)用(2)




用參數(shù)思想討論圖象的變換過程。用三角模型解決一些具有周期變化規(guī)律的實際問題。難點:實際問題抽象為三角函數(shù)模型




第7周




5




正切函數(shù)的圖象和性質(zhì)(3)




已知三角函數(shù)值求角(2)




正切函數(shù)的圖象和性質(zhì)




反三角函數(shù)的表示




第8周




5




三角函數(shù)單元復(fù)習(xí)




知識點的復(fù)習(xí)+練習(xí)卷




第9周




5




平面向量的實際背景及基本概念(2)、平面向量的線性運算(2)




向量的概念。相等向量的概念。向量的幾何表示。向量加、減法的運算及幾何意義。向量數(shù)乘運算及幾何意義。




第10周




5




平面向量的基本定理及坐標(biāo)表示(2)




平面向量的數(shù)量積(2)




平面向量基本定理。會用平面向量數(shù)量積的表示向量的模與夾角。




第11周




5




平面向量的應(yīng)用舉例(2)




用向量方法解決實際問題的方法。向量方法解決幾何問題的三步曲。




第12周




5




向量平移、正弦定理、余弦定理




向量平移的公式




第13周




5




簡單的三角恒等變換(3)




第三章小結(jié)(1)




以11個公式為依據(jù),推導(dǎo)和差化積、積化和差等公式,會進行三角變換。




第14周




5




期末復(fù)習(xí)





第15周




5




期末復(fù)習(xí)




分章歸納復(fù)習(xí)+3套模擬測試




高一數(shù)學(xué)教學(xué)計劃5

  一、指導(dǎo)思想

  本學(xué)期高一備課組以學(xué)校工作計劃為指導(dǎo),以提高教學(xué)質(zhì)量為目標(biāo),以優(yōu)化課堂教學(xué)為中心,團結(jié)合作,努力提高思想素質(zhì)和業(yè)務(wù)素質(zhì),團結(jié)合作,互相學(xué)習(xí),認真?zhèn)浜谜n,上好每一節(jié)課,并結(jié)合新教材的特點,開展研究性學(xué)習(xí)的活動,在教學(xué)中,抓好基礎(chǔ)知識教學(xué),著重學(xué)生本事的培養(yǎng),打好基礎(chǔ),全面提高,為來年高考作好充分的準(zhǔn)備,爭取優(yōu)異的成績。

  二、教學(xué)目標(biāo)、

 。ㄒ唬┣橐饽繕(biāo)

 。1)經(jīng)過分析問題的方法的教學(xué),培養(yǎng)學(xué)生的學(xué)習(xí)的興趣。

 。2)供給生活背景,經(jīng)過數(shù)學(xué)建模,讓學(xué)生體會數(shù)學(xué)就在身邊,培養(yǎng)學(xué)數(shù)學(xué)用數(shù)學(xué)的意識。(3)在探究三角函數(shù)的性質(zhì),體驗獲得數(shù)學(xué)規(guī)律的艱辛和樂趣,在分組研究合作學(xué)習(xí)中學(xué)會交流、相互評價,提高學(xué)生的合作意識

 。4)基于情意目標(biāo),調(diào)控教學(xué)流程,堅定學(xué)習(xí)信念和學(xué)習(xí)信心。

  (5)還時空給學(xué)生、還課堂給學(xué)生、還探索和發(fā)現(xiàn)權(quán)給學(xué)生,給予學(xué)生自主探索與合作交流的機會,在發(fā)展他們思維本事的同時,發(fā)展他們的數(shù)學(xué)情感、學(xué)好數(shù)學(xué)的自信心和追求數(shù)學(xué)的科學(xué)精神。

 。6)讓學(xué)生體驗“發(fā)現(xiàn)——挫折——矛盾——頓悟——新的發(fā)現(xiàn)”這一科學(xué)發(fā)現(xiàn)歷程法。

  (二)本事要求

  1、培養(yǎng)學(xué)生記憶本事。

 。1)經(jīng)過定義、命題的總體結(jié)構(gòu)教學(xué),揭示其本質(zhì)特點和相互關(guān)系,培養(yǎng)對數(shù)學(xué)本質(zhì)問題的背景事實及具體數(shù)據(jù)的記憶。

 。3)經(jīng)過揭示三角函數(shù)有關(guān)概念、公式和圖形的對應(yīng)關(guān)系,培養(yǎng)記憶本事。

  2、培養(yǎng)學(xué)生的運算本事。

 。1)經(jīng)過概率的訓(xùn)練,培養(yǎng)學(xué)生的運算本事。

 。2)加強對概念、公式、法則的明確性和靈活性的教學(xué),培養(yǎng)學(xué)生的運算本事。

 。3)經(jīng)過算法初步,1算法步驟2程序框圖(起始框,確定框,附值框,)3silab語言(順序,條件語句,循環(huán)語句)。第二部分,統(tǒng)計,第三步分,概率,古典概型,幾何概型。的教學(xué),提高學(xué)生是運算過程具有明晰性、合理性、簡捷性本事。

  (4)經(jīng)過一題多解、一題多變培養(yǎng)正確、迅速與合理、靈活的運算本事,促使知識間的滲透和遷移。

 。5)利用數(shù)形結(jié)合,另辟蹊徑,提高學(xué)生運算本事。

  三、具體措施

  1、期中考前上好第一冊(必修3),期中考后完成好必修4

  2、抓好數(shù)學(xué)補差,培優(yōu)活動各班在星期1或星期4的午時

  3、立足于教材。

  4、要求學(xué)生完成課后練習(xí)及每一章課后習(xí)題

  5、我們組還繼續(xù)學(xué)習(xí)了《課堂教學(xué)論》,《現(xiàn)代教育技術(shù)》,努力學(xué)習(xí)多媒體課件的制作。

  6、繼續(xù)認真開展師徒結(jié)對活動,以老帶新。師徒間經(jīng)常聽課交流,認真評課。集中備課,共同商討教材等。

  7抓好競賽輔導(dǎo),時間定于周三、周四的提前時間,周六的午時1點到3點;任教教師:高一全體數(shù)學(xué)教師。

  8、段統(tǒng)一考試在周日或者周三的晚自修時間,每隔2周考一次;

  9、上學(xué)期必修4的學(xué)分認定考試補考及落實工作;

  10、響應(yīng)學(xué)校教務(wù)處的備課計劃安排,督促組員落實工作;

  11、抓好團體備課

高一數(shù)學(xué)教學(xué)計劃6

  高一年級學(xué)生往往對課程增多、課堂學(xué)習(xí)容量加大不適應(yīng),顧此失彼,精力分散,使聽課效率下降,要重視聽法的指導(dǎo)。數(shù)學(xué)網(wǎng)高中頻道整理了高一數(shù)學(xué)下冊教學(xué)計劃,希望能幫助教師授課!

  本學(xué)期高一數(shù)學(xué)備課組的工作緊緊圍繞學(xué)校、教科處及教研組的計劃安排來開展,以教學(xué)改革為動力、以學(xué)校創(chuàng)建為前提、以提高課堂效率為目的、以自主教育為模式、以現(xiàn)代信息技術(shù)為手段、以培養(yǎng)學(xué)生的創(chuàng)新能力為目標(biāo),全面改進教育教學(xué)方法,更新教育觀念,改變傳統(tǒng)教學(xué)模式,培養(yǎng)學(xué)生綜合素質(zhì),搞好本學(xué)期工作。

  一、指導(dǎo)思想

  以教研組工作計劃為指導(dǎo),按照均衡、優(yōu)質(zhì)、高效原則,精誠團結(jié),和諧創(chuàng)新,加強科組建設(shè),提高高一數(shù)學(xué)備課組的整體實力;努力完成本學(xué)期的教學(xué)目標(biāo),進一步提高作為未來公民所必要的數(shù)學(xué)素養(yǎng),以滿足學(xué)生發(fā)展與社會進步的需要。這學(xué)期的工作重點是繼續(xù)進行新課標(biāo)和新教材的研究,要著重抓好差生輔導(dǎo)和尖子生的培養(yǎng),讓絕大部分學(xué)生跟上教學(xué)進度。

  二、工作思路

  1.在學(xué)校科研處和教務(wù)處的領(lǐng)導(dǎo)下,有計劃地組織好全組教師的學(xué)習(xí)與培訓(xùn)工作,特別是搞好新課程標(biāo)準(zhǔn)和新教材的學(xué)習(xí)、研究和交流,落實學(xué)校的辦學(xué)理念。推廣現(xiàn)代教育科研成果,定期開展多種形式的教研活動。

