男人天堂日韩,中文字幕18页,天天伊人网,成人性生交大片免费视频

高一數(shù)學知識點歸納總結(jié)

時間:2022-12-21 09:04:31 知識點總結(jié) 我要投稿

高一數(shù)學知識點歸納總結(jié)(15篇)

  總結(jié)就是對一個時期的學習、工作或其完成情況進行一次全面系統(tǒng)的回顧和分析的書面材料,它能幫我們理順知識結(jié)構(gòu),突出重點,突破難點,讓我們抽出時間寫寫總結(jié)吧。那么總結(jié)有什么格式呢?下面是小編整理的高一數(shù)學知識點歸納總結(jié),歡迎大家分享。

高一數(shù)學知識點歸納總結(jié)(15篇)

高一數(shù)學知識點歸納總結(jié)1

  冪函數(shù)的性質(zhì):

  對于a的取值為非零有理數(shù),有必要分成幾種情況來討論各自的特性:

  首先我們知道如果a=p/q,q和p都是整數(shù),則x^(p/q)=q次根號(x的p次方),如果q是奇數(shù),函數(shù)的定義域是R,如果q是偶數(shù),函數(shù)的定義域是[0,+∞)。當指數(shù)n是負整數(shù)時,設a=—k,則x=1/(x^k),顯然x≠0,函數(shù)的定義域是(—∞,0)∪(0,+∞)。因此可以看到x所受到的限制來源于兩點,一是有可能作為分母而不能是0,一是有可能在偶數(shù)次的根號下而不能為負數(shù),那么我們就可以知道:

  排除了為0與負數(shù)兩種可能,即對于x>0,則a可以是任意實數(shù);

  排除了為0這種可能,即對于x<0x="">0的所有實數(shù),q不能是偶數(shù);

  排除了為負數(shù)這種可能,即對于x為大于且等于0的所有實數(shù),a就不能是負數(shù)。

  總結(jié)起來,就可以得到當a為不同的數(shù)值時,冪函數(shù)的定義域的不同情況如下:如果a為任意實數(shù),則函數(shù)的定義域為大于0的所有實數(shù);

  如果a為負數(shù),則x肯定不能為0,不過這時函數(shù)的定義域還必須根據(jù)q的奇偶性來確定,即如果同時q為偶數(shù),則x不能小于0,這時函數(shù)的定義域為大于0的所有實數(shù);如果同時q為奇數(shù),則函數(shù)的定義域為不等于0的所有實數(shù)。

  在x大于0時,函數(shù)的值域總是大于0的實數(shù)。

  在x小于0時,則只有同時q為奇數(shù),函數(shù)的值域為非零的實數(shù)。

  而只有a為正數(shù),0才進入函數(shù)的值域。

  由于x大于0是對a的任意取值都有意義的,因此下面給出冪函數(shù)在第一象限的各自情況。

  可以看到:

 。1)所有的圖形都通過(1,1)這點。

 。2)當a大于0時,冪函數(shù)為單調(diào)遞增的,而a小于0時,冪函數(shù)為單調(diào)遞減函數(shù)。

  (3)當a大于1時,冪函數(shù)圖形下凹;當a小于1大于0時,冪函數(shù)圖形上凸。

  (4)當a小于0時,a越小,圖形傾斜程度越大。

  (5)a大于0,函數(shù)過(0,0);a小于0,函數(shù)不過(0,0)點。

 。6)顯然冪函數(shù)。

  解題方法:換元法

  解數(shù)學題時,把某個式子看成一個整體,用一個變量去代替它,從而使問題得到簡化,這種方法叫換元法。換元的實質(zhì)是轉(zhuǎn)化,關(guān)鍵是構(gòu)造元和設元,理論依據(jù)是等量代換,目的是變換研究對象,將問題移至新對象的知識背景中去研究,從而使非標準型問題標準化、復雜問題簡單化,變得容易處理。

  換元法又稱輔助元素法、變量代換法。通過引進新的變量,可以把分散的條件聯(lián)系起來,隱含的條件顯露出來,或者把條件與結(jié)論聯(lián)系起來;蛘咦?yōu)槭煜さ男问,把復雜的計算和推證簡化。

  它可以化高次為低次、化分式為整式、化無理式為有理式、化超越式為代數(shù)式,在研究方程、不等式、函數(shù)、數(shù)列、三角等問題中有廣泛的應用。

  練習題:

  1、若f(x)=x2—x+b,且f(log2a)=b,log2[f(a)]=2(a≠1)。

  (1)求f(log2x)的最小值及對應的x值;

 。2)x取何值時,f(log2x)>f(1)且log2[f(x)]

  2、已知函數(shù)f(x)=3x+k(k為常數(shù)),A(—2k,2)是函數(shù)y=f—1(x)圖象上的點。

 。1)求實數(shù)k的值及函數(shù)f—1(x)的解析式;

 。2)將y=f—1(x)的圖象按向量a=(3,0)平移,得到函數(shù)y=g(x)的圖象,若2f—1(x+—3)—g(x)≥1恒成立,試求實數(shù)m的取值范圍。

高一數(shù)學知識點歸納總結(jié)2

  一、集合有關(guān)概念

  1.集合的含義

  2.集合的中元素的三個特性:

  (1)元素的確定性,

  (2)元素的互異性,

  (3)元素的無序性,

  3.集合的表示:{…}如:{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}

  (1)用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}

  (2)集合的表示方法:列舉法與描述法。

  ?注意:常用數(shù)集及其記法:

  非負整數(shù)集(即自然數(shù)集)記作:N

  正整數(shù)集N*或N+整數(shù)集Z有理數(shù)集Q實數(shù)集R

  1)列舉法:{a,b,c……}

  2)描述法:將集合中的元素的公共屬性描述出來,寫在大括號內(nèi)表示集合的方法。{x?R|x-3>2},{x|x-3>2}

  3)語言描述法:例:{不是直角三角形的三角形}

  4)Venn圖:

  4、集合的分類:

  (1)有限集含有有限個元素的集合

  (2)無限集含有無限個元素的集合

  (3)空集不含任何元素的集合例:{x|x2=-5}

  二、集合間的基本關(guān)系

  1.“包含”關(guān)系—子集

  注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。

  反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA

  2.“相等”關(guān)系:A=B(5≥5,且5≤5,則5=5)

  實例:設A={x|x2-1=0}B={-1,1}“元素相同則兩集合相等”

  即:①任何一個集合是它本身的子集。A?A

 、谡孀蛹:如果A?B,且A?B那就說集合A是集合B的真子集,記作AB(或BA)

 、廴绻鸄?B,B?C,那么A?C

  ④如果A?B同時B?A那么A=B

  3.不含任何元素的集合叫做空集,記為Φ

  規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。

  有n個元素的集合,含有2n個子集,2n-1個真子集

  三、集合的運算

  運算類型交集并集補集

  定義由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集.記作AB(讀作‘A交B’),即AB={x|xA,且xB}.

  由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做A,B的并集.記作:AB(讀作‘A并B’),即AB={x|xA,或xB}).

