男人天堂日韩,中文字幕18页,天天伊人网,成人性生交大片免费视频

高一數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)

時(shí)間:2023-12-07 11:00:14 芊喜 知識(shí)點(diǎn)總結(jié) 我要投稿

高一數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)

  總結(jié)是指對某一階段的工作、學(xué)習(xí)或思想中的經(jīng)驗(yàn)或情況進(jìn)行分析研究,做出帶有規(guī)律性結(jié)論的書面材料,它可以明確下一步的工作方向,少走彎路,少犯錯(cuò)誤,提高工作效益,因此我們要做好歸納,寫好總結(jié)。那么你真的懂得怎么寫總結(jié)嗎?下面是小編幫大家整理的高一數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié),僅供參考,希望能夠幫助到大家。

高一數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)

  高一數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)

  指數(shù)函數(shù)

  (1)指數(shù)函數(shù)的定義域?yàn)樗袑?shí)數(shù)的集合,這里的前提是a大于0,對于a不大于0的情況,則必然使得函數(shù)的定義域不存在連續(xù)的區(qū)間,因此我們不予考慮。

  (2)指數(shù)函數(shù)的值域?yàn)榇笥?的實(shí)數(shù)集合。

  (3)函數(shù)圖形都是下凹的。

  (4)a大于1,則指數(shù)函數(shù)單調(diào)遞增;a小于1大于0,則為單調(diào)遞減的。

  (5)可以看到一個(gè)顯然的規(guī)律,就是當(dāng)a從0趨向于無窮大的過程中(當(dāng)然不能等于0),函數(shù)的曲線從分別接近于Y軸與X軸的正半軸的單調(diào)遞減函數(shù)的位置,趨向分別接近于Y軸的正半軸與X軸的負(fù)半軸的單調(diào)遞增函數(shù)的位置。其中水平直線y=1是從遞減到遞增的一個(gè)過渡位置。

  (6)函數(shù)總是在某一個(gè)方向上無限趨向于X軸,永不相交。

  (7)函數(shù)總是通過(0,1)這點(diǎn)。

  (8)顯然指數(shù)函數(shù)無界。

  奇偶性

  定義

  一般地,對于函數(shù)f(x)

  (1)如果對于函數(shù)定義域內(nèi)的任意一個(gè)x,都有f(-x)=-f(x),那么函數(shù)f(x)就叫做奇函數(shù)。

  (2)如果對于函數(shù)定義域內(nèi)的任意一個(gè)x,都有f(-x)=f(x),那么函數(shù)f(x)就叫做偶函數(shù)。

  (3)如果對于函數(shù)定義域內(nèi)的任意一個(gè)x,f(-x)=-f(x)與f(-x)=f(x)同時(shí)成立,那么函數(shù)f(x)既是奇函數(shù)又是偶函數(shù),稱為既奇又偶函數(shù)。

  (4)如果對于函數(shù)定義域內(nèi)的任意一個(gè)x,f(-x)=-f(x)與f(-x)=f(x)都不能成立,那么函數(shù)f(x)既不是奇函數(shù)又不是偶函數(shù),稱為非奇非偶函數(shù)。

  高一數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)

  【基本初等函數(shù)】

  一、指數(shù)函數(shù)

  (一)指數(shù)與指數(shù)冪的運(yùn)算

  1、根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈

  當(dāng)是奇數(shù)時(shí),正數(shù)的次方根是一個(gè)正數(shù),負(fù)數(shù)的次方根是一個(gè)負(fù)數(shù)。此時(shí),的次方根用符號(hào)表示。式子叫做根式(radical),這里叫做根指數(shù)(radicalexponent),叫做被開方數(shù)(radicand)。

  當(dāng)是偶數(shù)時(shí),正數(shù)的次方根有兩個(gè),這兩個(gè)數(shù)互為相反數(shù)。此時(shí),正數(shù)的正的次方根用符號(hào)表示,負(fù)的次方根用符號(hào)—表示。正的次方根與負(fù)的次方根可以合并成±(>0)。由此可得:負(fù)數(shù)沒有偶次方根;0的任何次方根都是0,記作。

  注意:當(dāng)是奇數(shù)時(shí),當(dāng)是偶數(shù)時(shí),

  2、分?jǐn)?shù)指數(shù)冪

  正數(shù)的分?jǐn)?shù)指數(shù)冪的意義,規(guī)定:

  0的正分?jǐn)?shù)指數(shù)冪等于0,0的負(fù)分?jǐn)?shù)指數(shù)冪沒有意義

  指出:規(guī)定了分?jǐn)?shù)指數(shù)冪的意義后,指數(shù)的概念就從整數(shù)指數(shù)推廣到了有理數(shù)指數(shù),那么整數(shù)指數(shù)冪的運(yùn)算性質(zhì)也同樣可以推廣到有理數(shù)指數(shù)冪。