  2.以組風(fēng)建設(shè)為主線,以新課程標(biāo)準(zhǔn)為指導(dǎo),以教法探索為重點,以構(gòu)建主動發(fā)展型課堂教學(xué)模式為主題,以提高隊伍素質(zhì),提高課堂效率,提高教學(xué)質(zhì)量為目的。深化課堂教學(xué)改革,努力改善教與學(xué)的方式。

  3.教學(xué)研究要以集體備課為基礎(chǔ),以作課、聽課、評課活動以及出考卷活動為載體,以課題研究、論文、案例撰寫為提高,在研究狀態(tài)下理性的工作。培養(yǎng)本組教師養(yǎng)成教學(xué)反思的習(xí)慣,

  三、教材分析(結(jié)構(gòu)系統(tǒng)、單元內(nèi)容、重難點)

  必修5:

  第一章:解三角形;重點是正弦定理與余弦定理;難點是正弦定理與余弦定理的應(yīng)用;

  第二章:數(shù)列;重點是等差數(shù)列與等比數(shù)列的前n項的和;難點是等差數(shù)列與等比數(shù)列前n項的和與應(yīng)用;

  第三章:不等式;重點是一元二次不等式及其解法、二元一次不等式(組)與基本不等式;難點是二元一次不等式(組)及應(yīng)用;

  必修2:

  第一章:立體幾何初步。重點是空間幾何體的三視圖和直觀圖及表面積與體積,直線與平面平行及垂直的判定及其性質(zhì);難點是空間幾何體的三視圖,直線與平面平行及垂直的判定及其性質(zhì);

  第二章:直線與方程;重點是直線的傾斜角與斜率及直線方程;難點是如何選擇恰當(dāng)?shù)闹本方程求解題目;圓與方程;重點是圓的方程及直線與圓的位置關(guān)系;難點是直線與圓的位置關(guān)系。

  四、學(xué)情分析

  經(jīng)過一學(xué)期的觀察發(fā)現(xiàn)學(xué)生的基礎(chǔ)知識水平、學(xué)習(xí)自覺性與基本學(xué)習(xí)方法比較欠缺,學(xué)生心理不穩(wěn)定,空間思維、抽象思維、邏輯思維較差,而本學(xué)期所要學(xué)習(xí)的內(nèi)容包含了高中數(shù)學(xué)中重要而難學(xué)的數(shù)列、不等式、立體幾何部分,因而教學(xué)時盡可能以課本為本,注重基礎(chǔ)和規(guī)范,不隨意拔高難度,努力使絕大部分學(xué)生打好三基。教學(xué)時在完成市教學(xué)進度的前提下,盡可能的放慢速度,確保絕大部分學(xué)生的學(xué)習(xí)質(zhì)量。平時教學(xué)中老師要注意不斷鼓勵和欣賞學(xué)生的優(yōu)點和進步,使學(xué)生不斷體驗到學(xué)習(xí)數(shù)學(xué)的樂趣。平時測試要注重考查三基,嚴格控制難度,使絕大部分學(xué)生及格,使學(xué)生體驗到進步和成功的喜悅。同時需進一步加強學(xué)法指導(dǎo),多于學(xué)生進行情感交流。

  五、工作目標(biāo)

  1、狠抓教學(xué)常規(guī)和學(xué)習(xí)常規(guī)的貫徹落實。在數(shù)學(xué)教學(xué)研究中努力做到三主(教學(xué)研究以學(xué)習(xí)理論為主導(dǎo)、大綱教材課程標(biāo)準(zhǔn)為主體、探索教學(xué)模式為主線)和三有(教學(xué)研究要對教學(xué)實踐有指導(dǎo)、對教學(xué)質(zhì)量有促進、對教師有提高)。

  2、加強現(xiàn)代教育教學(xué)理論的學(xué)習(xí),積極進行課堂教學(xué)改革試驗、逐步形成本學(xué)科特色,把我組建設(shè)成一個團結(jié)協(xié)作、富有開拓創(chuàng)新精神的先進集體。

  3、把對新課程標(biāo)準(zhǔn)的學(xué)習(xí)與對新教材的研究結(jié)合起來,力求使每一位數(shù)學(xué)老師都能較好地領(lǐng)會新課程標(biāo)準(zhǔn)的基本理念和目標(biāo),較好地把握數(shù)學(xué)學(xué)習(xí)內(nèi)容中有關(guān)數(shù)感、符號感、空間觀念、統(tǒng)計觀念、應(yīng)用意識、推理能力等核心概念的內(nèi)涵和要求,初步掌握所教教材的結(jié)構(gòu)特點、每章每節(jié)教材的地位、作用和目標(biāo)要求。

  4、認真做好義務(wù)教育數(shù)學(xué)實驗教材和高中新教材的階段總結(jié),加強教法的研究,注意總結(jié)和發(fā)現(xiàn)典型的教學(xué)案例,積極組織本組教師做好資料、信息收集工作,撰寫教育教學(xué)論文、案例,爭取在全國等各級論文評比中獲獎。

  六、具體措施:

  1、激發(fā)學(xué)生的學(xué)習(xí)興趣。由數(shù)學(xué)活動、故事、吸引人的課、合理的要求、師生談話等途徑樹立學(xué)生的學(xué)習(xí)信心,提高學(xué)習(xí)興趣,在主觀作用下上升和進步。

  2、注意從實例出發(fā),從感性提高到理性;注意運用對比的方法,反復(fù)比較相近的概念;注意結(jié)合直觀圖形,說明抽象的知識;注意從已有的知識出發(fā),啟發(fā)學(xué)生思考。

  3、加強培養(yǎng)學(xué)生的邏輯思維能力就解決實際問題的能力,以及培養(yǎng)提高學(xué)生的自學(xué)能力,養(yǎng)成善于分析問題的習(xí)慣,進行辨證唯物主義教育。

  4、抓住公式的推導(dǎo)和內(nèi)在聯(lián)系;加強復(fù)習(xí)檢查工作;抓住典型例題的分析,講清解題的關(guān)鍵和基本方法,注重提高學(xué)生分析問題的能力。

  5、自始至終貫徹教學(xué)四環(huán)節(jié),針對不同的教材內(nèi)容選擇不同教法。

  6、重視數(shù)學(xué)應(yīng)用意識及應(yīng)用能力的培養(yǎng)。

  7、積極做好集體備課工作,達到內(nèi)容統(tǒng)一、進度統(tǒng)一、目標(biāo)統(tǒng)一、例習(xí)題統(tǒng)一、資料統(tǒng)一、測試統(tǒng)一;上好每一節(jié)課,及時對學(xué)生的學(xué)習(xí)進行觀察與指導(dǎo);課后進行有效的輔導(dǎo);進行有效的課堂反思。

高一數(shù)學(xué)教學(xué)計劃7

  一、活動開展情景

  在我縣,今年的教學(xué)主體是“有效教學(xué)”,為此,我組在開展教研活動時也是緊緊圍繞這一主題進行開的。在本學(xué)期內(nèi),我組主要開展過以下活動:

  1、備課。本學(xué)期備課的形式主要是一個人備課為主,團體備課為輔。具體流程為個人備課→團體備課→個人備課,簡稱三級備課。

  2、公開課。本學(xué)期的公開課主要是以每位教師不低于一次公開課的標(biāo)準(zhǔn)來執(zhí)行的。公開課的開展形式與以往也有所不一樣,以往的公開課僅有聽課和評課兩個環(huán)節(jié),忽視了說課環(huán)節(jié)。但本學(xué)期卻是把以往忽視了的說課環(huán)節(jié)也補上了,流程上將說課環(huán)節(jié)放在課前,構(gòu)成了課前說課→聽課授課→評課議課的模式。

  3、課賽。本學(xué)期我組共參加過校外課賽一人次,獲得三等獎一人次。校內(nèi)不設(shè)課賽活動。

  4、示范課。本學(xué)期我組上過示范課共計四人次,校內(nèi)示范課三人次,校外示范課1人次。

  5、數(shù)學(xué)競賽。本學(xué)期我組共組織開展過數(shù)學(xué)競賽一次,參賽學(xué)生達50余人,占全校學(xué)生總數(shù)的近10%。向?qū)W校申請獲得專項資金710元,受益學(xué)生37人。頒發(fā)“優(yōu)秀輔導(dǎo)教師”榮譽稱號三人次。