  設S是一個集合,A是S的一個子集,由S中所有不屬于A的元素組成的集合,叫做S中子集A的補集(或余集)

  四、函數(shù)的有關(guān)概念

  1.函數(shù)的概念:設A、B是非空的數(shù)集,如果按照某個確定的對應關(guān)系f,使對于集合A中的任意一個數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對應,那么就稱f:A→B為從集合A到集合B的一個函數(shù).記作:y=f(x),x∈A.其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域;與x的值相對應的y值叫做函數(shù)值,函數(shù)值的集合{f(x)|x∈A}叫做函數(shù)的值域.

  注意:

  1.定義域:能使函數(shù)式有意義的實數(shù)x的集合稱為函數(shù)的定義域。

  求函數(shù)的定義域時列不等式組的主要依據(jù)是:

  (1)分式的分母不等于零;

  (2)偶次方根的被開方數(shù)不小于零;

  (3)對數(shù)式的真數(shù)必須大于零;

  (4)指數(shù)、對數(shù)式的底必須大于零且不等于1.

  (5)如果函數(shù)是由一些基本函數(shù)通過四則運算結(jié)合而成的那么,它的定義域是使各部分都有意義的x的值組成的集合.

  (6)指數(shù)為零底不可以等于零,

  (7)實際問題中的函數(shù)的定義域還要保證實際問題有意義.

  相同函數(shù)的判斷方法:①表達式相同(與表示自變量和函數(shù)值的字母無關(guān));②定義域一致(兩點必須同時具備)

  2.值域:先考慮其定義域

  (1)觀察法

  (2)配方法

  (3)代換法

  3.函數(shù)圖象知識歸納

  (1)定義:在平面直角坐標系中,以函數(shù)y=f(x),(x∈A)中的x為橫坐標,函數(shù)值y為縱坐標的點P(x,y)的集合C,叫做函數(shù)y=f(x),(x∈A)的圖象.C上每一點的坐標(x,y)均滿足函數(shù)關(guān)系y=f(x),反過來,以滿足y=f(x)的每一組有序?qū)崝?shù)對x、y為坐標的點(x,y),均在C上.

  (2)畫法

  A、描點法:

  B、圖象變換法

  常用變換方法有三種

  1)平移變換

  2)伸縮變換

  3)對稱變換

  4.區(qū)間的概念

  (1)區(qū)間的分類:開區(qū)間、閉區(qū)間、半開半閉區(qū)間

  (2)無窮區(qū)間

  (3)區(qū)間的數(shù)軸表示.

  5.映射

  一般地,設A、B是兩個非空的集合,如果按某一個確定的對應法則f,使對于集合A中的任意一個元素x,在集合B中都有唯一確定的元素y與之對應,那么就稱對應f:AB為從集合A到集合B的一個映射。記作f:A→B

  6.分段函數(shù)

  (1)在定義域的不同部分上有不同的解析表達式的函數(shù)。

  (2)各部分的自變量的取值情況.

  (3)分段函數(shù)的定義域是各段定義域的交集,值域是各段值域的并集.

  補充:復合函數(shù)

  如果y=f(u)(u∈M),u=g(x)(x∈A),則y=f[g(x)]=F(x)(x∈A)稱為f、g的復合函數(shù)。

  五.函數(shù)的性質(zhì)

  1.函數(shù)的單調(diào)性(局部性質(zhì))

  (1)增函數(shù)

  設函數(shù)y=f(x)的定義域為I,如果對于定義域I內(nèi)的某個區(qū)間D內(nèi)的任意兩個自變量x1,x2,當x1

  如果對于區(qū)間D上的任意兩個自變量的值x1,x2,當x1f(x2),那么就說f(x)在這個區(qū)間上是減函數(shù).區(qū)間D稱為y=f(x)的單調(diào)減區(qū)間.

  注意:函數(shù)的單調(diào)性是函數(shù)的局部性質(zhì);

  (2)圖象的特點

  如果函數(shù)y=f(x)在某個區(qū)間是增函數(shù)或減函數(shù),那么說函數(shù)y=f(x)在這一區(qū)間上具有(嚴格的)單調(diào)性,在單調(diào)區(qū)間上增函數(shù)的圖象從左到右是上升的,減函數(shù)的圖象從左到右是下降的

  (3).函數(shù)單調(diào)區(qū)間與單調(diào)性的判定方法

  (A)定義法:

  ○1任取x1,x2∈D,且x1

  ○2作差f(x1)-f(x2);

  ○3變形(通常是因式分解和配方);

  ○4定號(即判斷差f(x1)-f(x2)的正負);

  ○5下結(jié)論(指出函數(shù)f(x)在給定的區(qū)間D上的單調(diào)性).

  (B)圖象法(從圖象上看升降)

  (C)復合函數(shù)的單調(diào)性

  復合函數(shù)f[g(x)]的單調(diào)性與構(gòu)成它的函數(shù)u=g(x),y=f(u)的單調(diào)性密切相關(guān),其規(guī)律:“同增異減”

  注意:函數(shù)的單調(diào)區(qū)間只能是其定義域的子區(qū)間,不能把單調(diào)性相同的區(qū)間和在一起寫成其并集.

  8.函數(shù)的奇偶性(整體性質(zhì))

  (1)偶函數(shù)

  一般地,對于函數(shù)f(x)的定義域內(nèi)的任意一個x,都有f(-x)=f(x),那么f(x)就叫做偶函數(shù).

  (2).奇函數(shù)

  一般地,對于函數(shù)f(x)的定義域內(nèi)的任意一個x,都有f(-x)=—f(x),那么f(x)就叫做奇函數(shù).

  (3)具有奇偶性的函數(shù)的圖象的特征

  偶函數(shù)的圖象關(guān)于y軸對稱;奇函數(shù)的圖象關(guān)于原點對稱.

  利用定義判斷函數(shù)奇偶性的步驟:

  ○1首先確定函數(shù)的定義域,并判斷其是否關(guān)于原點對稱;

  ○2確定f(-x)與f(x)的關(guān)系;

  ○3作出相應結(jié)論:若f(-x)=f(x)或f(-x)-f(x)=0,則f(x)是偶函數(shù);若f(-x)=-f(x)或f(-x)+f(x)=0,則f(x)是奇函數(shù).

  (2)由f(-x)±f(x)=0或f(x)/f(-x)=±1來判定;

  (3)利用定理,或借助函數(shù)的圖象判定.

  9、函數(shù)的解析表達式

  (1).函數(shù)的解析式是函數(shù)的一種表示方法,要求兩個變量之間的函數(shù)關(guān)系時,一是要求出它們之間的對應法則,二是要求出函數(shù)的定義域.

  (2)求函數(shù)的解析式的主要方法有:

  1)湊配法

  2)待定系數(shù)法

  3)換元法

  4)消參法

  10.函數(shù)最大(小)值(定義見課本p36頁)

  ○1利用二次函數(shù)的性質(zhì)(配方法)求函數(shù)的最大(小)值

  ○2利用圖象求函數(shù)的最大(小)值

  ○3利用函數(shù)單調(diào)性的判斷函數(shù)的最大(小)值:

  如果函數(shù)y=f(x)在區(qū)間[a,b]上單調(diào)遞增,在區(qū)間[b,c]上單調(diào)遞減則函數(shù)y=f(x)在x=b處有最大值f(b);

  如果函數(shù)y=f(x)在區(qū)間[a,b]上單調(diào)遞減,在區(qū)間[b,c]上單調(diào)遞增則函數(shù)y=f(x)在x=b處有最小值f(b);

高一數(shù)學知識點歸納總結(jié)3

  平面向量

  向量:既有大小,又有方向的量.

