初一數(shù)學(xué)下冊知識(shí)點(diǎn)總結(jié)
總結(jié)是事后對某一階段的學(xué)習(xí)、工作或其完成情況加以回顧和分析的一種書面材料,它可以幫助我們總結(jié)以往思想,發(fā)揚(yáng)成績,讓我們一起來學(xué)習(xí)寫總結(jié)吧。我們該怎么去寫總結(jié)呢?以下是小編收集整理的初一數(shù)學(xué)下冊知識(shí)點(diǎn)總結(jié),歡迎閱讀與收藏。
初一數(shù)學(xué)下冊知識(shí)點(diǎn)總結(jié)1
初一下冊知識(shí)點(diǎn)總結(jié)
1.同底數(shù)冪的乘法:am?an=am+n ,底數(shù)不變,指數(shù)相加。
2.同底數(shù)冪的除法:am÷an=am-n ,底數(shù)不變,指數(shù)相減。
3.冪的乘方與積的乘方:(am)n=amn ,底數(shù)不變,指數(shù)相乘; (ab)n=anbn ,積的乘方等于各因式乘方的積。
4.零指數(shù)與負(fù)指數(shù)公式:
(1)a0=1 (a≠0); a-n= ,(a≠0)。 注意:00,0-2無意義。
(2)有了負(fù)指數(shù),可用科學(xué)記數(shù)法記錄小于1的數(shù),例如:0.0000201=2.01×10-5。
5.(1)平方差公式:(a+b)(a-b)= a2-b2,兩個(gè)數(shù)的和與這兩個(gè)數(shù)的差的積等于這兩個(gè)數(shù)的平方差;
(2)完全平方公式:
、 (a+b)2=a2+2ab+b2, 兩個(gè)數(shù)和的平方,等于它們的平方和,加上它們的積的2倍;
、 (a-b)2=a2-2ab+b2 , 兩個(gè)數(shù)差的平方,等于它們的平方和,減去它們的積的2倍;
※ ③ (a+b-c)2=a2+b2+c2+2ab-2ac-2bc
6.配方:
(1)若二次三項(xiàng)式x2+px+q是完全平方式,則有關(guān)系式: ;
※ (2)二次三項(xiàng)式ax2+bx+c經(jīng)過配方,總可以變?yōu)閍(x-h)2+k的形式。
注意:當(dāng)x=h時(shí),可求出ax2+bx+c的最大(或最小)值k。
※(3)注意: 。
7.單項(xiàng)式的系數(shù)與次數(shù):單項(xiàng)式中不為零的數(shù)字因數(shù),叫單項(xiàng)式的數(shù)字系數(shù),簡稱單項(xiàng)式的系數(shù);
系數(shù)不為零時(shí),單項(xiàng)式中所有字母指數(shù)的和,叫單項(xiàng)式的次數(shù)。
8.多項(xiàng)式的項(xiàng)數(shù)與次數(shù):多項(xiàng)式中所含單項(xiàng)式的個(gè)數(shù)就是多項(xiàng)式的項(xiàng)數(shù),每個(gè)單項(xiàng)式叫多項(xiàng)式的項(xiàng);
多項(xiàng)式里,次數(shù)最高項(xiàng)的次數(shù)叫多項(xiàng)式的次數(shù);
注意:(若a、b、c、p、q是常數(shù))ax2+bx+c和x2+px+q是常見的兩個(gè)二次三項(xiàng)式。
9.同類項(xiàng):所含字母相同,并且相同字母的指數(shù)也相同的單項(xiàng)式是同類項(xiàng)。
10.合并同類項(xiàng)法則:系數(shù)相加,字母與字母的指數(shù)不變。
11.去(添)括號(hào)法則:去(添)括號(hào)時(shí),若括號(hào)前邊是“+”號(hào),括號(hào)里的各項(xiàng)都不變號(hào);若括號(hào)前邊是“-”號(hào),括號(hào)里的各項(xiàng)都要變號(hào)。
注意:多項(xiàng)式計(jì)算的最后結(jié)果一般應(yīng)該進(jìn)行升冪(或降冪)排列。
平面幾何部分
1、補(bǔ)角重要性質(zhì):同角或等角的補(bǔ)角相等.