  6、學(xué)校文化建設(shè)。本學(xué)期我組特向?qū)W校申請宣傳欄展板一塊(近3平方米),在宣傳和展

  示我組的相關(guān)活動照片以及文件精神的同時,也在完善我校的學(xué)校文化建設(shè)。

  7、階段性教學(xué)質(zhì)量反饋座談會。本學(xué)期共開展過兩次這類會議。

  8、其他活動。外出培訓(xùn)學(xué)習(xí)四人次,網(wǎng)絡(luò)培訓(xùn)學(xué)習(xí)6人次。全組成員外出交流學(xué)習(xí)兩次,其他派代表外出交流學(xué)習(xí)三次。

  二、活動成效

  1、促進了教師隊伍的建設(shè)和完善。本學(xué)期我組教師在以團隊合作及個人努力拼搏相得益彰的結(jié)合下,經(jīng)過以上一系列的活動加強了師師之間、師生之間、生生之間的溝通協(xié)調(diào),再加以學(xué)校對本組的大力支持,本學(xué)期我組對教師隊伍的建設(shè)取得了必須的成效。

  2、開拓了教師的視野,提升了團隊的師資力量。經(jīng)過外出培訓(xùn)學(xué)習(xí),網(wǎng)絡(luò)學(xué)習(xí)以及與其他學(xué)校開展教研交流活動,不但開拓了我組教師的視野,同時也提升了我組教師的專業(yè)素養(yǎng)。

  3、促進教師的個人成長與團隊合作精神。經(jīng)過開展團體備課、公開課、示范課以及課賽等活動,不但促進了我組教師的個人成長,同時也加強了我組的團隊合作精神。

  4、構(gòu)成了良好的競爭觀念和大局意識。經(jīng)過開展課賽活動和設(shè)立“優(yōu)秀輔導(dǎo)教師”獎,在團隊之間有了競爭觀念,同時也經(jīng)過績效的捆綁使得組內(nèi)成員有了大局意識。

  三、存在問題

  1、缺乏領(lǐng)導(dǎo)藝術(shù)和管理本事。在我校數(shù)學(xué)組成員中,我屬最年輕的數(shù)學(xué)教師之一,自然在管理的過程中對很多老教師心存芥蒂,這是心理隔閡問題;很難做到在對老教師十分尊重的同時又讓他們對自我的主張很服從,這是本事問題,也是領(lǐng)導(dǎo)藝術(shù)問題;很難做到讓年輕教師彰顯個性的同時又讓他們能夠嚴格約束自我,這是溝通問題。

  2、個人精力有限。本人在擔(dān)任我校數(shù)學(xué)教研組的同時還承擔(dān)著兩個畢業(yè)班的數(shù)學(xué)教學(xué)工作和一個畢業(yè)班的班主任工總,工作任務(wù)較為繁重。所以,各項工作難免會出現(xiàn)百密而一疏的漏洞。

  3、缺乏組織和管理實踐經(jīng)驗。參加工作才一年半就開始擔(dān)任這樣的職務(wù),組織管理一群比自我大的成年人,這是零起點,無從談及組織和管理經(jīng)驗。唯有摸著石頭過河,邊工作邊總結(jié),逐步積累這方面的實踐經(jīng)驗。

  四、努力方向

  對于目前存在的問題,日后改善的措施還是以人為本,尊重同事,在虛心向經(jīng)驗豐富異常以往從事過這方面工作的老教師請教的同時,也要加強與年輕教師的溝通,多聽取他們的意見提議,努力提高自我的業(yè)務(wù)水平和管理本事,不斷學(xué)習(xí)新的管理理念,提高自我的管理藝術(shù)和組織本事。

高一數(shù)學(xué)教學(xué)計劃8

  一、教材分析(結(jié)構(gòu)系統(tǒng)、單元內(nèi)容、重難點)

  必修5第一章:解三角形。重點是正弦定理與余弦定理。難點是正弦定理與余弦定理的應(yīng)用。第二章:數(shù)列。重點是等差數(shù)列與等比數(shù)列的前n項的和。難點是等差數(shù)列與等比數(shù)列前n項的和與應(yīng)用。第三章:不等式。重點是一元二次不等式及其解法、二元一次不等式(組)與簡單的線性規(guī)劃問題、基本不等式。難點是二元一次不等式(組)與簡單的線性規(guī)劃問題及應(yīng)用。

  必修2第一章:空間幾何體。重點是空間幾何體的三視圖和直觀圖及表面積與體積。難點是空間幾何體的三視圖。第二章:點、直線、平面之間的位置關(guān)系。重點與難點都是直線與平面平行及垂直的判定及其性質(zhì)。第三章:直線與方程。重點是直線的傾斜角與斜率及直線方程。難點是如何選擇恰當(dāng)?shù)闹本方程求解題目。第四章:圓與方程。重點是圓的方程及直線與圓的位置關(guān)系。難點是直線與圓的位置關(guān)系。

  二、學(xué)生分析(雙基智能水平、學(xué)習(xí)態(tài)度、方法、紀(jì)律)

  較去年而言,今年的學(xué)生的素質(zhì)有了比較大的提高,學(xué)生的基礎(chǔ)知識水平與基本學(xué)習(xí)方法比較扎實,大部分的學(xué)生對學(xué)習(xí)都有很大的興趣,學(xué)習(xí)紀(jì)律比較自覺。

  三、教學(xué)目的要求

  1、通過對任意三角形邊長和角度關(guān)系的探索,掌握正弦定理、余弦定理,并能解決一些簡單的三角形度量問題和與測量及幾何計算有關(guān)的實際問題。

  2、通過日常生活中的實例,了解數(shù)列的概念和幾種簡單的表示方法,了解數(shù)列是一種特殊的函數(shù)。理解等差數(shù)列、等比數(shù)列的概念,探索并掌握2種數(shù)列的通項公式與前n項和的公式,能用有關(guān)的知識解決相應(yīng)的問題。

  3、理解不等式(組)對于刻畫不等關(guān)系的意義和價值。掌握求解一元二次不等式的基本方法,并能解決一些實際問題。能用一元二次不等式組表示平面區(qū)域,并嘗試解決簡單的二元線性規(guī)劃問題。

  4、幾何學(xué)研究現(xiàn)實世界中物體的形狀、大小與位置的學(xué)科。直觀感知、操作確認、思辨論證、度量計算是認識和探索幾何圖形及其性質(zhì)的方法。先從對空間幾何體的整體觀察入手,認識空間圖形及其直觀圖的畫法。再以長方體為載體,直觀認識和理解空間中點、直線、平面之間的位置關(guān)系,并利用數(shù)學(xué)語言表述有關(guān)平行、垂直的性質(zhì)與判定,對某些結(jié)論進行論證。另外了解一些簡單幾何體的表面積與體積的計算方法。在解析幾何初步中,在平面直角坐標(biāo)系中建立直線和圓的代數(shù)方程,運用代數(shù)方法研究它們的幾何性質(zhì)及其相互關(guān)系,了解空間直角坐標(biāo)系。體會數(shù)形結(jié)合的思想,初步形成用代數(shù)方法解決幾何問題的能力。

  四、完成教學(xué)任務(wù)和提高教學(xué)質(zhì)量的具體措施

  積極做好集體備課工作,達到內(nèi)容統(tǒng)一、進度統(tǒng)一、目標(biāo)統(tǒng)一、例題統(tǒng)一、習(xí)題統(tǒng)一、資料統(tǒng)一。上好每一節(jié)課,及時對學(xué)生的思想進行觀察與指導(dǎo)。課后進行有效的輔導(dǎo)。進行有效的課堂反思。

高一數(shù)學(xué)教學(xué)計劃9

  一、基本情況

  高一計算機1323班共有學(xué)生55人,其中男生42人,女生13人。高一新生剛進入高中,學(xué)習(xí)環(huán)境新,好奇心強.但是普遍學(xué)習(xí)習(xí)慣不好,數(shù)學(xué)基礎(chǔ)較差,學(xué)習(xí)興趣不濃.所以工作的重心在于提高學(xué)生對數(shù)學(xué)科的興趣,以及在補足初中知識漏洞的前提下,進一步的夯實學(xué)生基礎(chǔ).