  數(shù)量:只有大小,沒有方向的量.

  有向線段的三要素:起點、方向、長度.

  零向量:長度為的向量.

  單位向量:長度等于個單位的向量.

  相等向量:長度相等且方向相同的向量

  &向量的運算

  加法運算

  AB+BC=AC,這種計算法則叫做向量加法的三角形法則。

  已知兩個從同一點O出發(fā)的兩個向量OA、OB,以OA、OB為鄰邊作平行四邊形OACB,則以O為起點的對角線OC就是向量OA、OB的和,這種計算法則叫做向量加法的平行四邊形法則。

  對于零向量和任意向量a,有:0+a=a+0=a。

  |a+b|≤|a|+|b|。

  向量的加法滿足所有的加法運算定律。

  減法運算

  與a長度相等,方向相反的向量,叫做a的相反向量,-(-a)=a,零向量的相反向量仍然是零向量

  (1)a+(-a)=(-a)+a=0(2)a-b=a+(-b)。

  數(shù)乘運算

  實數(shù)λ與向量a的積是一個向量,這種運算叫做向量的數(shù)乘,記作λa,|λa|=|λ||a|,當λ>0時,λa的方向和a的方向相同,當λ<0時,λa的方向和a的方向相反,當λ=0時,λa=0。

  設λ、μ是實數(shù),那么:(1)(λμ)a=λ(μa)(2)(λμ)a=λaμa(3)λ(a±b)=λa±λb(4)(-λ)a=-(λa)=λ(-a)。

  向量的加法運算、減法運算、數(shù)乘運算統(tǒng)稱線性運算。

  向量的數(shù)量積

  已知兩個非零向量a、b,那么|a||b|cosθ叫做a與b的數(shù)量積或內(nèi)積,記作a?b,θ是a與b的夾角,|a|cosθ(|b|cosθ)叫做向量a在b方向上(b在a方向上)的投影。零向量與任意向量的數(shù)量積為0。

  a?b的幾何意義:數(shù)量積a?b等于a的長度|a|與b在a的方向上的投影|b|cosθ的乘積。

  兩個向量的數(shù)量積等于它們對應坐標的乘積的和。

高一數(shù)學知識點歸納總結(jié)4

  一:函數(shù)及其表示

  知識點詳解文檔包含函數(shù)的概念、映射、函數(shù)關(guān)系的判斷原則、函數(shù)區(qū)間、函數(shù)的三要素、函數(shù)的定義域、求具體或抽象數(shù)值的函數(shù)值、求函數(shù)值域、函數(shù)的表示方法等

  1. 函數(shù)與映射的區(qū)別:

  2. 求函數(shù)定義域

  常見的用解析式表示的函數(shù)f(x)的定義域可以歸納如下:

 、佼攆(x)為整式時,函數(shù)的定義域為R.

 、诋攆(x)為分式時,函數(shù)的定義域為使分式分母不為零的實數(shù)集合。

 、郛攆(x)為偶次根式時,函數(shù)的定義域是使被開方數(shù)不小于0的實數(shù)集合。

 、墚攆(x)為對數(shù)式時,函數(shù)的定義域是使真數(shù)為正、底數(shù)為正且不為1的實數(shù)集合。

 、萑绻鹒(x)是由幾個部分的數(shù)學式子構(gòu)成的,那么函數(shù)定義域是使各部分式子都有意義的實數(shù)集合,即求各部分有意義的實數(shù)集合的交集。

 、迯秃虾瘮(shù)的定義域是復合的各基本的函數(shù)定義域的交集。

 、邔τ谟蓪嶋H問題的背景確定的函數(shù),其定義域除上述外,還要受實際問題的制約。

  3. 求函數(shù)值域

  (1)、觀察法:通過對函數(shù)定義域、性質(zhì)的觀察,結(jié)合函數(shù)的解析式,求得函數(shù)的值域;

  (2)、配方法;如果一個函數(shù)是二次函數(shù)或者經(jīng)過換元可以寫成二次函數(shù)的形式,那么將這個函數(shù)的右邊配方,通過自變量的范圍可以求出該函數(shù)的值域;

  (3)、判別式法:

  (4)、數(shù)形結(jié)合法;通過觀察函數(shù)的圖象,運用數(shù)形結(jié)合的方法得到函數(shù)的值域;

  (5)、換元法;以新變量代替函數(shù)式中的某些量,使函數(shù)轉(zhuǎn)化為以新變量為自變量的函數(shù)形式,進而求出值域;

  (6)、利用函數(shù)的單調(diào)性;如果函數(shù)在給出的定義域區(qū)間上是嚴格單調(diào)的,那么就可以利用端點的函數(shù)值來求出值域;

  (7)、利用基本不等式:對于一些特殊的分式函數(shù)、高于二次的函數(shù)可以利用重要不等式求出函數(shù)的值域;

  (8)、最值法:對于閉區(qū)間[a,b]上的連續(xù)函數(shù)y=f(x),可求出y=f(x)在區(qū)間[a,b]內(nèi)的極值,并與邊界值f(a).f(b)作比較,求出函數(shù)的最值,可得到函數(shù)y的值域;

  (9)、反函數(shù)法:如果函數(shù)在其定義域內(nèi)存在反函數(shù),那么求函數(shù)的值域可以轉(zhuǎn)化為求反函數(shù)的定義域。

高一數(shù)學知識點歸納總結(jié)5

  集合集合具有某種特定性質(zhì)的事物的總體。這里的“事物”可以是人,物品,也可以是數(shù)學元素。例如:1、分散的人或事物聚集到一起;使聚集:緊急~。2、數(shù)學名詞。一組具有某種共同性質(zhì)的數(shù)學元素:有理數(shù)的~。3、口號等等。集合在數(shù)學概念中有好多概念,如集合論:集合是現(xiàn)代數(shù)學的基本概念,專門研究集合的理論叫做集合論?低校–antor,G。F。P。,1845年—1918年,德國數(shù)學家先驅(qū),是集合論的創(chuàng)始者,目前集合論的基本思想已經(jīng)滲透到現(xiàn)代數(shù)學的所有領(lǐng)域。集合,在數(shù)學上是一個基礎(chǔ)概念。什么叫基礎(chǔ)概念?基礎(chǔ)概念是不能用其他概念加以定義的概念。集合的概念,可通過直觀、公理的方法來下“定義”。集合是把人們的直觀的或思維中的某些確定的能夠區(qū)分的對象匯合在一起,使之成為一個整體(或稱為單體),這一整體就是集合。組成一集合的那些對象稱為這一集合的元素(或簡稱為元)。集合與集合之間的關(guān)系某些指定的對象集在一起就成為一個集合集合符號,含有有限個元素叫有限集,含有無限個元素叫無限集,空集是不含任何元素的集,記做Φ。空集是任何集合的子集,是任何非空集的真子集。任何集合是它本身的子集。子集,真子集都具有傳遞性。(說明一下:如果集合A的所有元素同時都是集合B的元素,則A稱作是B的子集,寫作A B。若A是B的子集,且A不等于B,則A稱作是B的真子集,一般寫作A屬于B。中學教材課本里將符號下加了一個不等于符號,不要混淆,考試時還是要以課本為準。所有男人的集合是所有人的集合的真子集。)

高一數(shù)學知識點歸納總結(jié)6

  【(一)、映射、函數(shù)、反函數(shù)】

  1、對應、映射、函數(shù)三個概念既有共性又有區(qū)別,映射是一種特殊的對應,而函數(shù)又是一種特殊的映射.

