課堂上經(jīng)常會出現(xiàn)類似上述案例中的“超前行為”,即有些學(xué)生提前把要探究的新知識和盤托出。我們的習(xí)慣做法就是變“探索”為“驗證”,當然有些知識的教學(xué)采用這種方式是有效的,然而本課中“驗證”的過程真能取代“探究發(fā)現(xiàn)”的過程嗎?僅僅舉幾個例子試一試,驗證方法單一,思維含量低,學(xué)生充其量只能算是執(zhí)行操作命令的“計算器”,又能獲得哪些有益的發(fā)展?如果經(jīng)常進行這樣的教學(xué),還容易使學(xué)生形成浮躁淺薄,不求甚解,甚至只要結(jié)論的不良學(xué)習(xí)風氣。怎么辦,置之不理嗎?如果這樣,不僅沒有尊重學(xué)生已有的知識經(jīng)驗,而且在已經(jīng)揭開“謎底”的情況下,再試圖引導(dǎo)學(xué)生進行猜想、實驗、發(fā)現(xiàn),體驗遭受挫折后取得成功的那種激動,也只能是一種奢望。那么又該如何激發(fā)學(xué)生探究的熱情,促使學(xué)生進行深入探究呢?
1. 找準知識間的沖突,激發(fā)探究的愿望。學(xué)生剛剛學(xué)習(xí)了2、5的倍數(shù)的特征,知道只要看一個數(shù)的個位,因此在學(xué)習(xí)3的倍數(shù)的特征時,自然會把“看個位”這一方法遷移過來。而實際上,3的倍數(shù)的特征,卻要把各個位上的數(shù)加起來研究。于是新舊知識之間的矛盾沖突使學(xué)生產(chǎn)生了困惑,“為什么2或5的倍數(shù)只看個位?”“為什么3的倍數(shù)要把各個位上的數(shù)加起來研究?”……學(xué)生急于想了解這些為什么,便會自覺地進入到自主探究的狀態(tài)之中。
2. 激活學(xué)習(xí)中的困惑,讓探究走向深入。創(chuàng)造和發(fā)現(xiàn)往往是由驚訝和困惑開始。對比兩次教學(xué),第一次教學(xué)由于忽視了學(xué)習(xí)中的困惑,學(xué)生對于3的倍數(shù)的特征理解并不透徹,探索的體驗也并不深刻。第二次教學(xué)留給學(xué)生質(zhì)疑的時空,巧設(shè)沖突,讓學(xué)生進行新舊知識的對比,將困惑激發(fā)出來,通過學(xué)生間相互啟發(fā)、相互質(zhì)疑,對問題的思考漸漸完整而清晰。學(xué)生不但經(jīng)歷由困惑到明了的過程,而且思維不斷走向深入,獲得了更有價值的發(fā)現(xiàn),探究能力也得到切實提高。當然,學(xué)生在學(xué)習(xí)中可能產(chǎn)生怎樣的困惑,面對這一困惑又該如何恰當引導(dǎo),尚需要教師課前精心預(yù)設(shè)。