  二、指導(dǎo)思想

  全面提高學(xué)生的科學(xué)文化素養(yǎng),圍著課堂教學(xué)這個中心,更新教育觀念,進一步提高教學(xué)水平,培養(yǎng)學(xué)生分析問題解決問題的能力,同時扎扎實實抓好基礎(chǔ)知識,注意學(xué)生習(xí)慣的培養(yǎng),為三年后高考打下堅實的基礎(chǔ)。

  三、工作任務(wù)和措施

  任務(wù):基礎(chǔ)模塊第一章至第四章

  第一章集合(9月份

  第二章不等式(10月份

  第三章函數(shù)(11月份

  第四章指數(shù)函數(shù)與對數(shù)函數(shù)(12月份-1月份

  措施:

  1.夯實三基

  知識、技能和能力三者關(guān)系是互相依存、互相促進的整體,能力是在知識的教學(xué)和技能的培訓(xùn)中形成的,通過數(shù)學(xué)思想的形成和數(shù)學(xué)方法的掌握,能力才得到培養(yǎng)和發(fā)展,同時,能力的提高又會對知識的理解和掌握起促進作用。因此,在教學(xué)中應(yīng)注意:

  A.教學(xué)面向全體學(xué)生。

  B.重視概念的歸納、規(guī)律的總結(jié)、技能的訓(xùn)練。

  C.重視知識的產(chǎn)生、發(fā)展過程。

  D.加強知識過關(guān)檢測,做好查漏補缺工作。

  2.優(yōu)化課堂教學(xué)結(jié)構(gòu)

  A.精心設(shè)計課堂教學(xué):

  B.課堂練習(xí)典型化;

  C.教學(xué)語言精練化

  D.板書規(guī)范化。

  3.加強學(xué)習(xí)方法指導(dǎo):

  A.指導(dǎo)學(xué)生看書,培養(yǎng)學(xué)生主動學(xué)習(xí)的習(xí)慣。

  B.指導(dǎo)學(xué)生整理知識,總結(jié)解題規(guī)律,歸納典型例題解法及一題多解與多題一解。

  4.加強學(xué)風(fēng)建設(shè)與學(xué)習(xí)習(xí)慣的培養(yǎng)。

  適當(dāng)安排作業(yè),認真檢查督促,加強優(yōu)生和后進生的輔導(dǎo),對學(xué)生的作業(yè)盡量做到面批。

  四、各章節(jié)授課具體時間安排:

  (基礎(chǔ)模塊第一章集合(約12課時

  (1理解集合、元素及其關(guān)系,掌握集合的表示法。

  (2掌握集合之間的關(guān)系(子集、真子集、相等。

  (3理解集合的運算(交、并、補。

  (4了解充要條件。

  (基礎(chǔ)模塊第二章不等式(約12課時

  (1理解不等式的基本性質(zhì)。

  (2掌握區(qū)間的概念。高一上數(shù)學(xué)教學(xué)計劃高一上數(shù)學(xué)教學(xué)計劃。

  (3掌握一元二次不等式的解法。

  基礎(chǔ)模塊)第三章函數(shù)(約20課時

  (1理解函數(shù)的概念和函數(shù)的三種表示法。

  (2理解函數(shù)的單調(diào)性與奇偶性。

  (3能運用函數(shù)的知識解決有關(guān)實際問題。

  (基礎(chǔ)模塊第四章指數(shù)函數(shù)與對數(shù)函數(shù)(約20課時

  (1理解有理指數(shù)冪,掌握實數(shù)指數(shù)冪及其運算法則,掌握利用計算器進行冪的計算方法。

  (2了解冪函數(shù)的概念及其簡單性質(zhì)。

  (3理解指數(shù)函數(shù)的概念、圖像及性質(zhì)。

  (4理解對數(shù)的概念(含常用對數(shù)、自然對數(shù)及積、商、冪的對數(shù),掌握利用計算器求對數(shù)值的方法。

  (5理解對數(shù)函數(shù)的概念、圖像及性質(zhì)。

  (6能運用指數(shù)函數(shù)與對數(shù)函數(shù)的知識解決有關(guān)實際問題。

高一數(shù)學(xué)教學(xué)計劃10

  平面上的直線就是由平面直角坐標(biāo)系中的一個二元一次方程所表示的圖形 。

  教學(xué)目標(biāo)

  (1)掌握由一點和斜率導(dǎo)出直線方程的方法,掌握直線方程的點斜式、兩點式和直線方程的一般式,并能根據(jù)條件熟練地求出直線的方程.

  (2)理解直線方程幾種形式之間的內(nèi)在聯(lián)系,能在整體上把握直線的方程.

  (3)掌握直線方程各種形式之間的互化.

  (4)通過直線方程一般式的教學(xué)培養(yǎng)學(xué)生全面、系統(tǒng)、周密地分析、討論問題的能力.

  (5)通過直線方程特殊式與一般式轉(zhuǎn)化的教學(xué),培養(yǎng)學(xué)生靈活的思維品質(zhì)和辯證唯物主義觀點.

  (6)進一步理解直線方程的概念,理解直線斜率的意義和解析幾何的思想方法.

  教學(xué)建議

  1.教材分析

  (1)知識結(jié)構(gòu)

  由直線方程的概念和直線斜率的概念導(dǎo)出直線方程的點斜式;由直線方程的點斜式分別導(dǎo)出直線方程的斜截式和兩點式;再由兩點式導(dǎo)出截距式;最后都可以轉(zhuǎn)化歸結(jié)為直線的一般式;同時一般式也可以轉(zhuǎn)化成特殊式.

  (2)重點、難點分析

 、俦竟(jié)的重點是直線方程的點斜式、兩點式、一般式,以及根據(jù)具體條件求出直線的方程.

  解析幾何有兩項根本性的任務(wù):一個是求曲線的方程;另一個就是用方程研究曲線.本節(jié)內(nèi)容就是求直線的方程,因此是非常重要的內(nèi)容,它對以后學(xué)習(xí)用方程討論直線起著直接的作用,同時也對曲線方程的學(xué)習(xí)起著重要的作用.

  直線的點斜式方程是平面解析幾何中所求出的第一個方程,是后面幾種特殊形式的源頭.學(xué)生對點斜式學(xué)習(xí)的效果將直接影響后繼知識的學(xué)習(xí).

 、诒竟(jié)的難點是直線方程特殊形式的限制條件,直線方程的整體結(jié)構(gòu),直線與二元一次方程的關(guān)系證明.

  2.教法建議

  (1)教材中求直線方程采取先特殊后一般的思路,特殊形式的方程幾何特征明顯,但局限性強;一般形式的方程無任何限制,但幾何特征不明顯.教學(xué)中各部分知識之間過渡要自然流暢,不生硬.

  (2)直線方程的一般式反映了直線方程各種形式之間的統(tǒng)一性,教學(xué)中應(yīng)充分揭示直線方程本質(zhì)屬性,建立二元一次方程與直線的對應(yīng)關(guān)系,為繼續(xù)學(xué)習(xí)曲線方程打下基礎(chǔ).

  直線一般式方程都是字母系數(shù),在揭示這一概念深刻內(nèi)涵時,還需要進行正反兩方面的分析論證.教學(xué)中應(yīng)重點分析思路,還應(yīng)抓住這一有利時使學(xué)生學(xué)會嚴謹科學(xué)的分類討論方法,從而培養(yǎng)學(xué)生全面、系統(tǒng)、辯證、周密地分析、討論問題的能力,特別是培養(yǎng)學(xué)生邏輯思維能力,同時培養(yǎng)學(xué)生辯證唯物主義觀點

  (3)在強調(diào)幾種形式互化時要向?qū)W生充分揭示各種形式的特點,它們的幾何特征,參數(shù)的意義等,使學(xué)生明白為什么要轉(zhuǎn)化,并加深對各種形式的理解.

  (4)教學(xué)中要使學(xué)生明白兩個獨立條件確定一條直線,如兩個點、一個點和一個方向或其他兩個獨立條件.兩點確定一條直線,這是學(xué)生很早就接觸的幾何公理,然而在解析幾何,平面向量等理論中,直線或向量的方向是極其重要的要素,解析幾何中刻畫直線方向的量化形式就是斜率.因此,直線方程的兩點式和點斜式在直線方程的幾種形式中占有很重要的地位,而已知兩點可以求得斜率,所以點斜式又可推出兩點式(斜截式和截距式僅是它們的特例),因此點斜式最重要.教學(xué)中應(yīng)突出點斜式、兩點式和一般式三個教學(xué)高潮.

  求直線方程需要兩個獨立的條件,要依不同的幾何條件選用不同形式的方程.根據(jù)兩個條件運用待定系數(shù)法和方程思想求直線方程.

  (5)注意正確理解截距的概念,截距不是距離,截距是直線(也是曲線)與坐標(biāo)軸交點的相應(yīng)坐標(biāo),它是有向線段的數(shù)量,因而是一個實數(shù);距離是線段的長度,是一個正實數(shù)(或非負實數(shù)).