  2、對于函數(shù)的概念,應注意如下幾點:

  (1)掌握構(gòu)成函數(shù)的三要素,會判斷兩個函數(shù)是否為同一函數(shù).

  (2)掌握三種表示法——列表法、解析法、圖象法,能根實際問題尋求變量間的函數(shù)關(guān)系式,特別是會求分段函數(shù)的解析式.

  (3)如果y=f(u),u=g(x),那么y=f[g(x)]叫做f和g的復合函數(shù),其中g(shù)(x)為內(nèi)函數(shù),f(u)為外函數(shù).

  3、求函數(shù)y=f(x)的反函數(shù)的一般步驟:

  (1)確定原函數(shù)的值域,也就是反函數(shù)的定義域;

  (2)由y=f(x)的解析式求出x=f-1(y);

  (3)將x,y對換,得反函數(shù)的習慣表達式y(tǒng)=f-1(x),并注明定義域.

  注意①:對于分段函數(shù)的反函數(shù),先分別求出在各段上的反函數(shù),然后再合并到一起.

  ②熟悉的應用,求f-1(x0)的值,合理利用這個結(jié)論,可以避免求反函數(shù)的過程,從而簡化運算.

  【(二)、函數(shù)的解析式與定義域】

  1、函數(shù)及其定義域是不可分割的整體,沒有定義域的函數(shù)是不存在的,因此,要正確地寫出函數(shù)的解析式,必須是在求出變量間的對應法則的同時,求出函數(shù)的定義域.求函數(shù)的定義域一般有三種類型:

  (1)有時一個函數(shù)來自于一個實際問題,這時自變量x有實際意義,求定義域要結(jié)合實際意義考慮;

  (2)已知一個函數(shù)的解析式求其定義域,只要使解析式有意義即可.如:

  ①分式的分母不得為零;

 、谂即畏礁谋婚_方數(shù)不小于零;

  ③對數(shù)函數(shù)的真數(shù)必須大于零;

 、苤笖(shù)函數(shù)和對數(shù)函數(shù)的底數(shù)必須大于零且不等于1;

  ⑤三角函數(shù)中的正切函數(shù)y=tanx(x∈R,且k∈Z),余切函數(shù)y=cotx(x∈R,x≠kπ,k∈Z)等.

  應注意,一個函數(shù)的解析式由幾部分組成時,定義域為各部分有意義的自變量取值的公共部分(即交集).

  (3)已知一個函數(shù)的定義域,求另一個函數(shù)的定義域,主要考慮定義域的深刻含義即可.

  已知f(x)的定義域是[a,b],求f[g(x)]的定義域是指滿足a≤g(x)≤b的x的取值范圍,而已知f[g(x)]的定義域[a,b]指的是x∈[a,b],此時f(x)的定義域,即g(x)的值域.

  2、求函數(shù)的解析式一般有四種情況

  (1)根據(jù)某實際問題需建立一種函數(shù)關(guān)系時,必須引入合適的變量,根據(jù)數(shù)學的有關(guān)知識尋求函數(shù)的解析式.

  (2)有時題設給出函數(shù)特征,求函數(shù)的解析式,可采用待定系數(shù)法.比如函數(shù)是一次函數(shù),可設f(x)=ax+b(a≠0),其中a,b為待定系數(shù),根據(jù)題設條件,列出方程組,求出a,b即可.

  (3)若題設給出復合函數(shù)f[g(x)]的表達式時,可用換元法求函數(shù)f(x)的表達式,這時必須求出g(x)的值域,這相當于求函數(shù)的定義域.

  (4)若已知f(x)滿足某個等式,這個等式除f(x)是未知量外,還出現(xiàn)其他未知量(如f(-x),等),必須根據(jù)已知等式,再構(gòu)造其他等式組成方程組,利用解方程組法求出f(x)的表達式.

  【(三)、函數(shù)的值域與最值】

  1、函數(shù)的值域取決于定義域和對應法則,不論采用何種方法求函數(shù)值域都應先考慮其定義域,求函數(shù)值域常用方法如下:

  (1)直接法:亦稱觀察法,對于結(jié)構(gòu)較為簡單的函數(shù),可由函數(shù)的解析式應用不等式的性質(zhì),直接觀察得出函數(shù)的值域.

  (2)換元法:運用代數(shù)式或三角換元將所給的復雜函數(shù)轉(zhuǎn)化成另一種簡單函數(shù)再求值域,若函數(shù)解析式中含有根式,當根式里一次式時用代數(shù)換元,當根式里是二次式時,用三角換元.

  (3)反函數(shù)法:利用函數(shù)f(x)與其反函數(shù)f-1(x)的定義域和值域間的關(guān)系,通過求反函數(shù)的定義域而得到原函數(shù)的值域,形如(a≠0)的函數(shù)值域可采用此法求得.

  (4)配方法:對于二次函數(shù)或二次函數(shù)有關(guān)的函數(shù)的值域問題可考慮用配方法.

  (5)不等式法求值域:利用基本不等式a+b≥[a,b∈(0,+∞)]可以求某些函數(shù)的值域,不過應注意條件“一正二定三相等”有時需用到平方等技巧.

  (6)判別式法:把y=f(x)變形為關(guān)于x的一元二次方程,利用“△≥0”求值域.其題型特征是解析式中含有根式或分式.

  (7)利用函數(shù)的單調(diào)性求值域:當能確定函數(shù)在其定義域上(或某個定義域的子集上)的單調(diào)性,可采用單調(diào)性法求出函數(shù)的值域.

  (8)數(shù)形結(jié)合法求函數(shù)的值域:利用函數(shù)所表示的幾何意義,借助于幾何方法或圖象,求出函數(shù)的值域,即以數(shù)形結(jié)合求函數(shù)的值域.

  2、求函數(shù)的最值與值域的區(qū)別和聯(lián)系

  求函數(shù)最值的常用方法和求函數(shù)值域的方法基本上是相同的,事實上,如果在函數(shù)的值域中存在一個最小(大)數(shù),這個數(shù)就是函數(shù)的最小(大)值.因此求函數(shù)的最值與值域,其實質(zhì)是相同的,只是提問的角度不同,因而答題的方式就有所相異.

  如函數(shù)的值域是(0,16],值是16,無最小值.再如函數(shù)的值域是(-∞,-2]∪[2,+∞),但此函數(shù)無值和最小值,只有在改變函數(shù)定義域后,如x>0時,函數(shù)的最小值為2.可見定義域?qū)瘮?shù)的值域或最值的影響.

  3、函數(shù)的最值在實際問題中的應用

  函數(shù)的最值的應用主要體現(xiàn)在用函數(shù)知識求解實際問題上,從文字表述上常常表現(xiàn)為“工程造價最低”,“利潤”或“面積(體積)(最小)”等諸多現(xiàn)實問題上,求解時要特別關(guān)注實際意義對自變量的制約,以便能正確求得最值.