余角重要性質(zhì):同角或等角的余角相等.
2、①直線公理:過兩點(diǎn)有且只有一條直線.
線段公理:兩點(diǎn)之間線段最短.
、谟嘘P(guān)垂線的定理:(1)過一點(diǎn)有且只有一條直線與已知直線垂直;
(2)直線外一點(diǎn)與直線上各點(diǎn)連結(jié)的所有線段中,垂線段最短.
比例尺:比例尺1:m中,1表示圖上距離,m表示實(shí)際距離,若圖上1厘米,表示實(shí)際距離m厘米.
3、三角形的內(nèi)角和等于180
三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和
三角形的一個(gè)外角大于與它不相鄰的任何一個(gè)內(nèi)角
4、n邊形的對角線公式:
各個(gè)角都相等,各條邊都相等的多邊形叫做正多邊形
5、n邊形的內(nèi)角和公式:180(n-2); 多邊形的外角和等于360
6、判斷三條線段能否組成三角形:
①a+b>c(a b為最短的兩條線段)②a-b
7、第三邊取值范圍:
a-b< c
8、對應(yīng)周長取值范圍:
若兩邊分別為a,b則周長的取值范圍是 2a
如兩邊分別為5和7則周長的取值范圍是 14
9、相關(guān)命題:
(1) 三角形中最多有1個(gè)直角或鈍角,最多有3個(gè)銳角,最少有2個(gè)銳角。
(2) 銳角三角形中最大的銳角的取值范圍是60≤X<90 。最大銳角不小于60度。
(3)任意一個(gè)三角形兩角平分線的夾角=90+第三角的一半。
(4) 鈍角三角形有兩條高在外部。
(5) 全等圖形的大小(面積、周長)、形狀都相同。
(6) 面積相等的兩個(gè)三角形不一定是全等圖形。
(7) 三角形具有穩(wěn)定性。
(8) 角平分線到角的兩邊距離相等。
(9)有一個(gè)角是60的等腰三角形是等邊三角形。
初一數(shù)學(xué)下冊知識(shí)點(diǎn)總結(jié)2
本章重點(diǎn):一元一次不等式的解法,
本章難點(diǎn):了解不等式的解集和不等式組的解集的確定,正確運(yùn)用不等式基本性質(zhì)3。
本章關(guān)鍵:徹底弄清不等式和等式的基本性質(zhì)的區(qū)別.
。1)不等式概念:用不等號(hào)(“≠”、“”)表示的不等關(guān)系的式子叫做不等式(2)不等式的基本性質(zhì),它是解不等式的理論依據(jù).
(3)分清不等式的解集和解不等式是兩個(gè)完全不同的概念.(4)不等式的解一般有無限多個(gè)數(shù)值,把它們表示在數(shù)軸上,(5)一元一次不等式的概念、解法是本章的重點(diǎn)和核心
。6)一元一次不等式的解集,在數(shù)軸上表示一元一次不等式的解集
。7)由兩個(gè)一元一次不等式組成的一元一次不等式組.一元一次不等式組可以由幾個(gè)(同未知數(shù)的)一元一次不等式組成(8).利用數(shù)軸確定一元一次不等式組的解集第六章:
1.二元一次方程,二元一次方程組以及它的解,明確二元一次方程組的解是一對未知數(shù)的值,會(huì)檢驗(yàn)一對數(shù)值是不是某一個(gè)二元一次方程組的解.
2.一次方程組的兩種基本解法,能靈活運(yùn)用代入法,加減法解二元一次方程組及簡單的三元一次方程組.
3.根據(jù)給出的應(yīng)用問題,列出相應(yīng)的二元一次方程組或三元一次方程組,從而求出問題的解,并能根據(jù)問題的實(shí)際意義,檢查結(jié)果是否合理.本章的重點(diǎn)是:二元一次方程組的解法代入法,加減法以及列一次方程組解簡單的應(yīng)用問題.