  (6)本節(jié)中有不少與函數(shù)、不等式、三角函數(shù)有關(guān)的問題,是函數(shù)、不等式、三角與直線的重要知識交匯點之一,教學(xué)中要適當(dāng)選擇一些有關(guān)的問題指導(dǎo)學(xué)生練習(xí),培養(yǎng)學(xué)生的綜合能力.

  (7)直線方程的理論在其他學(xué)科和生產(chǎn)生活實際中有大量的應(yīng)用.教學(xué)中注意聯(lián)系實際和其它學(xué)科,教師要注意引導(dǎo),增強學(xué)生用數(shù)學(xué)的意識和能力.

  (8)本節(jié)不少內(nèi)容可安排學(xué)生自學(xué)和討論,還要適當(dāng)增加練習(xí),使學(xué)生能更好地掌握,而不是僅停留在觀念上.

高一數(shù)學(xué)教學(xué)計劃11

、

 、瘢虒W(xué)內(nèi)容解析

  本節(jié)課的教學(xué)內(nèi)容,是指數(shù)函數(shù)的概念、性質(zhì)及其簡單應(yīng)用.教學(xué)重點是指數(shù)函數(shù)的圖像與性質(zhì).

  這是指數(shù)函數(shù)在本章的位置.

  指數(shù)函數(shù)是學(xué)生在學(xué)習(xí)了函數(shù)的概念、圖象與性質(zhì)后,學(xué)習(xí)的第一個新的初等函數(shù).它是一種新的函數(shù)模型,也是應(yīng)用研究函數(shù)的一般方法研究函數(shù)的一次實踐.指數(shù)函數(shù)的學(xué)習(xí),一方面可以進一步深化對函數(shù)概念的理解,另一方面也為研究對數(shù)函數(shù)、冪函數(shù)、三角函數(shù)等初等函數(shù)打下基礎(chǔ).因此,本節(jié)課的學(xué)習(xí)起著承上啟下的作用,也是學(xué)生體驗數(shù)學(xué)思想與方法應(yīng)用的過程.

  指數(shù)函數(shù)模型在貸款利率的計算以及考古中年代的測算等方面有著廣泛地應(yīng)用,與我們的日常生活、生產(chǎn)和科學(xué)研究有著緊密的聯(lián)系,因此,學(xué)習(xí)這部分知識還有著一定的現(xiàn)實意義.

  Ⅱ.教學(xué)目標(biāo)設(shè)置

  1.學(xué)生能從具體實例中概括指數(shù)函數(shù)典型特征,并用數(shù)學(xué)符號表示,建構(gòu)指數(shù)函數(shù)的概念.

  2.學(xué)生通過自主探究,掌握指數(shù)函數(shù)的圖象特征與性質(zhì),能夠利用指數(shù)函數(shù)的性質(zhì)比較兩個冪的大小.

  3.學(xué)生運用數(shù)形結(jié)合的思想,經(jīng)歷從特殊到一般、具體到抽象的研究過程,體驗研究函數(shù)的一般方法.

  4.在探究活動中,學(xué)生通過獨立思考和合作交流,發(fā)展思維,養(yǎng)成良好思維習(xí)慣,提升自主學(xué)習(xí)能力.

 、螅畬W(xué)生學(xué)情分析

  授課班級學(xué)生為南京師大附中實驗班學(xué)生.

  1.學(xué)生已有認知基礎(chǔ)

  學(xué)生已經(jīng)學(xué)習(xí)了函數(shù)的概念、圖象與性質(zhì),對函數(shù)有了初步的認識.學(xué)生已經(jīng)完成了指數(shù)取值范圍的擴充,具備了進行指數(shù)運算的能力.學(xué)生已有研究一次函數(shù)、二次函數(shù)等初等函數(shù)的直接經(jīng)驗.學(xué)生數(shù)學(xué)基礎(chǔ)與思維能力較好,初步養(yǎng)成了獨立思考、合作交流、反思質(zhì)疑等學(xué)習(xí)習(xí)慣.

  2.達成目標(biāo)所需要的認知基礎(chǔ)

  學(xué)生需要對研究的目標(biāo)、方法和途徑有初步的認識,需要具備較好的歸納、猜想和推理能力.

  3.難點及突破策略

  難點:1. 對研究函數(shù)的一般方法的認識.

  2. 自主選擇底數(shù)不當(dāng)導(dǎo)致歸納所得結(jié)論片面.

  突破策略:

  1.教師引導(dǎo)學(xué)生先明確研究的內(nèi)容與方法,從總體上認識研究的目標(biāo)與手段.

  2.組織匯報交流活動,展現(xiàn)思維過程,相互評價,相互啟發(fā),促進反思.

  3.對猜想進行適當(dāng)?shù)刈C明或說明,合情推理與演繹推理相結(jié)合.

 、簦虒W(xué)策略設(shè)計

  根據(jù)學(xué)生已有學(xué)習(xí)基礎(chǔ),為提升學(xué)生的學(xué)習(xí)能力,本節(jié)課的教學(xué),采用自主學(xué)習(xí)方式.通過教師引領(lǐng)學(xué)生經(jīng)歷研究函數(shù)及其性質(zhì)的過程,認識研究的目標(biāo)與策略,在研究的過程中逐漸完善研究的方法與手段.

  學(xué)生的自主學(xué)習(xí),具體落實在三個環(huán)節(jié):

  (1)建構(gòu)指數(shù)函數(shù)概念時,學(xué)生自主舉例,歸納特征,并用符號表示,討論底數(shù)的取值范圍,完善概念.

  (2)探究指數(shù)函數(shù)圖象特征與性質(zhì)時,學(xué)生自選底數(shù),開展自主研究,并通過匯報交流相互提升.

  (3)性質(zhì)應(yīng)用階段,學(xué)生自主舉例說明指數(shù)函數(shù)性質(zhì)的應(yīng)用.

  研究函數(shù)的性質(zhì),可以從形和數(shù)兩個方面展開.從圖形直觀和數(shù)量關(guān)系兩個方面,經(jīng)歷從特殊到一般、具體到抽象的過程。借助具體的指數(shù)函數(shù)的圖象,觀察特征,發(fā)現(xiàn)函數(shù)性質(zhì),進而猜想、歸納一般指數(shù)函數(shù)的圖象特征與性質(zhì),并適時應(yīng)用函數(shù)解析式輔以必要的說明和證明.

 、酰虒W(xué)過程設(shè)計

  1.創(chuàng)設(shè)情境建構(gòu)概念

  師:我們已經(jīng)學(xué)習(xí)了函數(shù)的概念、圖象與性質(zhì),大家都知道函數(shù)可以刻畫兩個變量之間的關(guān)系.你能用函數(shù)的觀點分析下面的例子嗎?

  師:大家知道細胞分裂的規(guī)律嗎?(出示情境問題)

  [情境問題1]某細胞分裂時,由一個分裂成2個,2個分裂成4個,4個分裂成8個,……如果細胞分裂x次,相應(yīng)的細胞個數(shù)為y,如何描述這兩個變量的關(guān)系?

  [情境問題2]某種放射性物質(zhì)不斷變化為其他物質(zhì),每經(jīng)過一年,這種物質(zhì)剩余的質(zhì)量是原來的84%.如果經(jīng)過x年,該物質(zhì)剩余的質(zhì)量為y,如何描述這兩個變量的關(guān)系?

  [師生活動]引導(dǎo)學(xué)生分析,找到兩個變量之間的函數(shù)關(guān)系,并得到解析式y(tǒng)=2x和y=0.84x.

  師:這樣的函數(shù)你見過嗎?是一次函數(shù)嗎?二次函數(shù)?這樣的函數(shù)有什么特點?你能再舉幾個例子嗎?

  〖問題1類似的函數(shù),你能再舉出一些例子嗎?這些函數(shù)有什么共同特點?能否寫成一般形式?

  [設(shè)計意圖]通過列舉生活中指數(shù)函數(shù)的具體例子,感受指數(shù)函數(shù)與實際生活的聯(lián)系.引導(dǎo)學(xué)生從具體實例中概括典型特征,初步形成指數(shù)函數(shù)的概念,并用數(shù)學(xué)符號表示.初步得到y(tǒng)=ax這個形式后,引導(dǎo)學(xué)生關(guān)注底數(shù)的取值范圍,完成概念建構(gòu).指數(shù)范圍擴充到實數(shù)后,關(guān)注x∈R時,y=ax是否始終有意義,因此規(guī)定a>0.a≠1并不是必須的,常函數(shù)在高等數(shù)學(xué)里是基本函數(shù),也有重要的意義.為了使指數(shù)函數(shù)與對數(shù)函數(shù)能構(gòu)成反函數(shù),規(guī)定a≠1.此處不需對此解釋,只要補充說“1的任何次方總是1,所以通常還規(guī)定a≠1”.