  【(四)、函數(shù)的奇偶性】

  1、函數(shù)的奇偶性的定義:對于函數(shù)f(x),如果對于函數(shù)定義域內(nèi)的任意一個x,都有f(-x)=-f(x)(或f(-x)=f(x)),那么函數(shù)f(x)就叫做奇函數(shù)(或偶函數(shù)).

  正確理解奇函數(shù)和偶函數(shù)的定義,要注意兩點:(1)定義域在數(shù)軸上關(guān)于原點對稱是函數(shù)f(x)為奇函數(shù)或偶函數(shù)的必要不充分條件;(2)f(x)=-f(x)或f(-x)=f(x)是定義域上的恒等式.(奇偶性是函數(shù)定義域上的整體性質(zhì)).

  2、奇偶函數(shù)的定義是判斷函數(shù)奇偶性的主要依據(jù)。為了便于判斷函數(shù)的奇偶性,有時需要將函數(shù)化簡或應用定義的等價形式:

  注意如下結(jié)論的運用:

  (1)不論f(x)是奇函數(shù)還是偶函數(shù),f(|x|)總是偶函數(shù);

  (2)f(x)、g(x)分別是定義域D1、D2上的奇函數(shù),那么在D1∩D2上,f(x)+g(x)是奇函數(shù),f(x)·g(x)是偶函數(shù),類似地有“奇±奇=奇”“奇×奇=偶”,“偶±偶=偶”“偶×偶=偶”“奇×偶=奇”;

  (3)奇偶函數(shù)的復合函數(shù)的奇偶性通常是偶函數(shù);

  (4)奇函數(shù)的導函數(shù)是偶函數(shù),偶函數(shù)的導函數(shù)是奇函數(shù)。

  3、有關(guān)奇偶性的幾個性質(zhì)及結(jié)論

  (1)一個函數(shù)為奇函數(shù)的充要條件是它的圖象關(guān)于原點對稱;一個函數(shù)為偶函數(shù)的充要條件是它的圖象關(guān)于y軸對稱.

  (2)如要函數(shù)的定義域關(guān)于原點對稱且函數(shù)值恒為零,那么它既是奇函數(shù)又是偶函數(shù).

  (3)若奇函數(shù)f(x)在x=0處有意義,則f(0)=0成立.

  (4)若f(x)是具有奇偶性的區(qū)間單調(diào)函數(shù),則奇(偶)函數(shù)在正負對稱區(qū)間上的單調(diào)性是相同(反)的。

  (5)若f(x)的定義域關(guān)于原點對稱,則F(x)=f(x)+f(-x)是偶函數(shù),G(x)=f(x)-f(-x)是奇函數(shù).

  (6)奇偶性的推廣

  函數(shù)y=f(x)對定義域內(nèi)的任一x都有f(a+x)=f(a-x),則y=f(x)的圖象關(guān)于直線x=a對稱,即y=f(a+x)為偶函數(shù).函數(shù)y=f(x)對定義域內(nèi)的任-x都有f(a+x)=-f(a-x),則y=f(x)的圖象關(guān)于點(a,0)成中心對稱圖形,即y=f(a+x)為奇函數(shù)。

  【(五)、函數(shù)的單調(diào)性】

  1、單調(diào)函數(shù)

  對于函數(shù)f(x)定義在某區(qū)間[a,b]上任意兩點x1,x2,當x1>x2時,都有不等式f(x1)>(或<)f(x2)成立,稱f(x)在[a,b]上單調(diào)遞增(或遞減);增函數(shù)或減函數(shù)統(tǒng)稱為單調(diào)函數(shù).

  對于函數(shù)單調(diào)性的定義的理解,要注意以下三點:

  (1)單調(diào)性是與“區(qū)間”緊密相關(guān)的概念.一個函數(shù)在不同的區(qū)間上可以有不同的單調(diào)性.

  (2)單調(diào)性是函數(shù)在某一區(qū)間上的“整體”性質(zhì),因此定義中的x1,x2具有任意性,不能用特殊值代替.

  (3)單調(diào)區(qū)間是定義域的子集,討論單調(diào)性必須在定義域范圍內(nèi).

  (4)注意定義的兩種等價形式:

  設x1、x2∈[a,b],那么:

  ①在[a、b]上是增函數(shù);

  在[a、b]上是減函數(shù).

  ②在[a、b]上是增函數(shù).

  在[a、b]上是減函數(shù).

  需要指出的是:①的幾何意義是:增(減)函數(shù)圖象上任意兩點(x1,f(x1))、(x2,f(x2))連線的斜率都大于(或小于)零.

  (5)由于定義都是充要性命題,因此由f(x)是增(減)函數(shù),且(或x1>x2),這說明單調(diào)性使得自變量間的不等關(guān)系和函數(shù)值之間的不等關(guān)系可以“正逆互推”.

  5、復合函數(shù)y=f[g(x)]的單調(diào)性

  若u=g(x)在區(qū)間[a,b]上的單調(diào)性,與y=f(u)在[g(a),g(b)](或g(b),g(a))上的單調(diào)性相同,則復合函數(shù)y=f[g(x)]在[a,b]上單調(diào)遞增;否則,單調(diào)遞減.簡稱“同增、異減”.

  在研究函數(shù)的單調(diào)性時,常需要先將函數(shù)化簡,轉(zhuǎn)化為討論一些熟知函數(shù)的單調(diào)性。因此,掌握并熟記一次函數(shù)、二次函數(shù)、指數(shù)函數(shù)、對數(shù)函數(shù)的單調(diào)性,將大大縮短我們的判斷過程.

  6、證明函數(shù)的單調(diào)性的方法

  (1)依定義進行證明.其步驟為:①任取x1、x2∈M且x1(或<)f(x2);③根據(jù)定義,得出結(jié)論.

  (2)設函數(shù)y=f(x)在某區(qū)間內(nèi)可導.

  如果f′(x)>0,則f(x)為增函數(shù);如果f′(x)<0,則f(x)為減函數(shù).

  【(六)、函數(shù)的圖象】

  函數(shù)的圖象是函數(shù)的直觀體現(xiàn),應加強對作圖、識圖、用圖能力的培養(yǎng),培養(yǎng)用數(shù)形結(jié)合的思想方法解決問題的意識.

  求作圖象的函數(shù)表達式

  與f(x)的關(guān)系

  由f(x)的圖象需經(jīng)過的變換

  y=f(x)±b(b>0)

  沿y軸向平移b個單位

  y=f(x±a)(a>0)

  沿x軸向平移a個單位

  y=-f(x)

  作關(guān)于x軸的對稱圖形

  y=f(|x|)

  右不動、左右關(guān)于y軸對稱

  y=|f(x)|

  上不動、下沿x軸翻折

  y=f-1(x)

  作關(guān)于直線y=x的對稱圖形

  y=f(ax)(a>0)

  橫坐標縮短到原來的,縱坐標不變

  y=af(x)

  縱坐標伸長到原來的|a|倍,橫坐標不變

  y=f(-x)

  作關(guān)于y軸對稱的圖形

  【例】定義在實數(shù)集上的函數(shù)f(x),對任意x,y∈R,有f(x+y)+f(x-y)=2f(x)·f(y),且f(0)≠0.