本章的難點(diǎn)是:
1.會(huì)用適當(dāng)?shù)南椒ń舛淮畏匠探M及簡單的三元一次方程組;2.正確地找出應(yīng)用題中的相等關(guān)系,列出一次方程組.第七章
本章重點(diǎn)是:整式的乘除運(yùn)算,特別是對冪的運(yùn)算及乘法公式的應(yīng)用要達(dá)到熟練程度.本章難點(diǎn)是:對乘法公式結(jié)構(gòu)特征和公式中字母意義的理解及乘法公式的靈活應(yīng)用1.冪的運(yùn)算性質(zhì),正確地表述這些性質(zhì),并能運(yùn)用它們熟練地進(jìn)行有關(guān)計(jì)算.
2.單項(xiàng)式乘以(或除以)單項(xiàng)式,多項(xiàng)式乘以(或除以)單項(xiàng)式,以及多項(xiàng)式乘以多項(xiàng)式的法則,熟練地運(yùn)用它們進(jìn)行計(jì)算.
3.乘法公式的推導(dǎo)過程,能靈活運(yùn)用乘法公式進(jìn)行計(jì)算.4.熟練地運(yùn)用運(yùn)算律、運(yùn)算法則進(jìn)行運(yùn)算,
5.體會(huì)用字母表示數(shù)和用字母表示式子的意義.通過式的變形,深入理解轉(zhuǎn)化的思想方法.第八章:
1、認(rèn)識(shí)事物的幾種方法:觀察與實(shí)驗(yàn)歸納與類比猜想與證明生活中的說理數(shù)學(xué)中的說理
2、定義、命題、公理、定理3、簡單幾何圖形中的推理4、余角、補(bǔ)交、對頂角5、平行線的判定判定:一個(gè)公理兩個(gè)定理。
公理:兩直線被第三條直線所截,如果同位角相等(數(shù)量關(guān)系)兩直線平行(位置關(guān)系)定理:內(nèi)錯(cuò)角相等(數(shù)量關(guān)系)兩直線平行(位置關(guān)系)定理:同旁內(nèi)角互補(bǔ)(數(shù)量關(guān)系)兩直線平行(位置關(guān)系).平行線的性質(zhì):
兩直線平行,同位角相等兩直線平行,內(nèi)錯(cuò)角相等兩直線平行,同旁內(nèi)角互補(bǔ)
由圖形的“位置關(guān)系”確定“數(shù)量關(guān)系”第九章:
重點(diǎn):因式分解的方法,
難點(diǎn):分析多項(xiàng)式的特點(diǎn),選擇適合的分解方法1.因式分解的概念;
2.因式分解的方法:提取公因式法、公式法、分組分解法(十字相乘法)3.運(yùn)用因式分解解決一些實(shí)際問題.(包括圖形習(xí)題)第十章:
重點(diǎn)是:用統(tǒng)計(jì)知識(shí)解決現(xiàn)實(shí)生活中的實(shí)際問題.難點(diǎn)是:用統(tǒng)計(jì)知識(shí)解決實(shí)際問題.
1.統(tǒng)計(jì)初步的基本知識(shí),平均數(shù)、中位數(shù)、眾數(shù)等的計(jì)算、2.了解數(shù)據(jù)的收集與整理、繪畫三種統(tǒng)計(jì)圖.
3.應(yīng)用統(tǒng)計(jì)知識(shí)解決實(shí)際問題能解決與統(tǒng)計(jì)相關(guān)的綜合問題.