  [師生活動]學(xué)生舉例,教師引導(dǎo)學(xué)生觀察,其共同特點是自變量在指數(shù)位置,從而初步建立函數(shù)模型y=ax.

  [教學(xué)預(yù)設(shè)]學(xué)生能舉出具體的例子——y=3x,y=0.5x….如出現(xiàn)y=(-2)x最好,更便于引發(fā)對a的討論,但一般不會出現(xiàn).進而提出這類函數(shù)一般形式y(tǒng)=ax.

  方案1:

  生:(舉例)函數(shù)y=3x,y=4x,…(函數(shù)y=ax(a>1))

  師:板書學(xué)生舉例(稍停頓),能舉一個不太一樣的例子嗎?(提示:底數(shù)非得大于1嗎?)

  生:函數(shù)y=0.5x,y= x,y=(-2)x,y=1x…

  師:板書學(xué)生舉例(停頓),好像有不同意見.

  生:底數(shù)不能取負數(shù).

  師:為什么?

  生:如果底數(shù)取負數(shù)或0,x就不能取任意實數(shù)了.

  師:我們已經(jīng)將指數(shù)的取值范圍擴充到了R,我們希望這些函數(shù)的定義域就是R.

  (若沒有學(xué)生注意到底數(shù)的取值范圍,可引導(dǎo)學(xué)生關(guān)注例舉函數(shù)的定義域.若有同學(xué)提出情境中函數(shù)的定義域應(yīng)為N+,師:我們已經(jīng)將指數(shù)的取值范圍擴充到了R,函數(shù)y=2x和y=0.84x中,能否將定義域擴充為R?你們所舉的例子中,定義域是否為R?)

  師:這些函數(shù)有什么共同特點?

  生:都有指數(shù)運算.底數(shù)是常數(shù),自變量在指數(shù)位置.

  (若有學(xué)生舉出類似y=max的例子,引導(dǎo)學(xué)生觀察,它依然具有自變量在指數(shù)位置的特征.而刻畫這一特點的最簡單形式就是y=ax,從而初步建立函數(shù)模型y=ax,初步體會基本初等函數(shù)的作用.)

  師:具備上述特征的函數(shù)能否寫成一般形式?

  生:可以寫成y=ax(a>0).

  師:當(dāng)a=1時,函數(shù)就是常數(shù)函數(shù)y=1.對于這個函數(shù),我們已經(jīng)比較了解了.通常我們還規(guī)定a≠1.今天我們就來了解一下這個新函數(shù).(出示指數(shù)函數(shù)定義)

  方案2:

  生:(舉例)函數(shù)y=3x,y=4x,…(函數(shù)y=ax(a>1))

  師:板書學(xué)生舉例(稍停頓),能舉一個不太一樣的例子嗎?(提示:底數(shù)非得大于1嗎?)

  生:函數(shù)y=0.5x,y= x,…

  師:這些函數(shù)的自變量是什么?它們有什么共同特點?

  生:(可用文字語言或符號語言概括)都有指數(shù)運算.底數(shù)是常數(shù),自變量在指數(shù)位置.可以寫成y=ax.

  師:y=ax中,自變量是x,底數(shù)a是常數(shù).以上例子的不同之處,是底數(shù)不同.那你覺得底數(shù)的取值范圍是什么呢?

  生:底數(shù)不能取負數(shù).

  師:為什么?

  生:如果底數(shù)取負數(shù)或0,x就不能取任意實數(shù)了.

  師:為了研究的方便,我們要求底數(shù)a>0.當(dāng)a=1時,函數(shù)就是常數(shù)函數(shù)y=1.對于這個函數(shù),我們已經(jīng)比較了解了.通常我們還規(guī)定a≠1.今天我們就來了解一下這個新函數(shù).(出示指數(shù)函數(shù)定義)

  [階段小結(jié)]一般地,函數(shù)y=ax(a>0且a≠1)稱為指數(shù)函數(shù).它的定義域是R.

  [意圖分析]概念教學(xué)應(yīng)當(dāng)讓學(xué)生感受形成過程,了解知識的來龍去脈,那種直接拋出定義后輔以“三項注意”的做法剝奪了學(xué)生參與概念形成的過程.此處不宜糾纏于y=22x是否為指數(shù)函數(shù)等細枝末節(jié).指數(shù)函數(shù)的基本特征是自變量出現(xiàn)在指數(shù)上,應(yīng)促使學(xué)生對概念本質(zhì)的理解.指數(shù)函數(shù)概念的形成,經(jīng)歷了一個由粗到細,由特殊到一般,由具體到抽象的漸進過程,這樣更加符合人們的認知心理.

  2.實驗探索匯報交流

  (1)構(gòu)建研究方法

  師:我們定義了一個新的函數(shù),接下來,我們研究什么呢?

  生:研究函數(shù)的性質(zhì).

  〖問題2你打算如何研究指數(shù)函數(shù)的性質(zhì)?

  [設(shè)計意圖]學(xué)生已經(jīng)學(xué)習(xí)了函數(shù)的概念、函數(shù)的表示方法與函數(shù)的一般性質(zhì),對函數(shù)有了初步的認識.在此認知基礎(chǔ)上,引導(dǎo)學(xué)生自己提出所要研究的問題,尋找研究問題的方法.開始的問題較寬泛,教師要縮小問題范圍,用提示語口頭提問啟發(fā).教師應(yīng)充分尊重學(xué)生的思維個性,提供自主探究的平臺,通過匯報交流活動達成共識實現(xiàn)殊途同歸.中學(xué)階段,特別是高一新授課階段,提倡學(xué)生以形象思維作為抽象思維的支撐.

  [師生活動]師生經(jīng)過討論,解決啟發(fā)性提示問題,確定研究的內(nèi)容與方法.

  [教學(xué)預(yù)設(shè)]學(xué)生能夠根據(jù)已有知識和經(jīng)驗,在教師的啟發(fā)引導(dǎo)下,明確研究的內(nèi)容以及研究的方法.部分學(xué)生會提出先作出具體函數(shù)圖象,觀察圖象,概括性質(zhì),并進而歸納出一般函數(shù)的圖象的分布特征等性質(zhì).另一部分學(xué)生可能從具體函數(shù)的解析式出發(fā),研究函數(shù)性質(zhì),猜想一般函數(shù)的性質(zhì),然后再作出圖象加以驗證.

  師:(稍等片刻)我們一般要研究哪些性質(zhì)呢?

  生:變量取值范圍(定義域、值域)、單調(diào)性、奇偶性.

  師:(板書學(xué)生回答)怎樣研究這些性質(zhì)呢?

  生:先畫出函數(shù)圖象,觀察圖象,分析函數(shù)性質(zhì).

  生:先研究幾個具體的指數(shù)函數(shù),再研究一般情況.

  師:板書“畫圖觀察”,“取特殊值”

  (若沒有學(xué)生提出從特殊到一般的思路.師:底數(shù)a的取值不同,函數(shù)的性質(zhì)可能也會有不同.一次函數(shù)y=kx(k≠0)中,一次項系數(shù)k不同,函數(shù)性質(zhì)就不同.底數(shù)a可以取無數(shù)多個值,那我們怎么辦呢?)

  (若有學(xué)生通過對y=2x解析式的分析,得到了性質(zhì),并提出從具體函數(shù)的解析式出發(fā),研究函數(shù)性質(zhì),猜想一般函數(shù)的性質(zhì),然后再作出圖象加以驗證.師:你的想法也很有道理,不妨試一試.(仍引導(dǎo)學(xué)生從具體指數(shù)函數(shù)圖象入手.))

  [意圖分析]學(xué)習(xí)的過程就是一個不斷地提出問題、解決問題的過程.提出問題比解決問題更重要,給學(xué)生提供由自己提出問題、確定研究方法的機會,逐漸學(xué)會研究問題,促進能力發(fā)展.

  (2)自主探究匯報交流

  師:我們確定了要研究的對象和具體做法,下面可以開始研究指數(shù)函數(shù)的性質(zhì)了.

  〖問題3選取數(shù)據(jù),畫出圖象,觀察特點,歸納性質(zhì).