  3、實(shí)數(shù)指數(shù)冪的運(yùn)算性質(zhì)

 。ǘ┲笖(shù)函數(shù)及其性質(zhì)

  1、指數(shù)函數(shù)的概念:一般地,函數(shù)叫做指數(shù)函數(shù)(exponential),其中x是自變量,函數(shù)的定義域?yàn)镽。

  注意:指數(shù)函數(shù)的底數(shù)的取值范圍,底數(shù)不能是負(fù)數(shù)、零和1。

  2、指數(shù)函數(shù)的圖象和性質(zhì)

  高一數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)

  I.定義與定義表達(dá)式

  一般地,自變量x和因變量y之間存在如下關(guān)系:y=ax^2+bx+c

  (a,b,c為常數(shù),a≠0,且a決定函數(shù)的開口方向,a>0時(shí),開口方向向上,a<0時(shí),開口方向向下,IaI還可以決定開口大小,IaI越大開口就越小,IaI越小開口就越大.)

  則稱y為x的二次函數(shù)。

  二次函數(shù)表達(dá)式的右邊通常為二次三項(xiàng)式。

  II.二次函數(shù)的三種表達(dá)式

  一般式:y=ax^2+bx+c(a,b,c為常數(shù),a≠0)

  頂點(diǎn)式:y=a(x-h)^2+k[拋物線的頂點(diǎn)P(h,k)]

  交點(diǎn)式:y=a(x-x?)(x-x?)[僅限于與x軸有交點(diǎn)A(x?,0)和B(x?,0)的拋物線]

  注:在3種形式的互相轉(zhuǎn)化中,有如下關(guān)系:

  h=-b/2ak=(4ac-b^2)/4ax?,x?=(-b±√b^2-4ac)/2a

  III.二次函數(shù)的圖像

  在平面直角坐標(biāo)系中作出二次函數(shù)y=x^2的圖像,可以看出,二次函數(shù)的圖像是一條拋物線。

  IV.拋物線的性質(zhì)

  1.拋物線是軸對稱圖形。對稱軸為直線x=-b/2a。對稱軸與拋物線的交點(diǎn)為拋物線的頂點(diǎn)P。

  特別地,當(dāng)b=0時(shí),拋物線的對稱軸是y軸(即直線x=0)

  2.拋物線有一個(gè)頂點(diǎn)P,坐標(biāo)為

  P(-b/2a,(4ac-b^2)/4a)

  當(dāng)-b/2a=0時(shí),P在y軸上;當(dāng)Δ=b^2-4ac=0時(shí),P在x軸上。

  3.二次項(xiàng)系數(shù)a決定拋物線的開口方向和大小。

  當(dāng)a>0時(shí),拋物線向上開口;當(dāng)a<0時(shí),拋物線向下開口。

  |a|越大,則拋物線的開口越小。

  高一數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)

 。ㄒ唬﹫A的標(biāo)準(zhǔn)方程

  1.圓的定義:

  平面內(nèi)到一定點(diǎn)的距離等于定長的點(diǎn)的軌跡叫做圓.定點(diǎn)叫圓的圓心,定長叫做圓的半徑.

  2.圓的標(biāo)準(zhǔn)方程:

  已知圓心為(a,b),半徑為r,則圓的方程為(x-a)2+(y-b)2=r2.

  說明:

 。1)上式稱為圓的標(biāo)準(zhǔn)方程.

  (2)如果圓心在坐標(biāo)原點(diǎn),這時(shí)a=0,b=0,圓的方程就是x2+y2=r2.

  (3)圓的標(biāo)準(zhǔn)方程顯示了圓心為(a,b),半徑為r這一幾何性質(zhì),即(x-a)2+(y-b)2=r2----圓心為(a,b),半徑為r.

  (4)確定圓的條件

  由圓的標(biāo)準(zhǔn)方程知有三個(gè)參數(shù)a、b、r,只要求出a、b、r,這時(shí)圓的方程就被確定。因此,確定圓的方程,需三個(gè)獨(dú)立的條件,其中圓心是圓的定位條件,半徑是圓的定型條件.

 。5)點(diǎn)與圓的位置關(guān)系的判定

  若點(diǎn)M(x1,y1)在圓外,則點(diǎn)到圓心的距離大于圓的半徑,即(x-a)2+(y-b)2>r2

  若點(diǎn)M(x1,y1)在圓內(nèi),則點(diǎn)到圓心的距離小于圓的半徑,即(x-a)2+(y-b)2<r2

  (二)圓的一般方程

  任何一個(gè)圓的方程都可以寫成下面的形式:

  x2+y2+Dx+Ey+F=0①

  將①配方得:

 、(x+D/2)2+(y+E/2)2=D2+E2-4F/4

  當(dāng)時(shí),方程①表示以(-D/2,-E/2)為圓心,以為半徑的圓;

  當(dāng)時(shí),方程①只有實(shí)數(shù)解,所以表示一個(gè)點(diǎn)(-D/2,-E/2);

  當(dāng)時(shí),方程①?zèng)]有實(shí)數(shù)解,因此它不表示任何圖形.