初一數(shù)學(xué)下冊知識(shí)點(diǎn)總結(jié)3
知識(shí)點(diǎn)、概念總結(jié)
1.不等式:用符號(hào)"<",">","≤","≥"表示大小關(guān)系的式子叫做不等式。
2.不等式分類:不等式分為嚴(yán)格不等式與非嚴(yán)格不等式。
一般地,用純粹的大于號(hào)、小于號(hào)">","<"連接的不等式稱為嚴(yán)格不等式,用不小于號(hào)(大于或等于號(hào))、不大于號(hào)(小于或等于號(hào))"≥","≤"連接的不等式稱為非嚴(yán)格不等式,或稱廣義不等式。
3.不等式的解:使不等式成立的未知數(shù)的值,叫做不等式的解。
4.不等式的解集:一個(gè)含有未知數(shù)的不等式的所有解,組成這個(gè)不等式的解集。
5.不等式解集的表示方法:
(1)用不等式表示:一般的,一個(gè)含未知數(shù)的不等式有無數(shù)個(gè)解,其解集是一個(gè)范圍,這個(gè)范圍可用最簡單的不等式表達(dá)出來,例如:x-1≤2的解集是x≤3
(2)用數(shù)軸表示:不等式的解集可以在數(shù)軸上直觀地表示出來,形象地說明不等式有無限多個(gè)解,用數(shù)軸表示不等式的解集要注意兩點(diǎn):一是定邊界線;二是定方向。
6.解不等式可遵循的一些同解原理
(1)不等式F(x)
(2)如果不等式F(x) (3)如果不等式F(x) 7.不等式的性質(zhì): (1)如果x>y,那么yy;(對稱性) (2)如果x>y,y>z;那么x>z;(傳遞性) (3)如果x>y,而z為任意實(shí)數(shù)或整式,那么x+z>y+z;(加法則) (4)如果x>y,z>0,那么xz>yz;如果x>y,z<0,那么xz (5)如果x>y,z>0,那么x÷z>y÷z;如果x>y,z<0,那么x÷z (6)如果x>y,m>n,那么x+m>y+n(充分不必要條件) (7)如果x>y>0,m>n>0,那么xm>yn (8)如果x>y>0,那么x的n次冪>y的n次冪(n為正數(shù)) 8.一元一次不等式:不等式的左、右兩邊都是整式,只有一個(gè)未知數(shù),并且未知數(shù)的最高次數(shù)是1,像這樣的不等式,叫做一元一次不等式。 9.解一元一次不等式的一般順序: (1)去分母(運(yùn)用不等式性質(zhì)2、3) (2)去括號(hào) (3)移項(xiàng)(運(yùn)用不等式性質(zhì)1) (4)合并同類項(xiàng) (5)將未知數(shù)的系數(shù)化為1(運(yùn)用不等式性質(zhì)2、3) (6)有些時(shí)候需要在數(shù)軸上表示不等式的解集 10.一元一次不等式與一次函數(shù)的綜合運(yùn)用: 一般先求出函數(shù)表達(dá)式,再化簡不等式求解。 11.一元一次不等式組:一般地,關(guān)于同一未知數(shù)的幾個(gè)一元一次不等式合在一起,就組成 了一個(gè)一元一次不等式組。 12.解一元一次不等式組的步驟: (1)求出每個(gè)不等式的解集; (2)求出每個(gè)不等式的解集的公共部分;(一般利用數(shù)軸) (3)用代數(shù)符號(hào)語言來表示公共部分。(也可以說成是下結(jié)論) 13.解不等式的訣竅 (1)大于大于取大的(大大大); 例如:X>-1,X>2,不等式組的解集是X>2 (2)小于小于取小的(小小小); 例如:X<-4,X<-6,不等式組的解集是X<-6 (3)大于小于交叉取中間; (4)無公共部分分開無解了; 14.解不等式組的口訣 (1)同大取大 例如,x>2,x>3,不等式組的解集是X>3 (2)同小取小 例如,x<2,x<3,不等式組的解集是X<2 (3)大小小大中間找 例如,x<2,x>1,不等式組的解集是1 (4)大大小小不用找 例如,x<2,x>3,不等式組無解 15.應(yīng)用不等式組解決實(shí)際問題的步驟 (1)審清題意 (2)設(shè)未知數(shù),根據(jù)所設(shè)未知數(shù)列出不等式組 (3)解不等式組 (4)由不等式組的解確立實(shí)際問題的解 (5)作答 16.