  [設(shè)計意圖]若直接規(guī)定底數(shù)取值,對于為什么要以y=2x,y=3x,y=0.5x為例,為什么要根據(jù)底數(shù)的大小分類討論,缺乏合理的解釋,學(xué)生對于圖象的認識是被動的.若在探究前經(jīng)討論確定底數(shù)取值,由于學(xué)生認知水平的差異,仍可能會造成部分學(xué)生被動接受.學(xué)生自主選擇底數(shù),雖有得到片面認識的可能,但通過討論交流,學(xué)生能相互驗證結(jié)論,仍能得到正確認識.并且學(xué)生能在過程中體會數(shù)據(jù)如何選擇,了解研究方法.

  由于描點作圖時列舉點的個數(shù)的限制,學(xué)生對x→∞時函數(shù)圖象特征缺乏直觀感受.而且由于所舉例子個數(shù)的限制,學(xué)生對于歸納的結(jié)論缺乏一般性的認識.教師應(yīng)利用繪圖軟件作出底數(shù)連續(xù)變化的圖象 ,驗證猜想.

  數(shù)形結(jié)合、從特殊到一般的思維方法是概括歸納抽象對象的一般思維方法,本節(jié)課的重點是通過對指數(shù)函數(shù)圖象性質(zhì)的研究,總結(jié)研究函數(shù)的一般方法,應(yīng)充分發(fā)動學(xué)生參與研究的每個過程,得到直接體驗.

  [師生活動]學(xué)生選取不同的a的值,作出圖象,觀察它們之間的異同,總結(jié)指數(shù)函數(shù)的圖象特征與函數(shù)性質(zhì).

  [教學(xué)預(yù)設(shè)]學(xué)生通過觀察圖象,發(fā)現(xiàn)指數(shù)函數(shù)y=ax(a>0且a≠1)的性質(zhì).教師用實物投影儀展示學(xué)生所畫圖象,學(xué)生根據(jù)具體函數(shù)圖象說明具體函數(shù)性質(zhì).在學(xué)生說明過程中,教師引導(dǎo)學(xué)生對結(jié)論進行適當(dāng)?shù)恼f明,進而引導(dǎo)學(xué)生歸納一般指數(shù)函數(shù)的性質(zhì).教師引導(dǎo)學(xué)生關(guān)注列表描點作圖的過程,引導(dǎo)學(xué)生通過反思過程,并通過動態(tài)圖象驗證猜想,促進學(xué)生體會數(shù)形結(jié)合的分析方法.教師尊重生成,但需引導(dǎo)學(xué)生區(qū)別指數(shù)函數(shù)本身的性質(zhì)與指數(shù)函數(shù)之間的性質(zhì).其中⑥⑦不強加于學(xué)生.對于⑥,要引導(dǎo)學(xué)生在同一坐標(biāo)系中畫出圖象,啟發(fā)學(xué)生觀察底數(shù)互為倒數(shù)的指數(shù)函數(shù)的圖象,先得到具體的例子.對于⑦,在例1第3小題中,會有學(xué)生提出利用不同底數(shù)指數(shù)函數(shù)圖象解決,可順勢利導(dǎo),也可布置為課后作業(yè),繼續(xù)研究.

  生:自主選擇數(shù)據(jù),在坐標(biāo)紙上列表作圖,列出函數(shù)性質(zhì).

  師:(巡視,必要時參與討論,及時提示任務(wù),待大部分學(xué)生有結(jié)論后,鼓勵學(xué)生交流,請學(xué)生匯報.)有條理地整理一下結(jié)論,討論交流所得.(同時用實物投影儀展示學(xué)生所畫圖象.若沒有投影儀,用幾何畫板作出圖象.)

  生:(可能出現(xiàn)的情況)(1)在兩個坐標(biāo)系中畫圖;(2)所取底數(shù)均大于1;(3)兩個底數(shù)大于1,一個底數(shù)小于1;(4)關(guān)于y軸對稱的兩個指數(shù)函數(shù).

  師:(過程性引導(dǎo))底數(shù)你是怎么取的?你是怎樣觀察出結(jié)論的?在列表過程中,你有什么發(fā)現(xiàn)嗎?為什么要在兩個坐標(biāo)系中畫圖?為什么不也取兩個底數(shù)小于1?

  師:(用彩筆描粗圖象,故意出錯)錯在哪里?為什么?

  生:指數(shù)函數(shù)是單調(diào)遞增的,過定點(0, 1).

  師:(引導(dǎo)學(xué)生規(guī)范表述,并板書)指數(shù)函數(shù)在(-∞, +∞)上單調(diào)遞增,圖象過定點(0, 1).

  師:指數(shù)函數(shù)還有其它性質(zhì)嗎?

  師:也就是說值域為(0, +∞).

  生:指數(shù)函數(shù)是非奇非偶函數(shù).

  師:有不同意見嗎?

  生:當(dāng)0

  (其它預(yù)設(shè):

  (1)當(dāng)a>1時,若x>0,則y>1;若x<0,則y<1.

  當(dāng)00,則y<1;若x<0 y="">1.

  欲知誰正確,讓我們一起來觀察、研探.

  思路2.復(fù)習(xí)元素與集合的關(guān)系——屬于與不屬于的關(guān)系,填空:(1)0N;(2)2Q;(3)-1.5R.

  類比實數(shù)的大小關(guān)系,如5<7,2≤2,試想集合間是否有類似的“大小”關(guān)系呢?(答案:(1)∈;(2)?;(3)∈)

  推進新課

  提出問題

  (1)觀察下面幾個例子:

 、貯={1,2,3},B={1,2,3,4,5};

 、谠O(shè)A為國興中學(xué)高一(3)班男生的全體組成的集合,B為這個班學(xué)生的全體組成的集合;

 、墼O(shè)C={x|x是兩條邊相等的三角形},D={x|x是等腰三角形};

  ④E={2,4,6},F(xiàn)={6,4,2}.

  你能發(fā)現(xiàn)兩個集合間有什么關(guān)系嗎?

  (2)例子①中集合A是集合B的子集,例子④中集合E是集合F的子集,同樣是子集,有什么區(qū)別?

  (3)結(jié)合例子④,類比實數(shù)中的結(jié)論:“若a≤b,且b≤a,則a=b”,在集合中,你發(fā)現(xiàn)了什么結(jié)論?

  (4)按升國旗時,每個班的同學(xué)都聚集在一起站在旗桿附近指定的區(qū)域內(nèi),從樓頂向下看,每位同學(xué)是哪個班的,一目了然.試想一下,根據(jù)從樓頂向下看的,要想直觀表示集合,聯(lián)想集合還能用什么表示?

  (5)試用Venn圖表示例子①中集合A和集合B.

  (6)已知A?B,試用Venn圖表示集合A和B的關(guān)系.

  (7)任何方程的解都能組成集合,那么x2+1=0的實數(shù)根也能組成集合,你能用Venn圖表示這個集合嗎?

  (8)一座房子內(nèi)沒有任何東西,我們稱為這座房子是空房子,那么一個集合沒有任何元素,應(yīng)該如何命名呢?

  (9)與實數(shù)中的結(jié)論“若a≥b,且b≥c,則a≥c”相類比,在集合中,你能得出什么結(jié)論?

  活動:教師從以下方面引導(dǎo)學(xué)生:

  (1)觀察兩個集合間元素的特點.

  (2)從它們含有的元素間的關(guān)系來考慮.規(guī)定:如果A B,但存在x∈B,且x A,我們稱集合A是集合B的真子集,記作A B(或B A).

  (3)實數(shù)中的“≤”類比集合中的 .

  (4)把指定位置看成是由封閉曲線圍成的,學(xué)生看成集合中的元素,從樓頂看到的就是把集合中的元素放在封閉曲線內(nèi).教師指出:為了直觀地表示集合間的關(guān)系,我們常用平面上封閉曲線的內(nèi)部代表集合,這種圖稱為Venn圖.

  (5)封閉曲線可以是矩形也可以是橢圓等等,沒有限制.

  (6)分類討論:當(dāng)A B時,A B或A=B.

  (7)方程x2+1=0沒有實數(shù)解.

  (8)空集記為 ,并規(guī)定:空集是任何集合的子集,即 A;空集是任何非空集合的真子集,即 A(A≠ ).

  (9)類比子集.

  討論結(jié)果:

  (1)①集合A中的元素都在集合B中;

 、诩螦中的元素都在集合B中;

  ③集合C中的元素都在集合D中;

 、芗螮中的元素都在集合F中.

  可以發(fā)現(xiàn):對于任意兩個集合A,B有下列關(guān)系:集合A中的元素都在集合B中;或集合B中的元素都在集合A中.