  故當(dāng)時(shí),方程①表示一個(gè)圓,方程①叫做圓的一般方程.

  圓的標(biāo)準(zhǔn)方程的優(yōu)點(diǎn)在于它明確地指出了圓心和半徑,而一般方程突出了方程形式上的特點(diǎn):

  (1)和的系數(shù)相同,且不等于0;

 。2)沒有xy這樣的二次項(xiàng).

  以上兩點(diǎn)是二元二次方程表示圓的必要條件,但不是充分條件.

  要求出圓的一般方程,只要求出三個(gè)系數(shù)D、E、F就可以了.

  (三)直線和圓的位置關(guān)系

  1.直線與圓的位置關(guān)系

  研究直線與圓的位置關(guān)系有兩種方法:

 。╨)幾何法:令圓心到直線的距離為d,圓的半徑為r.

  d>r直線與圓相離;d=r直線與圓相切;0≤d

  高一數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)

  一、函數(shù)的概念與表示

  1、映射

  (1)映射:設(shè)A、B是兩個(gè)集合,如果按照某種映射法則f,對于集合A中的任一個(gè)元素,在集合B中都有唯一的元素和它對應(yīng),則這樣的對應(yīng)(包括集合A、B以及A到B的對應(yīng)法則f)叫做集合A到集合B的映射,記作f:A→B。

  注意點(diǎn):(1)對映射定義的理解。(2)判斷一個(gè)對應(yīng)是映射的方法。一對多不是映射,多對一是映射

  2、函數(shù)

  構(gòu)成函數(shù)概念的三要素

 、俣x域②對應(yīng)法則③值域

  兩個(gè)函數(shù)是同一個(gè)函數(shù)的條件:三要素有兩個(gè)相同

  二、函數(shù)的解析式與定義域

  1、求函數(shù)定義域的主要依據(jù):

  (1)分式的分母不為零;

  (2)偶次方根的被開方數(shù)不小于零,零取零次方?jīng)]有意義;

  (3)對數(shù)函數(shù)的真數(shù)必須大于零;

  (4)指數(shù)函數(shù)和對數(shù)函數(shù)的底數(shù)必須大于零且不等于1;

  三、函數(shù)的值域

  1求函數(shù)值域的方法

  ①直接法:從自變量x的范圍出發(fā),推出y=f(x)的取值范圍,適合于簡單的復(fù)合函數(shù);

 、趽Q元法:利用換元法將函數(shù)轉(zhuǎn)化為二次函數(shù)求值域,適合根式內(nèi)外皆為一次式;

  ③判別式法:運(yùn)用方程思想,依據(jù)二次方程有根,求出y的取值范圍;適合分母為二次且∈R的分式;

 、芊蛛x常數(shù):適合分子分母皆為一次式(x有范圍限制時(shí)要畫圖);

 、輪握{(diào)性法:利用函數(shù)的單調(diào)性求值域;

  ⑥圖象法:二次函數(shù)必畫草圖求其值域;

 、呃脤μ(hào)函數(shù)

 、鄮缀我饬x法:由數(shù)形結(jié)合,轉(zhuǎn)化距離等求值域。主要是含絕對值函數(shù)

  四.函數(shù)的奇偶性

  1.定義:設(shè)y=f(x),x∈A,如果對于任意∈A,都有,則稱y=f(x)為偶函數(shù)。

  如果對于任意∈A,都有,則稱y=f(x)為奇

  函數(shù)。

  2.性質(zhì):

 、賧=f(x)是偶函數(shù)y=f(x)的圖象關(guān)于軸對稱,y=f(x)是奇函數(shù)y=f(x)的圖象關(guān)于原點(diǎn)對稱,

  ②若函數(shù)f(x)的定義域關(guān)于原點(diǎn)對稱,則f(0)=0

 、燮妗榔=奇偶±偶=偶奇×奇=偶偶×偶=偶奇×偶=奇[兩函數(shù)的定義域D1,D2,D1∩D2要關(guān)于原點(diǎn)對稱]

  3.奇偶性的判斷

 、倏炊x域是否關(guān)于原點(diǎn)對稱②看f(x)與f(-x)的關(guān)系

  五、函數(shù)的單調(diào)性

  1、函數(shù)單調(diào)性的定義:

  2設(shè)是定義在M上的函數(shù),若f(x)與g(x)的單調(diào)性相反,則在M上是減函數(shù);若f(x)與g(x)的單調(diào)性相同,則在M上是增函數(shù)。

  高一數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)

  1、函數(shù)零點(diǎn)的定義

  (1)對于函數(shù))(xfy,我們把方程0)(xf的實(shí)數(shù)根叫做函數(shù))(xfy)的零點(diǎn)。

  (2)方程0)(xf有實(shí)根函數(shù)(yfx)的圖像與x軸有交點(diǎn)函數(shù)(yfx)有零點(diǎn)。因此判斷一個(gè)函數(shù)是否有零點(diǎn),有幾個(gè)零點(diǎn),就是判斷方程0)(xf是否有實(shí)數(shù)根,有幾個(gè)實(shí)數(shù)根。函數(shù)零點(diǎn)的求法:解方程0)(xf,所得實(shí)數(shù)根就是(fx)的零點(diǎn)(3)變號(hào)零點(diǎn)與不變號(hào)零點(diǎn)

 、偃艉瘮(shù)(fx)在零點(diǎn)0x左右兩側(cè)的函數(shù)值異號(hào),則稱該零點(diǎn)為函數(shù)(fx)的變號(hào)零點(diǎn)。②若函數(shù)(fx)在零點(diǎn)0x左右兩側(cè)的函數(shù)值同號(hào),則稱該零點(diǎn)為函數(shù)(fx)的不變號(hào)零點(diǎn)。

  ③若函數(shù)(fx)在區(qū)間,ab上的圖像是一條連續(xù)的曲線,則0

  2、函數(shù)零點(diǎn)的判定

  (1)零點(diǎn)存在性定理:如果函數(shù))(xfy在區(qū)間],[ba上的圖象是連續(xù)不斷的曲線,并且有(fa)(fb),那么,函數(shù)(xfy)在區(qū)間,ab內(nèi)有零點(diǎn),即存在,(0bax,使得0)(0xf,這個(gè)0x也就是方程0)(xf的根。

  (2)函數(shù))(xfy零點(diǎn)個(gè)數(shù)(或方程0)(xf實(shí)數(shù)根的個(gè)數(shù))確定方法

 、俅鷶(shù)法:函數(shù))(xfy的零點(diǎn)0)(xf的根;②(幾何法)對于不能用求根公式的方程,可以將它與函數(shù))(xfy的圖象聯(lián)系起來,并利用函數(shù)的性質(zhì)找出零點(diǎn)。

  (3)零點(diǎn)個(gè)數(shù)確定

  0)(xfy有2個(gè)零點(diǎn)0)(xf有兩個(gè)不等實(shí)根;0)(xfy有1個(gè)零點(diǎn)0)(xf有兩個(gè)相等實(shí)根;0)(xfy無零點(diǎn)0)(xf無實(shí)根;對于二次函數(shù)在區(qū)間,ab上的零點(diǎn)個(gè)數(shù),要結(jié)合圖像進(jìn)行確定.

  3、二分法

  (1)二分法的定義:對于在區(qū)間[,]ab上連續(xù)不斷且(fa)(fb)的函數(shù)(yfx),通過不斷地把函數(shù)(yfx)的零點(diǎn)所在的區(qū)間一分為二,使區(qū)間的兩個(gè)端點(diǎn)逐步逼近零點(diǎn),進(jìn)而得到零點(diǎn)的近似值的方法叫做二分法;

  (2)用二分法求方程的近似解的步驟:

 、俅_定區(qū)間[,]ab,驗(yàn)證(fa)(fb)給定精確度e;

 、谇髤^(qū)間(,)ab的中點(diǎn)c;

 、塾(jì)算(fc);

  (ⅰ)若(fc),則c就是函數(shù)的零點(diǎn);

  (ⅱ)若(fa)(fc),則令bc(此時(shí)零點(diǎn)0(,)xac);(ⅲ)若(fc)(fb),則令ac(此時(shí)零點(diǎn)0(,)xcb);

  ④判斷是否達(dá)到精確度e,即ab,則得到零點(diǎn)近似值為a(或b);否則重復(fù)②至④步.

【高一數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)】相關(guān)文章:

高一數(shù)學(xué)的知識(shí)點(diǎn)歸納總結(jié)07-11

高一數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)06-12

高一數(shù)學(xué)知識(shí)點(diǎn)的歸納總結(jié)07-28

高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)歸納02-15

高一數(shù)學(xué)知識(shí)點(diǎn)重點(diǎn)總結(jié)歸納09-23

高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)歸納01-14

高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)歸納7篇05-17

高一數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)13篇12-17

高一數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)精選13篇12-18