用不等式組解決實(shí)際問題:其公共解不一定就為實(shí)際問題的解,所以需結(jié)合生活實(shí)際具體分析,最后確定結(jié)果。 1.同一平面內(nèi),兩直線不平行就相交。 2.兩條直線相交所成的四個(gè)角中,相鄰的兩個(gè)角叫做鄰補(bǔ)角,特點(diǎn)是兩個(gè)角共用一條邊,另一條邊互 為反向延長線,性質(zhì)是鄰補(bǔ)角互補(bǔ);相對的兩個(gè)角叫做對頂角,特點(diǎn)是它們的兩條邊互為反向延長線。性質(zhì)是對頂角相等。 3.垂直定義:兩條直線相交所成的四個(gè)角中,如果有一個(gè)角為90度,則稱這兩條直線互相垂直。其 中一條直線叫做另外一條直線的垂線,他們的交點(diǎn)稱為垂足。4.垂直三要素:垂直關(guān)系,垂直記號(hào),垂足 5.垂直公理:過一點(diǎn)有且只有一條直線與已知直線垂直。6.垂線段最短; 7.點(diǎn)到直線的距離:直線外一點(diǎn)到這條直線的垂線段的長度。8.兩條直線被第三條直線所截:同位角F(在兩條直線的同一旁,第三條直線的同一側(cè)),內(nèi)錯(cuò)角Z(在 兩條直線內(nèi)部,位于第三條直線兩側(cè)),同旁內(nèi)角U(在兩條直線內(nèi)部,位于第三條直線同側(cè))。9.平行公理:過直線外一點(diǎn)有且只有一條直線與已知直線平行。 10.如果兩條直線都與第三條直線平行,那么這兩條直線也互相平行。如果b//a,c//a,那么b//cP174題 11.平行線的判定。結(jié)論:在同一平面內(nèi),如果兩條直線都垂直于同一條直線,那么這兩條直線平行。平行線的性質(zhì): 1.兩直線平行,同位角相等。2.兩直線平行,內(nèi)錯(cuò)角相等。3.兩直線平行,同旁內(nèi)角互補(bǔ)。 12.★命題:“如果+題設(shè),那么+結(jié)論! 三角形和多邊形 1.三角形內(nèi)角和為180° 2.構(gòu)成三角形滿足的條件:三角形兩邊之和大于第三邊。 判斷方法:在△ABC中,a、b為兩短邊,c為長邊,如果a+b>c則能構(gòu)成三角形,否則(a+bc)不能構(gòu)成三角形(即三角形最短的兩邊之和大于最長的邊) 3.三角形邊的取值范圍:三角形的任一邊:小于兩邊之和,大于兩邊之差(的絕對值)【重點(diǎn)題目】三角形的兩邊分別為3和7,則三角形的第三邊的取值范圍為4.等面積法:三角形面積1底高,三角形有三條高,也就對應(yīng)有三條底邊,任取其中一組底和高,21三角形同一個(gè)面積公式就有三個(gè)表示方法,任取其中兩個(gè)寫成連等(可兩邊同時(shí)2消去)底高 2底高,知道其中三條線段就可求出第四條。例如:如圖1,在直角△ABC中,ACB=900,CD 是斜邊AB 上的高,則有ACBCCDAB A CB1D【重點(diǎn)題目】P708題例直角三角形的三邊長分別為3、4、5,則斜邊上的.高為5.等高法:高相等,底之間具有一定關(guān)系(如成比例或相等) 【例】AD是△ABC的中線,AE是△ABD的中線,SABC4cm2,則SABE=6.三角形的特性:三角形具有【重點(diǎn)題目】P695題7.外角: 【基礎(chǔ)知識(shí)】什么是外角?外角定理及其推論【重點(diǎn)題目】P75例2P765、6、8題8.n邊形的★內(nèi)角和★外角和√對角線條數(shù)為 【基礎(chǔ)知識(shí)】正多邊形:各邊相等,各角相等;正n邊形每個(gè)內(nèi)角的度數(shù)為【重點(diǎn)題目】P83、P84練習(xí)1,2,3;P843,4,5,6;P904、5題9.√鑲嵌:圍繞一個(gè)拼接點(diǎn),各圖形組成一個(gè)周角(不重疊,無空隙)。 單一正多邊形的鑲嵌:鑲嵌圖形的每個(gè)內(nèi)角能被360整除:只有6個(gè)等邊三角形(60),4個(gè)正方形(90),3個(gè)正六邊形(120)三種 (兩種正多邊形的)混合鑲嵌:混合鑲嵌公式nm3600:表示n個(gè)內(nèi)角度數(shù)為的正多邊形與 0000m個(gè)內(nèi)角度數(shù)為的正多邊形圍繞一個(gè)拼接點(diǎn)組成一個(gè)周角,即混合鑲嵌。 