  ①求證:f(0)=1;

 、谇笞C:y=f(x)是偶函數(shù);

  ③若存在常數(shù)c,使求證對任意x∈R,有f(x+c)=-f(x)成立;試問函數(shù)f(x)是不是周期函數(shù),如果是,找出它的一個周期;如果不是,請說明理由.

  思路分析:我們把沒有給出解析式的函數(shù)稱之為抽象函數(shù),解決這類問題一般采用賦值法.

  解答:①令x=y=0,則有2f(0)=2f2(0),因為f(0)≠0,所以f(0)=1.

  ②令x=0,則有f(x)+f(-y)=2f(0)·f(y)=2f(y),所以f(-y)=f(y),這說明f(x)為偶函數(shù).

  ③分別用(c>0)替換x、y,有f(x+c)+f(x)=

  所以,所以f(x+c)=-f(x).

  兩邊應用中的結(jié)論,得f(x+2c)=-f(x+c)=-[-f(x)]=f(x),

  所以f(x)是周期函數(shù),2c就是它的一個周期.

高一數(shù)學知識點歸納總結(jié)7

  定義:

  x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當直線與x軸平行或重合時,我們規(guī)定它的傾斜角為0度。

  范圍:

  傾斜角的取值范圍是0°≤α<180°。

  理解:

  (1)注意“兩個方向”:直線向上的方向、x軸的正方向;

  (2)規(guī)定當直線和x軸平行或重合時,它的傾斜角為0度。

  意義:

 、僦本的傾斜角,體現(xiàn)了直線對x軸正向的傾斜程度;

 、谠谄矫嬷苯亲鴺讼抵校恳粭l直線都有一個確定的傾斜角;

 、蹆A斜角相同,未必表示同一條直線。

  公式:

  k=tanα

  k>0時α∈(0°,90°)

  k<0時α∈(90°,180°)

  k=0時α=0°

  當α=90°時k不存在

  ax+by+c=0(a≠0)傾斜角為A,

  則tanA=-a/b,

  A=arctan(-a/b)

  當a≠0時,

  傾斜角為90度,即與X軸垂直

高一數(shù)學知識點歸納總結(jié)8

  集合與元素

  一個東西是集合還是元素并不是絕對的,很多情況下是相對的,集合是由元素組成的集合,元素是組成集合的元素。

  例如:你所在的班級是一個集合,是由幾十個和你同齡的同學組成的集合,你相對于這個班級集合來說,是它的一個元素;

  而整個學校又是由許許多多個班級組成的集合,你所在的班級只是其中的一分子,是一個元素。

  班級相對于你是集合,相對于學校是元素,參照物不同,得到的結(jié)論也不同,可見,是集合還是元素,并不是絕對的。

  .解集合問題的關(guān)鍵

  解集合問題的關(guān)鍵:弄清集合是由哪些元素所構(gòu)成的,也就是將抽象問題具體化、形象化,將特征性質(zhì)描述法表示的集合用列舉法來表示,或用韋恩圖來表示抽象的集合,或用圖形來表示集合;比如用數(shù)軸來表示集合,或是集合的元素為有序?qū)崝?shù)對時,可用平面直角坐標系中的圖形表示相關(guān)的集合等。

高一數(shù)學知識點歸納總結(jié)9

  一、集合及其表示

  1、集合的含義:

  “集合”這個詞首先讓我們想到的是上體育課或者開會時老師經(jīng)常喊的“全體集合”。數(shù)學上的“集合”和這個意思是一樣的,只不過一個是動詞一個是名詞而已。

  所以集合的含義是:某些指定的`對象集在一起就成為一個集合,簡稱集,其中每一個對象叫元素。比如高一二班集合,那么所有高一二班的同學就構(gòu)成了一個集合,每一個同學就稱為這個集合的元素。

  2、集合的表示

  通常用大寫字母表示集合,用小寫字母表示元素,如集合A={a,b,c}。a、b、c就是集合A中的元素,記作a∈A,相反,d不屬于集合A,記作d?A。

  有一些特殊的集合需要記憶:

  非負整數(shù)集(即自然數(shù)集)N正整數(shù)集N_或N+

  整數(shù)集Z有理數(shù)集Q實數(shù)集R

  集合的表示方法:列舉法與描述法。

  ①列舉法:{a,b,c……}

 、诿枋龇ǎ簩⒓现械脑氐墓矊傩悦枋龀鰜怼H鐊x?R|x-3>2},{x|x-3>2},{(x,y)|y=x2+1}

  ③語言描述法:例:{不是直角三角形的三角形}

  例:不等式x-3>2的解集是{x?R|x-3>2}或{x|x-3>2}

  強調(diào):描述法表示集合應注意集合的代表元素

  A={(x,y)|y=x2+3x+2}與B={y|y=x2+3x+2}不同。集合A中是數(shù)組元素(x,y),集合B中只有元素y。

  3、集合的三個特性

  (1)無序性

  指集合中的元素排列沒有順序,如集合A={1,2},集合B={2,1},則集合A=B。

  例題:集合A={1,2},B={a,b},若A=B,求a、b的值。

  解:,A=B

  注意:該題有兩組解。

  (2)互異性

  指集合中的元素不能重復,A={2,2}只能表示為{2}

  (3)確定性

  集合的確定性是指組成集合的元素的性質(zhì)必須明確,不允許有模棱兩可、含混不清的情況。

高一數(shù)學知識點歸納總結(jié)10

  兩個平面的位置關(guān)系:

  (1)兩個平面互相平行的定義:空間兩平面沒有公共點

  (2)兩個平面的位置關(guān)系:

  兩個平面平行——沒有公共點;兩個平面相交——有一條公共直線。

  a、平行

  兩個平面平行的判定定理:如果一個平面內(nèi)有兩條相交直線都平行于另一個平面,那么這兩個平面平行。

  兩個平面平行的性質(zhì)定理:如果兩個平行平面同時和第三個平面相交,那么交線平行。

  b、相交

  二面角

  (1)半平面:平面內(nèi)的一條直線把這個平面分成兩個部分,其中每一個部分叫做半平面。

  (2)二面角:從一條直線出發(fā)的兩個半平面所組成的圖形叫做二面角。二面角的取值范圍為[0°,180°]

  (3)二面角的棱:這一條直線叫做二面角的棱。

  (4)二面角的面:這兩個半平面叫做二面角的面。

  (5)二面角的平面角:以二面角的棱上任意一點為端點,在兩個面內(nèi)分別作垂直于棱的兩條射線,這兩條射線所成的角叫做二面角的平面角。

  (6)直二面角:平面角是直角的二面角叫做直二面角。

  兩平面垂直

  兩平面垂直的定義:兩平面相交,如果所成的角是直二面角,就說這兩個平面互相垂直。記為⊥

  兩平面垂直的判定定理:如果一個平面經(jīng)過另一個平面的一條垂線,那么這兩個平面互相垂直

  兩個平面垂直的性質(zhì)定理:如果兩個平面互相垂直,那么在一個平面內(nèi)垂直于交線的直線垂直于另一個平面。

  二面角求法:直接法(作出平面角)、三垂線定理及逆定理、面積射影定理、空間向量之法向量法(注意求出的角與所需要求的角之間的等補關(guān)系)

  棱錐

  棱錐的定義:有一個面是多邊形,其余各面都是有一個公共頂點的三角形,這些面圍成的幾何體叫做棱錐。

  棱錐的性質(zhì):