  (2)例子①中A B,但有一個元素4∈B,且4 A;而例子②中集合E和集合F中的元素完全相同.

  (3)若A B,且B A,則A=B.

  (4)可以把集合中元素寫在一個封閉曲線的內(nèi)部來表示集合.

  (5)如圖1121所示表示集合A,如圖1122所示表示集合B.

  圖1-1-2-1 圖1-1-2-2

  (6)如圖1-1-2-3和圖1-1-2-4所示.

  圖1-1-2-3 圖1-1-2-4

  (7)不能.因為方程x2+1=0沒有實數(shù)解.

  (8)空集.

高一數(shù)學(xué)教學(xué)計劃15

  一、學(xué)生狀況分析

  學(xué)生整體水平一般,成績以中等為主,中上不多,后進生也有一些。幾個班中,從上課一周來看,學(xué)生的學(xué)習(xí)進取性還是比較高,愛問問題的同學(xué)比較多,但由于基礎(chǔ)知識不太牢固,上課效率不是很高。

  二、教材分析

  使用北師大版《普通高中課程標(biāo)準(zhǔn)實驗教科書·數(shù)學(xué)》,教材在堅持我國數(shù)學(xué)教育優(yōu)良傳統(tǒng)的前提下,認真處理繼承、借鑒、發(fā)展、創(chuàng)新之間的關(guān)系,體現(xiàn)基礎(chǔ)性、時代性、典型性和可理解性等,具有親和力、問題性、科學(xué)性、思想性、應(yīng)用性、聯(lián)系性等特點。必修1有三章(集合與函數(shù)概念;基本初等函數(shù);函數(shù)的應(yīng)用);必修2有四章(空間幾何體;點線平面間的位置關(guān)系;直線與方程;圓與方程)。

  三、教學(xué)任務(wù)

  本期授課資料為必修1和必修2,必修1在期中考試前完成(約在11月5日前完成);必修2在期末考試前完成(約在12月31日前完成)。

  四、教學(xué)質(zhì)量目標(biāo)

  1、獲得必要的數(shù)學(xué)基礎(chǔ)知識和基本技能,理解基本的數(shù)學(xué)概念、數(shù)學(xué)結(jié)論的本質(zhì),體會數(shù)學(xué)思想和方法。

  2、提高空間想象、抽象概括、推理論證、運算求解、數(shù)據(jù)處理等基本本事。

  3、提高學(xué)生提出、分析和解決問題(包括簡單的實際問題)的本事,數(shù)學(xué)表達和交流的本事,發(fā)展獨立獲取數(shù)學(xué)知識的本事。

  4、發(fā)展數(shù)學(xué)應(yīng)用意識和創(chuàng)新意識,力求對現(xiàn)實世界中蘊涵的一些數(shù)學(xué)模式進行思考和作出確定。

  5、提高學(xué)習(xí)數(shù)學(xué)的興趣,樹立學(xué)好數(shù)學(xué)的信心,構(gòu)成鍥而不舍的鉆研精神和科學(xué)態(tài)度。

  6、具有必須的數(shù)學(xué)視野,逐步認識數(shù)學(xué)的科學(xué)價值、應(yīng)用價值和文化價值,體會數(shù)學(xué)的美學(xué)意義,從而進一步樹立辯證唯物主義和歷史唯物主義世界觀。

  五、促進目標(biāo)達成的重點工作

  認真貫徹高中數(shù)學(xué)新課標(biāo)精神,樹立新的教學(xué)理念,以“雙基”教學(xué)為主要資料,堅持“抓兩頭、帶中間、整體推進”,使每個學(xué)生的數(shù)學(xué)本事都得到提高和發(fā)展。

  教學(xué)方法及推進措施

  六、相關(guān)措施:

  高一作為起始年級,作為從義務(wù)階段邁入應(yīng)試征程的適應(yīng)階段,該有的是一份執(zhí)著。他的特殊性就在于它的跨越性,夢想的期盼與學(xué)法的突變,難度的加強與惰性的生成等等矛盾沖突伴隨著高一新生的成長,應(yīng)對新教材的我們也是邊摸索邊改變,樹立新的教學(xué)理念,并落實在課堂教學(xué)的各個環(huán)節(jié),才能不負眾望。我們要從學(xué)生的認識水平和實際本事出發(fā),研究學(xué)生的心理特征,做好初三與高一的銜接工作,幫忙學(xué)生解決好從初中到高中學(xué)習(xí)方法的過渡。從高一齊就注意培養(yǎng)學(xué)生良好的數(shù)學(xué)思維方法,良好的學(xué)習(xí)態(tài)度和學(xué)習(xí)習(xí)慣,以適應(yīng)高中領(lǐng)悟性的學(xué)習(xí)方法。具體措施如下:

 。1)注意研究學(xué)生,做好初、高中學(xué)習(xí)方法的銜接工作。

 。2)集中精力打好基礎(chǔ),分項突破難點。所列基礎(chǔ)知識依據(jù)課程標(biāo)準(zhǔn)設(shè)計,著眼于基礎(chǔ)知識與重點資料,要充分重視基礎(chǔ)知識、基本技能、基本方法的教學(xué),為進一步的學(xué)習(xí)打好堅實的基礎(chǔ),切勿忙于過早的拔高,上難題。同時應(yīng)放眼高中教學(xué)全局,注意高考命題中的知識要求,本事要求及新趨勢,這樣才能統(tǒng)籌安排,循序漸進,使高一的數(shù)學(xué)教學(xué)與高中教學(xué)的全局有機結(jié)合。

 。3)培養(yǎng)學(xué)生解答考題的本事,經(jīng)過例題,從形式和資料兩方應(yīng)對所學(xué)知識進行本事方面的分析,引導(dǎo)學(xué)生了解數(shù)學(xué)需要哪些本事要求。

  (4)讓學(xué)生經(jīng)過單元考試,檢測自我的實際應(yīng)用本事,從而及時總結(jié)經(jīng)驗,找出不足,做好充分的準(zhǔn)備

 。5)抓好尖子生與后進生的輔導(dǎo)工作,提前展開數(shù)學(xué)奧競選拔和數(shù)學(xué)基礎(chǔ)輔導(dǎo)。

 。6)重視數(shù)學(xué)應(yīng)用意識及應(yīng)用本事的培養(yǎng)。

  (7)重視學(xué)生非智力因素培養(yǎng),要經(jīng)常性地鼓勵學(xué)生,增強學(xué)生學(xué)習(xí)數(shù)學(xué)興趣,樹立勇于克服困難與戰(zhàn)勝困難的信心。

 。8)合理引入課題,由數(shù)學(xué)活動、故事、提問、師生交流等方式激發(fā)學(xué)生學(xué)習(xí)興趣,注意從實例出發(fā),從感性提高到理性;注意運用比較的方法,反復(fù)比較相近的概念;注意結(jié)合直觀圖形,說明抽象的知識;注意從已有的知識出發(fā),啟發(fā)學(xué)生思考。

 。9)加強培養(yǎng)學(xué)生的邏輯思維本事和解決實際問題的本事,以及培養(yǎng)提高學(xué)生的自學(xué)本事,養(yǎng)成善于分析問題的習(xí)慣,進行辨證唯物主義教育。

 。10)抓住公式的推導(dǎo)和內(nèi)在聯(lián)系;加強復(fù)習(xí)檢查工作;抓住典型例題的分析,講清解題的關(guān)鍵和基本方法,注重提高學(xué)生分析問題的本事。

 。11)自始至終貫徹教學(xué)四環(huán)節(jié)(引入、探究、例析、反饋),針對不一樣的教材資料選擇不一樣教法,提倡創(chuàng)新教學(xué)方法,把學(xué)生被動理解知識轉(zhuǎn)化主動學(xué)習(xí)知識。

  七、教學(xué)進度安排:

  (略)

【高一數(shù)學(xué)教學(xué)計劃】相關(guān)文章:

高一的數(shù)學(xué)教學(xué)計劃06-14

高一數(shù)學(xué)-教學(xué)計劃06-11

高一數(shù)學(xué)的教學(xué)計劃06-13

高一優(yōu)秀數(shù)學(xué)教學(xué)計劃06-12

高一數(shù)學(xué)教學(xué)計劃08-21

高一學(xué)生數(shù)學(xué)教學(xué)計劃03-30

高一數(shù)學(xué)的教學(xué)計劃05-04

高一數(shù)學(xué)教學(xué)計劃08-26

高一數(shù)學(xué)教學(xué)計劃07-10

高一數(shù)學(xué)教學(xué)計劃05-08