【例】用正三角形與正方形鋪滿地面,設(shè)在一個(gè)頂點(diǎn)周圍有m個(gè)正三角形、n個(gè)正方形,則m,n的值分別為多少? 平面直角坐標(biāo)系 ▲基本要求:在平面直角坐標(biāo)系中1.給出一點(diǎn),能夠?qū)懗鲈擖c(diǎn)坐標(biāo)2.給出坐標(biāo),能夠找到該點(diǎn) ▲建系原則:原點(diǎn)、正方向、橫縱軸名稱(即x、y) √語言描述:以…(哪一點(diǎn))為原點(diǎn),以…(哪一條直線)為x軸,以…(哪一條直線)為y軸建立直角坐標(biāo)系 ▲基本概念:有順序的兩個(gè)數(shù)組成的數(shù)對稱為(有序數(shù)對)【三大規(guī)律】1.平移規(guī)律★ 點(diǎn)的平移規(guī)律(P51歸納) 例將P(2,3)向左平移3個(gè)單位,向上平移5個(gè)單位得到點(diǎn)Q,則Q點(diǎn)的坐標(biāo)為圖形的平移規(guī)律(P52歸納) 重點(diǎn)題目:P53練習(xí);P543、4題;P557題。2.對稱規(guī)律▲ 關(guān)于x軸對稱,縱坐標(biāo)取相反數(shù)關(guān)于y軸對稱,橫坐標(biāo)取相反數(shù) 關(guān)于原點(diǎn)對稱,橫、縱坐標(biāo)同時(shí)取相反數(shù) 例:P點(diǎn)的坐標(biāo)為(5,7),則P點(diǎn) 。1.)關(guān)于x軸對稱的點(diǎn)為(2.)關(guān)于y軸的對稱點(diǎn)為(3.)關(guān)于原點(diǎn)的對稱點(diǎn)為3.位置規(guī)律★ 假設(shè)在平面直角坐標(biāo)系上有一點(diǎn)P(a,b)y1.如果P點(diǎn)在第一象限,有a>0,b>0(橫、縱坐標(biāo)都大于0)第二象限第一象限2.如果P點(diǎn)在第二象限,有a0(橫坐標(biāo)小于0,縱坐標(biāo)大于0)X3.如果P點(diǎn)在第三象限,有a5.小長方形的面積表示頻數(shù)?v軸為頻數(shù)。等距分組時(shí),通常直接用小長方形的高表示頻數(shù),即縱 組距軸為“頻數(shù)” 6.頻數(shù)分布折線圖√根據(jù)頻數(shù)分布圖畫出頻數(shù)分布折線圖:①取每個(gè)小長方形的上邊的中點(diǎn),以及x 軸上與最左、最右直方相距半個(gè)組距的點(diǎn)。②連線【重點(diǎn)題目】P1693、4題 二元一次方程組和不等式、不等式組 1.解二元一次方程組,基本的思想是;2.二元一次方程(組):含兩個(gè)未知數(shù),并且含有未知數(shù)的項(xiàng)的次數(shù)都是1,像這樣的方程叫做二元一次方程。把具有相同未知數(shù)的兩個(gè)二元一次方程組合起來,就組成了二元一次方程組。(具體題目見本單元測試卷填空部分) 3.★解二元一次方程組。常用的方法有和。P96、P100歸納4.★列二元一次方程組解實(shí)際問題。關(guān)鍵:找等量關(guān)系常見的類型有:分配問題P1185題;P1084、5題;P102練習(xí)3;P1048題;P1034題;追及問題P1037題、P1186題;順流逆流P102練習(xí)2;P1082題;藥物配制P1087題;行程問題P99練習(xí)4;P1083,6題順流逆流公式:v順v靜v水v逆vv靜水5.不等式的性質(zhì)(重點(diǎn)是性質(zhì)三)P1285、7題6.利用不等式的性質(zhì)解不等式,并把解集在數(shù)軸上表示出來(課本上的練例、習(xí)題)P1342 步驟:去分母,去括號(hào),移項(xiàng),合并同類項(xiàng),系數(shù)化為一;其中去分母與系數(shù)化為一要特別小心,因?yàn)橐诓坏仁絻啥送瑫r(shí)乘或除以某一個(gè)數(shù),要考慮不等號(hào)的方向是否發(fā)生改變的問題。7.