  (1)側(cè)棱交于一點。側(cè)面都是三角形

  (2)平行于底面的截面與底面是相似的多邊形。且其面積比等于截得的棱錐的高與遠棱錐高的比的平方

  正棱錐

  正棱錐的定義:如果一個棱錐底面是正多邊形,并且頂點在底面內(nèi)的射影是底面的中心,這樣的棱錐叫做正棱錐。

  正棱錐的性質(zhì):

  (1)各側(cè)棱交于一點且相等,各側(cè)面都是全等的等腰三角形。各等腰三角形底邊上的高相等,它叫做正棱錐的斜高。

  (3)多個特殊的直角三角形

  a、相鄰兩側(cè)棱互相垂直的正三棱錐,由三垂線定理可得頂點在底面的射影為底面三角形的垂心。

  b、四面體中有三對異面直線,若有兩對互相垂直,則可得第三對也互相垂直。且頂點在底面的射影為底面三角形的垂心。

  集合

  集合具有某種特定性質(zhì)的事物的總體。這里的“事物”可以是人,物品,也可以是數(shù)學元素。例如:1、分散的人或事物聚集到一起;使聚集:緊急~。2、數(shù)學名詞。一組具有某種共同性質(zhì)的數(shù)學元素:有理數(shù)的~。3、口號等等。集合在數(shù)學概念中有好多概念,如集合論:集合是現(xiàn)代數(shù)學的基本概念,專門研究集合的理論叫做集合論?低(Cantor,某年—某年,德國數(shù)學家先驅(qū),是集合論的創(chuàng)始者,目前集合論的基本思想已經(jīng)滲透到現(xiàn)代數(shù)學的所有領(lǐng)域。

  集合,在數(shù)學上是一個基礎(chǔ)概念。什么叫基礎(chǔ)概念?基礎(chǔ)概念是不能用其他概念加以定義的概念。集合的概念,可通過直觀、公理的方法來下“定義”。

  集合是把人們的直觀的或思維中的某些確定的能夠區(qū)分的對象匯合在一起,使之成為一個整體(或稱為單體),這一整體就是集合。組成一集合的那些對象稱為這一集合的元素(或簡稱為元)。

  集合與集合之間的關(guān)系

  某些指定的對象集在一起就成為一個集合集合符號,含有有限個元素叫有限集,含有無限個元素叫無限集,空集是不含任何元素的集,記做Φ。空集是任何集合的子集,是任何非空集的真子集。任何集合是它本身的子集。子集,真子集都具有傳遞性。(說明一下:如果集合A的所有元素同時都是集合B的元素,則A稱作是B的子集,寫作AB。若A是B的子集,且A不等于B,則A稱作是B的真子集,一般寫作A屬于B。中學教材課本里將符號下加了一個不等于符號,不要混淆,考試時還是要以課本為準。所有男人的集合是所有人的集合的真子集。)

高一數(shù)學知識點歸納總結(jié)11

  函數(shù)的概念

  函數(shù)的概念:設A、B是非空的數(shù)集,如果按照某個確定的對應關(guān)系f,使對于集合A中的任意一個數(shù)x,在集合B中都有確定的數(shù)f(x)和它對應,那么就稱f:A---B為從集合A到集合B的一個函數(shù).記作:y=f(x),x∈A.

  (1)其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域;

  (2)與x的值相對應的y值叫做函數(shù)值,函數(shù)值的集合{f(x)|x∈A}叫做函數(shù)的值域.

  函數(shù)的三要素:定義域、值域、對應法則

  函數(shù)的表示方法:(1)解析法:明確函數(shù)的定義域

  (2)圖想像:確定函數(shù)圖像是否連線,函數(shù)的圖像可以是連續(xù)的曲線、直線、折線、離散的點等等。

  (3)列表法:選取的自變量要有代表性,可以反應定義域的特征。

  4、函數(shù)圖象知識歸納

  (1)定義:在平面直角坐標系中,以函數(shù)y=f(x),(x∈A)中的x為橫坐標,函數(shù)值y為縱坐標的點P(x,y)的集合C,叫做函數(shù)y=f(x),(x∈A)的圖象.C上每一點的坐標(x,y)均滿足函數(shù)關(guān)系y=f(x),反過來,以滿足y=f(x)的每一組有序?qū)崝?shù)對x、y為坐標的點(x,y),均在C上.

  (2)畫法

  A、描點法:B、圖象變換法:平移變換;伸縮變換;對稱變換,即平移。

  (3)函數(shù)圖像平移變換的特點:

  1)加左減右——————只對x

  2)上減下加——————只對y

  3)函數(shù)y=f(x)關(guān)于X軸對稱得函數(shù)y=-f(x)

  4)函數(shù)y=f(x)關(guān)于Y軸對稱得函數(shù)y=f(-x)

  5)函數(shù)y=f(x)關(guān)于原點對稱得函數(shù)y=-f(-x)

  6)函數(shù)y=f(x)將x軸下面圖像翻到x軸上面去,x軸上面圖像不動得

  函數(shù)y=|f(x)|

  7)函數(shù)y=f(x)先作x≥0的圖像,然后作關(guān)于y軸對稱的圖像得函數(shù)f(|x|)

高一數(shù)學知識點歸納總結(jié)12

  考點要求:

  1、幾何體的展開圖、幾何體的三視圖仍是高考的熱點。

  2、三視圖和其他的知識點結(jié)合在一起命題是新教材中考查學生三視圖及幾何量計算的趨勢。

  3、重點掌握以三視圖為命題背景,研究空間幾何體的結(jié)構(gòu)特征的題型。

  4、要熟悉一些典型的幾何體模型,如三棱柱、長(正)方體、三棱錐等幾何體的三視圖。

  知識結(jié)構(gòu):

  1、多面體的結(jié)構(gòu)特征

 。1)棱柱有兩個面相互平行,其余各面都是平行四邊形,每相鄰兩個四邊形的公共邊平行。

  正棱柱:側(cè)棱垂直于底面的棱柱叫做直棱柱,底面是正多邊形的直棱柱叫做正棱柱。反之,正棱柱的底面是正多邊形,側(cè)棱垂直于底面,側(cè)面是矩形。

  (2)棱錐的底面是任意多邊形,側(cè)面是有一個公共頂點的三角形。

  正棱錐:底面是正多邊形,頂點在底面的射影是底面正多邊形的中心的棱錐叫做正棱錐。特別地,各棱均相等的正三棱錐叫正四面體。反過來,正棱錐的底面是正多邊形,且頂點在底面的射影是底面正多邊形的中心。

 。3)棱臺可由平行于底面的平面截棱錐得到,其上下底面是相似多邊形。

  2、旋轉(zhuǎn)體的結(jié)構(gòu)特征

 。1)圓柱可以由矩形繞一邊所在直線旋轉(zhuǎn)一周得到。

 。2)圓錐可以由直角三角形繞一條直角邊所在直線旋轉(zhuǎn)一周得到。

  (3)圓臺可以由直角梯形繞直角腰所在直線旋轉(zhuǎn)一周或等腰梯形繞上下底面中心所在直線旋轉(zhuǎn)半周得到,也可由平行于底面的平面截圓錐得到。

 。4)球可以由半圓面繞直徑旋轉(zhuǎn)一周或圓面繞直徑旋轉(zhuǎn)半周得到。

  3、空間幾何體的三視圖

  空間幾何體的三視圖是用平行投影得到,這種投影下,與投影面平行的平面圖形留下的影子,與平面圖形的形狀和大小是全等和相等的,三視圖包括正視圖、側(cè)視圖、俯視圖。