用不等式表示,P1282題,P127練習(xí)2;P123練習(xí)28.利用數(shù)軸或口訣解不等式組(課本上的例、習(xí)題) 數(shù)軸:P140歸納口訣(簡單不等式):同大取大,同小取小,大(于)小小(于)大取中間,大(于)大。ㄓ冢┬,解不見了。 9.列不等式(組)解決實(shí)際問題:P12910;P1289題;P133例2;P1355、6、7、8、9,P139例2;P140練習(xí)2,P1413、4題不等式組的解集的確定方法(a>b):自己將表格補(bǔ)充完整:不等式組 4 在數(shù)軸上表示的解集解集x>a口訣大大取大;x>ax>bx<ax<bx<ax>b小大大小中間找;ba小小取;x>ax<b空集大大小小不見了。 初一數(shù)學(xué)下冊期末考試知識(shí)點(diǎn)總結(jié)一(蘇教版) 第七章 平面圖形的認(rèn)識(shí)(二) 1 第八章 冪的運(yùn)算 2 第九章 整式的乘法與因式分解 3 第十章 二元一次方程組 4 第十一章 一元一次不等式 4 第十二章 證明 9 第七章 平面圖形的認(rèn)識(shí)(二) 一、知識(shí)點(diǎn): 1、“三線八角” 、 如何由線找角:一看線,二看型。 同位角是“F”型; 內(nèi)錯(cuò)角是“Z”型; 同旁內(nèi)角是“U”型。 、 如何由角找線:組成角的三條線中的公共直線就是截線。 2、平行公理: 如果兩條直線都和第三條直線平行,那么這兩條直線也平行。 簡述:平行于同一條直線的兩條直線平行。 補(bǔ)充定理: 如果兩條直線都和第三條直線垂直,那么這兩條直線也平行。 簡述:垂直于同一條直線的兩條直線平行。 3、平行線的判定和性質(zhì): 判定定理 性質(zhì)定理 條件 結(jié)論 條件 結(jié)論 同位角相等 兩直線平行 兩直線平行 同位角相等 內(nèi)錯(cuò)角相等 兩直線平行 兩直線平行 內(nèi)錯(cuò)角相等 同旁內(nèi)角互補(bǔ) 兩直線平行 兩直線平行 同旁內(nèi)角互補(bǔ) 4、圖形平移的性質(zhì): 圖形經(jīng)過平移,連接各組對應(yīng)點(diǎn)所得的線段互相平行(或在同一直線上)并且相等。 5、三角形三邊之間的關(guān)系: 三角形的任意兩邊之和大于第三邊; 三角形的任意兩邊之差小于第三邊。 若三角形的三邊分別為a、b、c, 則 6、三角形中的主要線段: 三角形的高、角平分線、中線。 注意:①三角形的高、角平分線、中線都是線段。 、诟、角平分線、中線的應(yīng)用。 7、三角形的內(nèi)角和: 三角形的3個(gè)內(nèi)角的和等于180°; 直角三角形的兩個(gè)銳角互余; 三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和; 三角形的一個(gè)外角大于與它不相鄰的任意一個(gè)內(nèi)角。 8、多邊形的內(nèi)角和: n邊形的內(nèi)角和等于(n-2)180°; 任意多邊形的外角和等于360°。 第八章 冪的運(yùn)算 冪(p5 【初一數(shù)學(xué)下冊知識(shí)點(diǎn)總結(jié)】相關(guān)文章: 初一數(shù)學(xué)下冊知識(shí)點(diǎn)總結(jié)歸納08-13 初一數(shù)學(xué)下冊知識(shí)點(diǎn)總結(jié)(6篇)11-22 初一數(shù)學(xué)下冊知識(shí)點(diǎn)總結(jié)6篇11-22 數(shù)學(xué)初一下冊知識(shí)點(diǎn)總結(jié)歸納08-16 初一數(shù)學(xué)下冊期末考試知識(shí)點(diǎn)總結(jié)06-12 初一數(shù)學(xué)下冊知識(shí)點(diǎn)總結(jié)合集6篇11-22 高二數(shù)學(xué)下冊知識(shí)點(diǎn)總結(jié)03-30初一數(shù)學(xué)下冊知識(shí)點(diǎn)總結(jié)4
初一數(shù)學(xué)下冊知識(shí)點(diǎn)總結(jié)5