  三視圖的長度特征:“長對正,寬相等,高平齊”,即正視圖和側(cè)視圖一樣高,正視圖和俯視圖一樣長,側(cè)視圖和俯視圖一樣寬。若相鄰兩物體的表面相交,表面的交線是它們的分界線,在三視圖中,要注意實、虛線的畫法。

  4、空間幾何體的直觀圖

  空間幾何體的直觀圖常用斜二測畫法來畫,基本步驟是:

 。1)畫幾何體的底面

  在已知圖形中取互相垂直的x軸、y軸,兩軸相交于點O,畫直觀圖時,把它們畫成對應的x′軸、y′軸,兩軸相交于點O′,且使∠x′O′y′=45°或135°,已知圖形中平行于x軸、y軸的線段,在直觀圖中平行于x′軸、y′軸。已知圖形中平行于x軸的線段,在直觀圖中長度不變,平行于y軸的線段,長度變?yōu)樵瓉淼囊话搿?/p>

 。2)畫幾何體的高

  在已知圖形中過O點作z軸垂直于xOy平面,在直觀圖中對應的z′軸,也垂直于x′O′y′平面,已知圖形中平行于z軸的線段,在直觀圖中仍平行于z′軸且長度不變。

高一數(shù)學知識點歸納總結(jié)13

  【基本初等函數(shù)】

  一、指數(shù)函數(shù)

 。ㄒ唬┲笖(shù)與指數(shù)冪的運算

  1、根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈

  當是奇數(shù)時,正數(shù)的次方根是一個正數(shù),負數(shù)的次方根是一個負數(shù)。此時,的次方根用符號表示。式子叫做根式(radical),這里叫做根指數(shù)(radicalexponent),叫做被開方數(shù)(radicand)。

  當是偶數(shù)時,正數(shù)的次方根有兩個,這兩個數(shù)互為相反數(shù)。此時,正數(shù)的正的次方根用符號表示,負的次方根用符號—表示。正的次方根與負的次方根可以合并成±(>0)。由此可得:負數(shù)沒有偶次方根;0的任何次方根都是0,記作。

  注意:當是奇數(shù)時,當是偶數(shù)時,

  2、分數(shù)指數(shù)冪

  正數(shù)的分數(shù)指數(shù)冪的意義,規(guī)定:

  0的正分數(shù)指數(shù)冪等于0,0的負分數(shù)指數(shù)冪沒有意義

  指出:規(guī)定了分數(shù)指數(shù)冪的意義后,指數(shù)的概念就從整數(shù)指數(shù)推廣到了有理數(shù)指數(shù),那么整數(shù)指數(shù)冪的運算性質(zhì)也同樣可以推廣到有理數(shù)指數(shù)冪。

  3、實數(shù)指數(shù)冪的運算性質(zhì)

  (二)指數(shù)函數(shù)及其性質(zhì)

  1、指數(shù)函數(shù)的概念:一般地,函數(shù)叫做指數(shù)函數(shù)(exponential),其中x是自變量,函數(shù)的定義域為R。

  注意:指數(shù)函數(shù)的底數(shù)的取值范圍,底數(shù)不能是負數(shù)、零和1。

  2、指數(shù)函數(shù)的圖象和性質(zhì)

高一數(shù)學知識點歸納總結(jié)14

  對數(shù)函數(shù)

  對數(shù)函數(shù)的一般形式為,它實際上就是指數(shù)函數(shù)的反函數(shù)。因此指數(shù)函數(shù)里對于a的規(guī)定,同樣適用于對數(shù)函數(shù)。

  右圖給出對于不同大小a所表示的函數(shù)圖形:

  可以看到對數(shù)函數(shù)的圖形只不過的指數(shù)函數(shù)的圖形的關(guān)于直線y=x的對稱圖形,因為它們互為反函數(shù)。

  (1)對數(shù)函數(shù)的定義域為大于0的實數(shù)集合。

  (2)對數(shù)函數(shù)的值域為全部實數(shù)集合。

  (3)函數(shù)總是通過(1,0)這點。

  (4)a大于1時,為單調(diào)遞增函數(shù),并且上凸;a小于1大于0時,函數(shù)為單調(diào)遞減函數(shù),并且下凹。

  (5)顯然對數(shù)函數(shù)。

高一數(shù)學知識點歸納總結(jié)15

  I.定義與定義表達式

  一般地,自變量x和因變量y之間存在如下關(guān)系:y=ax^2+bx+c

  (a,b,c為常數(shù),a≠0,且a決定函數(shù)的開口方向,a>0時,開口方向向上,a<0時,開口方向向下,IaI還可以決定開口大小,IaI越大開口就越小,IaI越小開口就越大.)

  則稱y為x的二次函數(shù)。

  二次函數(shù)表達式的右邊通常為二次三項式。

  II.二次函數(shù)的三種表達式

  一般式:y=ax^2+bx+c(a,b,c為常數(shù),a≠0)

  頂點式:y=a(x-h)^2+k[拋物線的頂點P(h,k)]

  交點式:y=a(x-x?)(x-x?)[僅限于與x軸有交點A(x?,0)和B(x?,0)的拋物線]

  注:在3種形式的互相轉(zhuǎn)化中,有如下關(guān)系:

  h=-b/2ak=(4ac-b^2)/4ax?,x?=(-b±√b^2-4ac)/2a

  III.二次函數(shù)的圖像

  在平面直角坐標系中作出二次函數(shù)y=x^2的圖像,可以看出,二次函數(shù)的圖像是一條拋物線。

  IV.拋物線的性質(zhì)

  1.拋物線是軸對稱圖形。對稱軸為直線x=-b/2a。對稱軸與拋物線的交點為拋物線的頂點P。

  特別地,當b=0時,拋物線的對稱軸是y軸(即直線x=0)

  2.拋物線有一個頂點P,坐標為

  P(-b/2a,(4ac-b^2)/4a)

  當-b/2a=0時,P在y軸上;當Δ=b^2-4ac=0時,P在x軸上。

  3.二次項系數(shù)a決定拋物線的開口方向和大小。

  當a>0時,拋物線向上開口;當a<0時,拋物線向下開口。

  |a|越大,則拋物線的開口越小。

【高一數(shù)學知識點歸納總結(jié)】相關(guān)文章:

高一數(shù)學知識點歸納總結(jié)12-17

高一數(shù)學知識點總結(jié)歸納09-08

高一數(shù)學函數(shù)知識點歸納總結(jié)09-08

高一數(shù)學知識點重點總結(jié)歸納09-23

高一數(shù)學必修一知識點總結(jié)歸納02-15

高一數(shù)學必修一知識點總結(jié)歸納01-14

高一政治知識點總結(jié)歸納03-30

高一數(shù)學知識點歸納總結(jié)精選13篇12-18

高一數(shù)學知識點歸納總結(jié)13篇12-17

高一數(shù)學知識點歸納總結(jié)(13篇)12-17